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1 Introduction

One of the prominent and most widely studied areas for the application of
time series analysis is the field of economics. Much research and investment has
been committed into curating powerful and accurate analyses of time-dependent
mechanisms such as supply and demand of a good/commodity, (un)employment
and labor, and perhaps most directly, sales and prices. In this paper, we will
look specifically at food price data, which currently seems apt as a basis for a
time series analysis given the unpredictable state of prices of commodities and
the economy as a whole today. One good source for such data is the Federal
Reserve Economic Data (FRED) website, where we are able to find a great
number of historical price data for all sorts of goods, from retail to other raw
crops.1 In particular, we will look at the average price of chocolate chip cookies
(per pound) in U.S. cities. The choice of this particular item for our analysis
was mostly due to the fact that it is a fun, lighthearted food item that seemed
somewhat appropriate for this time of year (with the Christmas season and with
it, Christmas cookies, fast approaching).

2 The Data

Our dataset consists of monthly recordings of the price per pound of chocolate
chip cookies from 1980 to 2022 and can be readily visualized with a timeplot
of the series (Figure 1). We can immediately notice a couple things from this
plot: (1) there exists a relatively strong upward trend in the data — that is,
the price has been steadily increasing over time; (2) there may potentially be
some underlying seasonality since there appears to be quite a bit of fluctuation
within individual years. These observations are especially evident if we look at
the decomposition of the series (Figure 2), where we see quite clearly the trend
and seasonality components that we must eventually separate from the ”random

1These data are collected from the United States Bureau of Labor Statistics and similar
sources.
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noise” part of the data in order to conduct any useful analysis. Namely, we must
have a stationary series xt in order to do any model fitting or forecasting later.

We may partially be able to explain the two aforementioned patterns using
some domain knowledge natural intuition we may have about the national econ-
omy and consumer tendencies. Most notably, the linear rise in price may be
attributed to the fact that the American economy has consistently undergone
staunch inflation during the time period covered by the data. We may ponder
whether this inflationary behavior dominates the alternate possibility that the
price of chocolate chip cookies in particular has been rising organically, whether
due to some supply-and-demand reaction or a change in the quality or percep-
tion or ”luxuriousness” of the product. (This would be something to investigate
further by studying the prices of other, similar foods during the same period.)
As for the seasonal trend, we may postulate that, much as is the case for many
foods in the national economy, the price of cookies fluctuates from month to
month in a cyclical or predictable way; they may be more or less expensive in
some months compared to others, as a general, repeating pattern. For instance,
as we alluded to earlier, perhaps it is possible that chocolate chip cookies are a
somewhat festive or seasonal food item and so are more expensive during the
winter months.

In addition, by looking at the autocorrelation (ACF) plot (Figure 3) and
partial autocorrelation (PACF) plot (Figure 4), we can confirm that we certainly
need to alter our data before applying a model. Currently, the data are being
dominated by the trend and seasonality components, which does not make for
a suitable or useful analysis and eventual forecasting. We will tackle each of
these key ideas about transforming the data in turn, and in the end, fit an
appropriate autoregressive moving average, or ARMA(p, q), model we can then
use for making predictions on previously unseen data. To meet this end, our
first course of action is to take the data and partition it into a training set,
which we will use for the fitting and selection of models, and a test set, on
which we will eventually make predictions. We remove the last several years
of observations, from January 2019 to October 2022, and designate this as our
test set; naturally, we keep the rest of the data, from January 1980 to December
2018, for training.

3 Regression

We can begin by first attempting to remove the clear (linear) trend currently
present in the data. The relationship looks somewhat non-linear, but it also
seems reasonable to just use a regular linear regression fit. Once we have found
the regression line of best fit, we can transform our original data by subtracting
this line from it. That is, we think of our original time series xt as being
composed of two parts, the linear trend component and (ideally) a random
error or noise process:

xt = β0 + β1zt + wt.
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It then just remains for us to estimate those regression coefficients β0, β1 for our
data, which we accomplish by simply using the lm() functon in R, ending up
with a relatively good fit to the data (Figure 5).

This method of strictly removing the linear trend has the added benefit of
having better interpretability of the detrending of the data as opposed to, say,
a quadratic or cubic fit. It is more straightforward to think of subtracting a
line from the original data than say, a quadratic or cubic function. However,
while we do not include the alternate analysis here, it may still be worthwhile
to explore the use of a spline interpolation or similar method to fit the data
points more closely.

4 Spectral Analysis

Next, we must investigate the fluctuations of the price particularly within indi-
vidual years. That is, we would like to remove any strong seasonality present in
the data. We begin by producing some preliminary (smoothed) periodograms
(Figure 6) to look at the spectrum; we perform both a nonparametric and a
parametric (autoregressive) fit. In both cases, there is really no indication of a
seasonal pattern in the data, which is potentially discouraging at the onset.

At this point, however, we may call upon some of our intuition/knowledge of
the subject matter and postulate the existence of a seasonal trend after all. As
mentioned earlier, we have a suspicion that for most foods in general, the price
will fluctuate from month to month or season to season, depending on different
crop yields, goods transports, general consumer demand, etc. In particular,
we may believe that the price of cookies is higher in the months leading up to
the winter holidays, hinting at an annual cycle of some sort. In fact, with a
bit of exploratory data analysis, we can see exactly this sort of relationship by
comparing the timeplots for two separate years in our dataset (Figures 7, 8)
and find that indeed, many of the months share a common pattern/directional
change (increase/decrease). Therefore, we can attack the seasonality by way
of a method similar to that of removing the linear trend; for each month, we
subtract the overall mean price for that month as a way of effectively removing
the overall seasonality for the data at large. Finally, we end up with a detrended,
seasonality-removed dataset (Figure 9) that is ready to be fed into our predictive
models.

5 Model Fitting

Now that we have modified our data appropriately, we are ready to fit some
models in order to eventually produce some predictions on the testing data we
set aside earlier. Our weapon of choice is the autoregressive moving average
(ARMA) model, with model parameters p and q which denote the order of the
AR and MA processes, respectively. In mathematical terms, this will be of the
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form
xt = ϕ1xt−1 + . . .+ ϕpxt−p + wt + θ1wt−1 + . . .+ θqwt−q,

where xt is stationary, ϕp ̸= 0, θq ̸= 0, and σ2
w > 0.

In order to get an all-encompassing look at which model(s) may be successful,
we choose to do a comprehensive ”grid search” of the possible model parameters
for p = 0, . . . , 9, q = 0, . . . , 9.

So, we fit all 100 of the possible ARMA(p, q) models and calculate the
Akaike Information Criterion (AIC) for each then look for the optimal model(s)
by finding the model(s) with the lowest AIC. In the end, we end up seeing
that the best model according to this metric is an ARMA(7, 3), with an AIC
of -2.212534. We note that when performing the 100 model grid search, some
of the model fittings for some of the order combinations did not converge (as
reference, the sarima() function in R was used in this step and specifically,
led to an optim() error). However, of the ones that work with no errors, the
ARMA(7, 3) is indeed our model of choice.

We can next check the diagnostics of the ARMA(7, 3) fit. We conduct a
residual analysis of the fit (Figure 10) and see that the various tests and as-
sumptions are being satisfied. The standardized residuals look to be adequately
centered at zero with constant variance and follow a normal distribution. There-
fore, we can posit that our model is valid and can thus be used for prediction
in the next phase of our analysis.

6 Forecasting

We are now equipped to do some forecasting using our ARMA model. Using
the ARMA(7, 3) coefficients, we calculate the predicted values on the training
set data and see that the predictions line up quite closely with the true values
(Figure 11). In fact, we can also calculate the root mean-squared error (RMSE)
of approximately $0.09. Considering that the data values at hand — that is,
the prices of the cookies — are within the range of roughly 1-4 dollars, this
is a relatively good margin of error to achieve. This is a good indication that
our model is sufficiently generating accurate predictions and can henceforth be
applied to the previously unseen testing data (the 2019-present time period).

Next, we can apply the same steps to predict on the test set. We must first
transform the testing data in the same way as we did for the training set. We
can take the original values (of the testing set portion) of the time series, xt,
and subtract both the trend and seasonal cyclical aspect that were removed in
the lead-up to the model fitting. Then, we simply use our model to generate the
predictions, in the same say as we saw for the training data, and evaluate how
close these are to the real, ground-truth price values. We can see again that
visually, the predictions line up quite nicely with the true data (Figure 12). In
addition, we again calculate the RMSE on the test data; we find it to be roughly
0.13. This test performance seems to indicate that it is safe to conclude that
our chosen model is doing quite a good job at predicting the future price values
of chocolate chip cookies.
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7 Conclusion and Future Work

We wrap up our analysis by reviewing our general findings and proposing some
other future directions one may pursue to get a further understanding of this
dataset. We saw that most of the non-stationarity underlying the data is ex-
plained by the strong linear trend we removed. To reiterate an earlier point,
it is possible that there exists a better method for fitting the curvilinear trend
(perhaps a cubic spline or something similar), however for our purposes here a
straight line fit performed well enough. After this was removed, the seasonal
aspects, while not present when inspecting the periodogram, were influential
as well. We were able to find that the data followed a moderate annual cycle,
where certain months (Dec/Jan/Feb) saw increases in cookie price, while others
(Jun/Jul) saw clear decreases. Once we subtracted the month-by-month means
as a way of handling the underlying seasonal cycle, we were able to smoothly fit
an ARMA(7, 3) model to the final data. This model, in turn, produced quite
accurate predictions of future prices for chocolate chip cookies.

Another future direction for an analysis of this data may be to difference the
data. Since we are dealing with price data, differencing may offer an alternative
view of the data and its fluctuations through time. Rather than the raw price
from month to month, we can interpret the change in price across months,
similar to how one might use the notion of returns when analyzing stock prices.

One conceptual question that may still remain is that of the origin of the
seasonal aspect. That is, what might be the reason for the price being higher or
lower in certain months than others? One idea for investigating this may be to
conduct similar time-series analysis of other goods/foods and see whether any
parallel or similar patterns emerge. In any event, the conclusions we may draw
are limited to the scope of this analysis of chocolate chip cookies alone. What
we can say for certain, while we may not know or understand fully the economic
driving forces underlying, is that we have found a way to mathematically rep-
resent the steady upward linear trend and annually cyclical nature of the data
and create a predictive ARMA model that can be reliably be used to forecast
for the price of chocolate chip cookies in future months and years.
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8 Appendix

Figure 1: Timeplot of the (training) data
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Figure 2: Plot of series decomposition
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Figure 3: Autocorrelation (ACF) plot

Figure 4: Partial autocorrelation (PACF) plot
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Figure 5: Data with regression line of best fit

Figure 6: Periodogram for series
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Figure 7: Prices by month in 2015

Figure 8: Prices by month in 2018
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Figure 9: Series with trend + seasonality removed

Figure 10: Diagnostic plots for ARMA(7, 3) model fit
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Figure 11: Predicted and actual prices for training data

Figure 12: Predicted and actual prices for testing data
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