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Abstract: 
 

Endurance athletes rely on heart rate tracking during both training and competition to 
maintain the constant effort level necessary for proper pacing.  Modeling the variations in heart 
rate during this type of constant-effort aerobic activity has both personal and commercial 
applications, enabling fitness tracking devices to provide more accurate predictions identifying 
when athletes drift above or below their desired intensity level.  During this case study, we show 
that an ARMA model fits medium-intensity heart rate data well, outperforming vanilla 
forecasting methods over short-term (60 second) time horizons. 
 
 
I. Introduction 
 

Race strategy in long-distance endurance sports is highly reliant on proper pacing 
throughout the early stages of the event.  Overexertion in the opening miles can easily spoil a 
quality race later on.  Biomechanically, the optimal strategy in endurance events is to complete 
the race at a constant effort level (Ely et al 2008).  For athletes competing on flat courses in ideal 
conditions such as track runners or marathoners on pancake-flat courses, this simply equates to a 
constant pace.  However, changing course conditions complicate things.  Ultramarathoners, 
Nordic skiers, or distances runners competing on hilly courses for example must adapt their pace 
to changing conditions.  Athletes must then compensate for hills or changes in temperature by 
adjusting pace to maintain constant race effort. 
 Additionally, the popularity of fitness trackers has grown dramatically over the past 
decade both for personal and professional use, allowing athletes to augment their perception with 
real-time heart rate data.  Developing a model for constant effort low- to medium-intensity 
running has applications both for personal use as well as incorporation into the ever-growing set 
of analytic tools built into tracking devices.  In this paper, we will use modeling techniques for 
time-series data to forecast future heart rate for this type of running. 
 
 
II. Experiment and Data 
 

For this case study, we fit a time series model to heart rate data gathered during a sample 
long-distance run.  The data to be studied was provided by the author, who is a 30-year-old male 
with competitive endurance sport backgrounds in Nordic skiing and distance running, but is 
otherwise an amateur athlete.  The workout of study was a 12-mile run that took place in the 
beginning of a marathon training cycle.  This was completed on a flat course (50 ft elevation 
change per Google maps), at a comfortable temperature (71oF at start), and in negligible wind 
(SE 3.8 mph at start).  The goal of this run was to maintain at a constant perceived “breathy 
conversational” effort, translating to a target heartrate range of approximately 148-168 BPM 
(74%-84% of maximum heart rate). While a truly blinded experiment was impossible given the 
author’s participation, real-time heartrate or pace were not consulted during the run, instead 
relying on perceived effort to set pace.  Simulating race conditions, mile splits were viewed 
throughout the run.  These are provided in the Table 1, which verify an approximately constant 
effort. 



 Heart rate was measured using an electrode-based chest strap paired to a Garmin 
Forerunner 935 watch.  Measurements were recorded at one-second intervals.  Readings from the 
first and last mile were omitted from the data to account for warm-up and cool-down periods, 
resulting in a 10-mile study period.   
 
 
III. Model-Building 
 

The full heart rate versus time data for the study portion of the run is plotted in Fig 1.  
We apply a 75-25 train-test split, withholding the last quarter of the data for model evaluation 
and forecasting.  The training portion of the data is plotted in Fig 2.  Most immediately 
noticeable is the steady, upward trend in heart rate over time.  This exemplifies a phenomenon 
known as cardiovascular drift (Coyle, González-Alonso 2001).  For low- to medium-intensity 
aerobic exercise, athletes typically experience a steady increase in heart rate despite no changes 
in perceived effort or breathing.  Since little has been written about the precise functional form of 
this phenomenon, we use fit a linear model via ordinary least squares to capture this trend.  The 
fitted line is shown below: 

 
𝐻𝑅# = 156.412 + 0.002753 ∗ 𝑇𝑖𝑚𝑒 

 
Our estimated slope suggests an expected heart rate drift of approximately 9.912 BPM/hr at this 
intensity level.  Note that caution should be taken extrapolating this trend to higher-intensity 
workouts. Indeed, we may expect a different functional form for this trend as athletes’ approach 
and exceed lactate threshold pace, necessitating further study. 

We then detrend these data to remove the effect of cardiovascular drift, considering the 
residuals from the linear model in subsequent model-fitting.  These residuals are plotted as a time 
series in Fig. 3.  Visual inspection suggests no obvious changes in variance over time.  The 
augmented Dickey-Fuller test confirms our suspicion of stationarity, rejecting the null hypothesis 
at the 1% significance level.  After detrending, the remaining variability in the data can be 
attributed to (i) measurement error from our device, (ii) natural fluctuations in heart rate while 
maintaining constant effort, and (iii) variations in our runner’s ability to maintain constant effort 
in the first place. 
 Cycles within heart rate data may be possible when considering (iii) due to the nature of 
attempting to maintain a constant effort.  Such a task may result in periodic cycles of 
overexerting, followed by under exerting to compensate.  Moreover, we might expect such an 
effect to be more pronounced for amateur athletes like the test subject as compared to 
professionals.  Identifying such a pattern would be a useful insight for both racing and training.  
However, the smoothed periodogram (Fig. 4) shows a steady decline in magnitude as frequency 
increases with no noticeable spikes.  This is indicative of acyclic, smooth data.  We proceed 
under this assumption moving forward. 

The sample ACF and PACF for the detrended data are shown in Fig. 5.  Note that the 
slow tail-off of the ACF suggests that measurement error is not overwhelming the heartrate 
signal, since we should expect a high degree of autocorrelation at the one second level for heart 
rate data under most conditions.  The PACF suggests an AR(3) or AR(4) may be appropriate for 
these data, due to the cutoff at around lag 3 or 4. 



 We next conduct a grid search, fitting ARMA(p, q) models for 𝑝 ∈ [0,9], 𝑞 ∈ [0.9].  AIC 
values for each model are shown in Table 2.  The ARMA(3, 2) model minimizes AIC, consistent 
with our visual inspection of the PACF plot.  The final model for heart rate at each time step (xt) 
is shown below: 
 

𝑥! = 2.13𝑥!"# − 1.33𝑥!"$ + 0.201𝑥!"% − 0.687𝑤!"# − 0.103𝑤!"$ + 0.0326 
 
These coefficients give some insight into the structure of the data.  Despite the general 
smoothness of the data indicated by the ACF plot, the inclusion of two moving average (MA) 
terms further smooths the time series over the two seconds preceding each time step.  Since we 
would expect other sources of variability due to biomechanical fluctuations to take place more 
slowly, this is most likely accounting for measurement error in the form of white noise.  The 
autoregressive (AR) coefficients are quite large for the two preceding time steps, with both 
having a magnitude greater than one.  The large positive coefficient at lag-1 is counteracted 
somewhat by a smaller negative coefficient at lag-2. 

Fig. 6 gives a snapshot of typical model behavior for a small segment of test data using 
one-step-ahead forecasting.  Note that the model tends to fit the steady and gradual increases and 
decreases in heart rate quite closely.  During periods of great variability or sharp changes in 
direction, the model tends to oscillate due to the push-pull nature of the lag-1 and lag-2 AR 
coefficients, fitting the data most poorly during these periods.  The fitting of these particular 
coefficients suggests that the heartrate data here is most generally characterized by these gradual 
upward and downward trends. 
 
 
IV. Forecasting and Model Evaluation 
 

We consider four models in our performance evaluation: ARMA(3, 2), AR(3), previous-
second prediction, and the cardiac drift linear model.  Note that the ARMA(3, 2) and AR(3) 
models also include the linear effect from cardiac drift, further modeling the residuals on top of 
it.  While the ARMA(3, 2) outperformed the AR(3) in terms of AIC during the initial grid search, 
we include it to get some sense of how much value the inclusion of the additional MA terms adds 
to predictive performance. 

Performing one-step-ahead forecasting on the testing portion of the data yields RMSE 
values shown in Table 1.  In part due to the smoothness of the data, all models perform 
reasonably well, with both included ARMA models falling well within 1 BPM in terms of 
RMSE.  Moreover, these significantly outperform the vanilla linear model prediction.  However, 
forecasting simply based on the heart rate reading at the previous second remains the best 
predictor in this short time horizon.  This suggests that the smoothness of the data is dominating 
any larger trends at the one-second level.  This is again visible in Fig. 6 where we can see the 
poor model fit during rapid changes in the overall trend.  Here, simply relying on the reading 
from the previous second is clearly the superior strategy. 

Longer-term forecasting is likely the more interesting application for most use-cases.  We 
carry out a forecast at the 60 second time horizon, testing on the first 60 seconds of test data.  
The same four models are used as in the one-second-ahead case.  Note that the previous-second 
forecast uses the most recent heart rate reading as a constant prediction over the full 60 second 



test interval.  The resulting RMSE values are shown in Table 2, with the forecasted ARMA(3, 2) 
values and corresponding 1-SE bounds plotted in Fig. 7. 

In this context, the ARMA(3, 2) model shows its advantage over the other three models, 
offering about 22% improvement over the previous-second model.  Fig. 7 highlights some of its 
advantages.  The ARMA(3, 2) captures the shape of the overall trend during this period 
remarkably well during this period, albeit to a less extreme degree.  This again aligns with 
previous discussion that the AR coefficients are well-fit to the more gradual overall trends in the 
data, while the MA coefficients are smoothing the more short-term measurement error. 
 
 
V. Discussion and Conclusions 
 

These results show strong potential for improvement in predictive performance over a 
time horizon up to 60 seconds for heart rate data.  The ARMA(3, 2) model both outperforms 
vanilla approaches and offers a reasonable forecast for the overall shape of the trend moving 
forward.  Fitness trackers frequently offer functions that alert users when their heartrate passes 
above a certain threshold.  For example, the Garmin watch used in this test allows the user to 
pick a specific heart rate reading before the run begins at which to send this alert.  These results 
suggest that such features could be improved by using time series forecasts to predict when 
athletes are trending towards exceeding that threshold, increasing their utility by preventing 
overexertion before it actually occurs. 

The most obvious extension of these results is to explore how the model responds to 
changes in biomechanical or environmental conditions.  This model was fit to a single, medium-
intensity run in nearly optimal conditions with ideal levels of rest and hydration.  Repeating 
similar tests on a treadmill would control for natural variations in pace, effectively isolation heart 
rate variability due to natural fluctuations. 

Additionally, factors like rest and hydration are likely to vary substantially over the 
course of a training program.  The stability of this type of model in the face of changing levels of 
hydration or rest remains to be seen, since these factors can have substantial impacts on 
performance.  As heartrate-based indicators of overtraining have become built into fitness 
tracking products, predictable changes in heart rate behavior from run to run could serve as an 
additional indicator for detecting and alerting users to deficiencies in the quality of their rest and 
level of recovery. 
 
  



Appendix: 
 

 
Fig. 1: 75-25 train-test split 

 

 
Fig. 2: Training data with cardiovascular drift model shown 

 



 
Fig. 3: Stationary residuals after detrending 

 

 
Fig. 4 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5 
 
 



 
Fig. 6 

 

    *Note that confidence bounds show ±1-se interval 
 

Fig. 7 
 
 
 

Mile: 1 2 3 4 5 6 7 8 9 10 
Pace (min/mi): 7:41 7:48 7:46 7:39 7:30 7:35 7:36 7:29 7:42 7:47 

 
Table 1: Mile splits during study portion of run 

  



 
 q = 0 1 2 3 4 5 6 7 8 9 

p = 0 15662.09985 11258.3705 7846.7703 5428.9211 3914.5009 2751.5058 1954.3973 1379.9610 977.4814 645.2821 
1 56.73862 -699.7150 -818.6965 -873.4013 -908.6979 -923.8749 -925.1763 -940.9218 -942.7782 -946.3252 
2 -911.99188 -930.2301 -981.3150 -983.8812 -983.6118 -983.0203 -920.0667 -984.2050 -982.6207 -982.0244 
3 -922.16935 -983.5437 -985.0997 -977.3199 -981.2060 -979.8789 -981.4795 -983.0880 -980.2403 -871.0766 
4 -952.41528 -984.5798 -983.9854 -982.3128 -976.5519 -984.0574 NA NA NA NA 
5 NA NA NA NA NA NA NA NA NA NA 
6 NA NA NA NA NA NA NA NA NA NA 
7 NA NA NA NA NA NA NA NA NA NA 
8 NA NA NA NA NA NA NA NA NA NA 
9 NA NA NA NA NA NA NA NA NA NA 

 
Table 2: AIC values for ARMA(p, q) grid search 

 
 
 

Model: RMSE (BPM): 
ARMA(3, 2) 0.597 
AR(3) 0.694 
Linear model only 2.993 
Previous second 0.249 

 
Table 3: RMSE for One-step-ahead forecasting on test data 

 
 
 

Model: RMSE (BPM): 
ARMA(3, 2) 1.003 
AR(3) 1.231 
Linear model only 1.287 
Previous second 1.287 

 
Table 4: RMSE for 60-second forecast 
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