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Chapter 27  Introduction to machine learning
Perhaps the most popular data science methodologies come from the field of machine learning.
Machine learning success stories include the handwritten zip code readers implemented by the
postal service, speech recognition technology such as Apple’s Siri, movie recommendation
systems, spam and malware detectors, housing price predictors, and driverless cars. Although
today Artificial Intelligence and machine learning are often used interchangeably, we make the
following distinction: while the first artificial intelligence algorithms, such as those used by chess
playing machines, implemented decision making based on programmable rules derived from
theory or first principles, in machine learning decisions are based on algorithms built with data.

27.1  Notation
In machine learning, data comes in the form of:

1. the outcome we want to predict and
2. the features that we will use to predict the outcome

We want to build an algorithm that takes feature values as input and returns a prediction for the
outcome when we don’t know the outcome. The machine learning approach is to train an
algorithm using a dataset for which we do know the outcome, and then apply this algorithm in
the future to make a prediction when we don’t know the outcome.

Here we will use  to denote the outcome and  to denote features. Note that
features are sometimes referred to as predictors or covariates. We consider all these to be
synonyms.

Prediction problems can be divided into categorical and continuous outcomes. For categorical
outcomes,  can be any one of  classes. The number of classes can vary greatly across
applications. For example, in the digit reader data,  with the classes being the digits 0, 1,
2, 3, 4, 5, 6, 7, 8, and 9. In speech recognition, the outcomes are all possible words or phrases
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we are trying to detect. Spam detection has two outcomes: spam or not spam. In this book, we
denote the  categories with indexes . However, for binary data we will use 

 for mathematical conveniences that we demonstrate later.

The general setup is as follows. We have a series of features and an unknown outcome we want
to predict:

outcome feature 1 feature 2 feature 3 feature 4 feature 5

?

To build a model that provides a prediction for any set of observed values 
, we collect data for which we know the outcome:

outcome feature 1 feature 2 feature 3 feature 4 feature 5

When the output is continuous we refer to the machine learning task as prediction, and the main
output of the model is a function  that automatically produces a prediction, denoted with , for
any set of predictors: . We use the term actual outcome to denote what we
ended up observing. So we want the prediction  to match the actual outcome  as well as
possible. Because our outcome is continuous, our predictions  will not be either exactly right or
wrong, but instead we will determine an error defined as the difference between the prediction
and the actual outcome .

When the outcome is categorical, we refer to the machine learning task as classification, and the
main output of the model will be a decision rule which prescribes which of the  classes we
should predict. In this scenario, most models provide functions of the predictors for each class 
, , that are used to make this decision. When the data is binary a typical
decision rules looks like this: if , predict category 1, if not the other
category, with  a predetermined cutoff. Because the outcomes are categorical, our predictions
will be either right or wrong.
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Notice that these terms vary among courses, text books, and other publications. Often
prediction is used for both categorical and continuous outcomes, and the term regression can be
used for the continuous case. Here we avoid using regression to avoid confusion with our
previous use of the term linear regression. In most cases it will be clear if our outcomes are
categorical or continuous, so we will avoid using these terms when possible.

27.2  An example
Let’s consider the zip code reader example. The first step in handling mail received in the post
office is sorting letters by zip code:

Originally, humans had to sort these by hand. To do this, they had to read the zip codes on each
letter. Today, thanks to machine learning algorithms, a computer can read zip codes and then a
robot sorts the letters. In this part of the book, we will learn how to build algorithms that can
read a digit.

The first step in building an algorithm is to understand what are the outcomes and features.
Below are three images of written digits. These have already been read by a human and
assigned an outcome . These are considered known and serve as the training set.
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The images are converted into  pixels and, for each pixel, we obtain a grey scale
intensity between 0 (white) and 255 (black), which we consider continuous for now. The following
plot shows the individual features for each image:

For each digitized image , we have a categorical outcome  which can be one of 10 values (
), and features . We use bold face 

 to distinguish the vector of predictors from the individual predictors.
When referring to an arbitrary set of features rather than a specific image in our dataset, we drop
the index  and use  and . We use upper case variables because, in
general, we think of the predictors as random variables. We use lower case, for example ,
to denote observed values. When we code we stick to lower case.
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The machine learning task is to build an algorithm that returns a prediction for any of the
possible values of the features. Here, we will learn several approaches to building these
algorithms. Although at this point it might seem impossible to achieve this, we will start with
simple examples and build up our knowledge until we can attack more complex ones. In fact, we
start with an artificially simple example with just one predictor and then move on to a slightly
more realistic example with two predictors. Once we understand these, we will attack real-world
machine learning challenges involving many predictors.

27.3  Exercises
1. For each of the following, determine if the outcome is continuous or categorical:

a. Digit reader
b. Movie recommendations
c. Spam filter
d. Hospitalizations
e. Siri (speech recognition)

2. How many features are available to us for prediction in the digits dataset?

3. In the digit reader example, the outcomes are stored here:

Do the following operations have a practical meaning?

Pick the best answer:

a. Yes, because  and .
b. No, because  y  is not a numeric vector.
c. No, because 11 is not a digit. It’s two digits.

library(dslabs)  

mnist <- read_mnist() 

y <- mnist$train$labels

y[5] + y[6]  

y[5] > y[6]
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d. No, because these are labels representing a category not a number. A  9  represents a class
not the number 9.

27.4  Evaluation metrics
Before we start describing approaches to optimize the way we build algorithms, we first need to
define what we mean when we say one approach is better than another. In this section, we focus
on describing ways in which machine learning algorithms are evaluated. Specifically, we need to
quantify what we mean by “better”.

For our first introduction to machine learning concepts, we will start with a boring and simple
example: how to predict sex using height. As we explain machine learning step by step, this
example will let us set down the first building block. Soon enough, we will be attacking more
interesting challenges. We use the caret package, which has several useful functions for building
and assessing machine learning methods and we introduce in more detail in Section 30.

For a first example, we use the height data in dslabs:

We start by defining the outcome and predictors.

In this case, we have only one predictor, height, and  y  is clearly a categorical outcome since
observed values are either  Male  or  Female . We know that we will not be able to predict 
very accurately based on  because male and female average heights are not that different
relative to within group variability. But can we do better than guessing? To answer this question,
we need a quantitative definition of better.

library(tidyverse)  

library(caret)

library(dslabs)  

data(heights)

y <- heights$sex  

x <- heights$height

https://rafalab.github.io/dsbook/caret.html#caret
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27.4.1  Training and test sets

Ultimately, a machine learning algorithm is evaluated on how it performs in the real world with
completely new datasets. However, when developing an algorithm, we usually have a dataset for
which we know the outcomes, as we do with the heights: we know the sex of every student in
our dataset. Therefore, to mimic the ultimate evaluation process, we typically split the data into
two parts and act as if we don’t know the outcome for one of these. We stop pretending we
don’t know the outcome to evaluate the algorithm, but only after we are done constructing it. We
refer to the group for which we know the outcome, and use to develop the algorithm, as the
training set. We refer to the group for which we pretend we don’t know the outcome as the test
set.

A standard way of generating the training and test sets is by randomly splitting the data. The
caret package includes the function  createDataPartition  that helps us generates indexes for
randomly splitting the data into training and test sets:

The argument  times  is used to define how many random samples of indexes to return, the
argument  p  is used to define what proportion of the data is represented by the index, and the
argument  list  is used to decide if we want the indexes returned as a list or not. We can use
the result of the  createDataPartition  function call to define the training and test sets like this:

We will now develop an algorithm using only the training set. Once we are done developing the
algorithm, we will freeze it and evaluate it using the test set. The simplest way to evaluate the
algorithm when the outcomes are categorical is by simply reporting the proportion of cases that
were correctly predicted in the test set. This metric is usually referred to as overall accuracy.

27.4.2  Overall accuracy

set.seed(2007) 

test_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE)

test_set <- heights[test_index, ] 

train_set <- heights[-test_index, ]



11/10/2020 Chapter 27 Introduction to machine learning | Introduction to Data Science

https://rafalab.github.io/dsbook/introduction-to-machine-learning.html 8/29

To demonstrate the use of overall accuracy, we will build two competing algorithms and compare
them.

Let’s start by developing the simplest possible machine algorithm: guessing the outcome.

Note that we are completely ignoring the predictor and simply guessing the sex.

In machine learning applications, it is useful to use factors to represent the categorical outcomes
because R functions developed for machine learning, such as those in the caret package,
require or recommend that categorical outcomes be coded as factors. So convert  y_hat  to
factors using the  factor  function:

The overall accuracy is simply defined as the overall proportion that is predicted correctly:

Not surprisingly, our accuracy is about 50%. We are guessing!

Can we do better? Exploratory data analysis suggests we can because, on average, males are
slightly taller than females:

y_hat <- sample(c("Male", "Female"), length(test_index), replace = TRUE)

y_hat <- sample(c("Male", "Female"), length(test_index), replace = TRUE) %>% 

  factor(levels = levels(test_set$sex))

mean(y_hat == test_set$sex)  

#> [1] 0.51

heights %>% group_by(sex) %>% summarize(mean(height), sd(height)) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> # A tibble: 2 x 3 

#>   sex    `mean(height)` `sd(height)` 

#>   <fct>           <dbl>        <dbl> 

#> 1 Female           64.9         3.76 

#> 2 Male             69.3         3.61
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But how do we make use of this insight? Let’s try another simple approach: predict  Male  if
height is within two standard deviations from the average male:

The accuracy goes up from 0.50 to about 0.80:

But can we do even better? In the example above, we used a cutoff of 62, but we can examine
the accuracy obtained for other cutoffs and then pick the value that provides the best results.
But remember, it is important that we optimize the cutoff using only the training set: the test
set is only for evaluation. Although for this simplistic example it is not much of a problem, later
we will learn that evaluating an algorithm on the training set can lead to overfitting, which often
results in dangerously over-optimistic assessments.

Here we examine the accuracy of 10 different cutoffs and pick the one yielding the best result:

We can make a plot showing the accuracy obtained on the training set for males and females:

y_hat <- ifelse(x > 62, "Male", "Female") %>%  

  factor(levels = levels(test_set$sex))

mean(y == y_hat)  

#> [1] 0.793

cutoff <- seq(61, 70) 

accuracy <- map_dbl(cutoff, function(x){ 

  y_hat <- ifelse(train_set$height > x, "Male", "Female") %>%  

    factor(levels = levels(test_set$sex))  

  mean(y_hat == train_set$sex)  

})
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We see that the maximum value is:

which is much higher than 0.5. The cutoff resulting in this accuracy is:

We can now test this cutoff on our test set to make sure our accuracy is not overly optimistic:

We see that it is a bit lower than the accuracy observed for the training set, but it is still better
than guessing. And by testing on a dataset that we did not train on, we know our result is not
due to cherry-picking a good result.

max(accuracy)  

#> [1] 0.85

best_cutoff <- cutoff[which.max(accuracy)] 

best_cutoff 

#> [1] 64

y_hat <- ifelse(test_set$height > best_cutoff, "Male", "Female") %>%  

  factor(levels = levels(test_set$sex))  

y_hat <- factor(y_hat) 

mean(y_hat == test_set$sex)  

#> [1] 0.804
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27.4.3  The confusion matrix

The prediction rule we developed in the previous section predicts  Male  if the student is taller
than 64 inches. Given that the average female is about 64 inches, this prediction rule seems
wrong. What happened? If a student is the height of the average female, shouldn’t we predict
 Female ?

Generally speaking, overall accuracy can be a deceptive measure. To see this, we will start by
constructing what is referred to as the confusion matrix, which basically tabulates each
combination of prediction and actual value. We can do this in R using the function  table :

If we study this table closely, it reveals a problem. If we compute the accuracy separately for
each sex, we get:

There is an imbalance in the accuracy for males and females: too many females are predicted to
be male. We are calling almost half of the females male! How can our overall accuracy be so high
then? This is because the prevalence of males in this dataset is high. These heights were
collected from three data sciences courses, two of which had more males enrolled:

table(predicted = y_hat, actual = test_set$sex)  

#>          actual 

#> predicted Female Male 

#>    Female     48   32 

#>    Male       71  374

test_set %>%  

  mutate(y_hat = y_hat) %>%  

  group_by(sex) %>% 

  summarize(accuracy = mean(y_hat == sex))  

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> # A tibble: 2 x 2 

#>   sex    accuracy 

#>   <fct>     <dbl> 

#> 1 Female    0.403 

#> 2 Male      0.921
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So when computing overall accuracy, the high percentage of mistakes made for females is
outweighed by the gains in correct calls for men. This can actually be a big problem in
machine learning. If your training data is biased in some way, you are likely to develop
algorithms that are biased as well. The fact that we used a test set does not matter because it is
also derived from the original biased dataset. This is one of the reasons we look at metrics other
than overall accuracy when evaluating a machine learning algorithm.

There are several metrics that we can use to evaluate an algorithm in a way that prevalence does
not cloud our assessment, and these can all be derived from the confusion matrix. A general
improvement to using overall accuracy is to study sensitivity and specificity separately.

27.4.4  Sensitivity and specificity

To define sensitivity and specificity, we need a binary outcome. When the outcomes are
categorical, we can define these terms for a specific category. In the digits example, we can ask
for the specificity in the case of correctly predicting 2 as opposed to some other digit. Once we
specify a category of interest, then we can talk about positive outcomes, , and negative
outcomes, .

In general, sensitivity is defined as the ability of an algorithm to predict a positive outcome when
the actual outcome is positive:  when . Because an algorithm that calls everything
positive (  no matter what) has perfect sensitivity, this metric on its own is not enough to
judge an algorithm. For this reason, we also examine specificity, which is generally defined as
the ability of an algorithm to not predict a positive  when the actual outcome is not a
positive . We can summarize in the following way:

High sensitivity: 
High specificity: 

Although the above is often considered the definition of specificity, another way to think of
specificity is by the proportion of positive calls that are actually positive:

High specificity: .

prev <- mean(y == "Male")  

prev

#> [1] 0.773
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To provide precise definitions, we name the four entries of the confusion matrix:

Actually Positive Actually Negative

Predicted positive True positives (TP) False positives (FP)

Predicted negative False negatives (FN) True negatives (TN)

Sensitivity is typically quantified by , the proportion of actual positives (the first
column = ) that are called positives ( ). This quantity is referred to as the true
positive rate (TPR) or recall.

Specificity is defined as  or the proportion of negatives (the second column = 
) that are called negatives ( ). This quantity is also called the true negative rate

(TNR). There is another way of quantifying specificity which is  or the proportion
of outcomes called positives (the first row or ) that are actually positives ( ). This
quantity is referred to as positive predictive value (PPV) and also as precision. Note that, unlike
TPR and TNR, precision depends on prevalence since higher prevalence implies you can get
higher precision even when guessing.

The multiple names can be confusing, so we include a table to help us remember the terms. The
table includes a column that shows the definition if we think of the proportions as probabilities.

Measure of
Name

1
Name 2 Definition Probability representation

sensitivity TPR Recall

specificity TNR 1-FPR

specificity PPV Precision

Here TPR is True Positive Rate, FPR is False Positive Rate, and PPV is Positive Predictive Value.
The caret function  confusionMatrix  computes all these metrics for us once we define what
category “positive” is. The function expects factors as input, and the first level is considered the
positive outcome or . In our example,  Female  is the first level because it comes before
 Male  alphabetically. If you type this into R you will see several metrics including accuracy,
sensitivity, specificity, and PPV.
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You can acceess these directly, for example, like this:

We can see that the high overall accuracy is possible despite relatively low sensitivity. As we
hinted at above, the reason this happens is because of the low prevalence (0.23): the proportion
of females is low. Because prevalence is low, failing to predict actual females as females (low
sensitivity) does not lower the accuracy as much as failing to predict actual males as males (low
specificity). This is an example of why it is important to examine sensitivity and specificity and
not just accuracy. Before applying this algorithm to general datasets, we need to ask ourselves if
prevalence will be the same.

27.4.5  Balanced accuracy and  score

Although we usually recommend studying both specificity and sensitivity, very often it is useful to
have a one-number summary, for example for optimization purposes. One metric that is
preferred over overall accuracy is the average of specificity and sensitivity, referred to as
balanced accuracy. Because specificity and sensitivity are rates, it is more appropriate to
compute the harmonic average. In fact, the -score, a widely used one-number summary, is the
harmonic average of precision and recall:

Because it is easier to write, you often see this harmonic average rewritten as:

cm <- confusionMatrix(data = y_hat, reference = test_set$sex)

cm$overall["Accuracy"]  

#> Accuracy  

#>    0.804 

cm$byClass[c("Sensitivity","Specificity", "Prevalence")]  

#> Sensitivity Specificity  Prevalence  

#>       0.403       0.921       0.227

( )

Must guess male if not sure since the prevalence of females is low. 
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when defining .

Remember that, depending on the context, some types of errors are more costly than others. For
example, in the case of plane safety, it is much more important to maximize sensitivity over
specificity: failing to predict a plane will malfunction before it crashes is a much more costly error
than grounding a plane when, in fact, the plane is in perfect condition. In a capital murder
criminal case, the opposite is true since a false positive can lead to executing an innocent
person. The -score can be adapted to weigh specificity and sensitivity differently. To do this,
we define  to represent how much more important sensitivity is compared to specificity and
consider a weighted harmonic average:

The  F_meas  function in the caret package computes this summary with  beta  defaulting to 1.

Let’s rebuild our prediction algorithm, but this time maximizing the F-score instead of overall
accuracy:

As before, we can plot these  measures versus the cutoffs:

cutoff <- seq(61, 70) 

F_1 <- map_dbl(cutoff, function(x){  

  y_hat <- ifelse(train_set$height > x, "Male", "Female") %>%  

    factor(levels = levels(test_set$sex))  

  F_meas(data = y_hat, reference = factor(train_set$sex))  

})
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We see that it is maximized at  value of:

This maximum is achieved when we use the following cutoff:

A cutoff of 66 makes more sense than 64. Furthermore, it balances the specificity and sensitivity
of our confusion matrix:

max(F_1)  

#> [1] 0.647

best_cutoff <- cutoff[which.max(F_1)] 

best_cutoff 

#> [1] 66

y_hat <- ifelse(test_set$height > best_cutoff, "Male", "Female") %>%  

  factor(levels = levels(test_set$sex))  

sensitivity(data = y_hat, reference = test_set$sex) 

#> [1] 0.63 

specificity(data = y_hat, reference = test_set$sex) 

#> [1] 0.833
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We now see that we do much better than guessing, that both sensitivity and specificity are
relatively high, and that we have built our first machine learning algorithm. It takes height as a
predictor and predicts female if you are 65 inches or shorter.

27.4.6  Prevalence matters in practice

A machine learning algorithm with very high sensitivity and specificity may not be useful in
practice when prevalence is close to either 0 or 1. To see this, consider the case of a doctor that
specializes in a rare disease and is interested in developing an algorithm for predicting who has
the disease. The doctor shares data with you and you then develop an algorithm with very high
sensitivity. You explain that this means that if a patient has the disease, the algorithm is very
likely to predict correctly. You also tell the doctor that you are also concerned because, based on
the dataset you analyzed, 1/2 the patients have the disease: . The doctor is neither
concerned nor impressed and explains that what is important is the precision of the test: 

. Using Bayes theorem, we can connect the two measures:

The doctor knows that the prevalence of the disease is 5 in 1,000, which implies that 
 and therefore the precision of your algorithm is less than 0.01.

The doctor does not have much use for your algorithm.

27.4.7  ROC and precision-recall curves

When comparing the two methods (guessing versus using a height cutoff), we looked at
accuracy and . The second method clearly outperformed the first. However, while we
considered several cutoffs for the second method, for the first we only considered one approach:
guessing with equal probability. Note that guessing  Male  with higher probability would give us
higher accuracy due to the bias in the sample:

For rare diseases, you can get high sensitivity but low precision if you predict way too many positives.  
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But, as described above, this would come at the cost of lower sensitivity. The curves we
describe in this section will help us see this.

Remember that for each of these parameters, we can get a different sensitivity and specificity.
For this reason, a very common approach to evaluating methods is to compare them graphically
by plotting both.

A widely used plot that does this is the receiver operating characteristic (ROC) curve. If you are
wondering where this name comes from, you can consult the ROC Wikipedia page .

The ROC curve plots sensitivity (TPR) versus 1 - specificity or the false positive rate (FPR). Here
we compute the TPR and FPR needed for different probabilities of guessing male:

We can use similar code to compute these values for our our second approach. By plotting both
curves together, we are able to compare sensitivity for different values of specificity:

p <- 0.9  

n <- length(test_index)  

y_hat <- sample(c("Male", "Female"), n, replace = TRUE, prob=c(p, 1-p)) %>%  

  factor(levels = levels(test_set$sex))  

mean(y_hat == test_set$sex)  

#> [1] 0.739

99

probs <- seq(0, 1, length.out = 10) 

guessing <- map_df(probs, function(p){ 

  y_hat <-  

    sample(c("Male", "Female"), n, replace = TRUE, prob=c(p, 1-p)) %>%  

    factor(levels = c("Female", "Male"))

  list(method = "Guessing",  

       FPR = 1 - specificity(y_hat, test_set$sex),  

       TPR = sensitivity(y_hat, test_set$sex))  

})
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We can see that we obtain higher sensitivity with this approach for all values of specificity, which
implies it is in fact a better method. Note that ROC curves for guessing always fall on the identiy
line. Also note that when making ROC curves, it is often nice to add the cutoff associated with
each point.

The packages pROC and plotROC are useful for generating these plots.

ROC curves have one weakness and it is that neither of the measures plotted depends on
prevalence. In cases in which prevalence matters, we may instead make a precision-recall plot.
The idea is similar, but we instead plot precision against recall:

From this plot we immediately see that the precision of guessing is not high. This is because the
prevalence is low. We also see that if we change positives to mean Male instead of Female, the
ROC curve remains the same, but the precision recall plot changes.
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27.4.8  The loss function

Up to now we have described evaluation metrics that apply exclusively to categorical data.
Specifically, for binary outcomes, we have described how sensitivity, specificity, accuracy, and 

 can be used as quantification. However, these metrics are not useful for continuous
outcomes. In this section, we describe how the general approach to defining “best” in machine
learning is to define a loss function, which can be applied to both categorical and continuous
data.

The most commonly used loss function is the squared loss function. If  is our predictor and  is
the observed outcome, the squared loss function is simply:

Because we often have a test set with many observations, say , we use the mean squared
error (MSE):

In practice, we often report the root mean squared error (RMSE), which is , because it is
in the same units as the outcomes. But doing the math is often easier with the MSE and it is
therefore more commonly used in textbooks, since these usually describe theoretical properties
of algorithms.

If the outcomes are binary, both RMSE and MSE are equivalent to one minus accuracy, since 
 is 0 if the prediction was correct and 1 otherwise. In general, our goal is to build an

algorithm that minimizes the loss so it is as close to 0 as possible.

Because our data is usually a random sample, we can think of the MSE as a random variable
and the observed MSE can be thought of as an estimate of the expected MSE, which in
mathematical notation we write like this:

This is a theoretical concept because in practice we only have one dataset to work with. But in
theory, we think of having a very large number of random samples (call it ), apply our algorithm
to each, obtain an MSE for each random sample, and think of the expected MSE as:

∑

{ ∑ }
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with  denoting the th observation in the th random sample and  the resulting prediction
obtained from applying the exact same algorithm to the th random sample. Again, in practice
we only observe one random sample, so the expected MSE is only theoretical. However, in
Chapter 29 we describe an approach to estimating the MSE that tries to mimic this theoretical
quantity.

Note that there are loss functions other than the squared loss. For example, the Mean Absolute
Error uses absolute values,  instead of squaring the errors . However, in this
book we focus on minimizing square loss since it is the most widely used.

27.5  Exercises
The  reported_height  and  height  datasets were collected from three classes taught in the
Departments of Computer Science and Biostatistics, as well as remotely through the Extension
School. The biostatistics class was taught in 2016 along with an online version offered by the
Extension School. On 2016-01-25 at 8:15 AM, during one of the lectures, the instructors asked
students to fill in the sex and height questionnaire that populated the  reported_height 
dataset. The online students filled the survey during the next few days, after the lecture was
posted online. We can use this insight to define a variable, call it  type , to denote the type of
student:  inclass  or  online :

∑ ∑ ( )

library(lubridate)  

data("reported_heights")  

dat <- mutate(reported_heights, date_time = ymd_hms(time_stamp)) %>%  

  filter(date_time >= make_date(2016, 01, 25) &  

           date_time < make_date(2016, 02, 1)) %>% 

  mutate(type = ifelse(day(date_time) == 25 & hour(date_time) == 8 &  

                         between(minute(date_time), 15, 30), 

                       "inclass", "online")) %>% select(sex, type) 

x <- dat$type  

y <- factor(dat$sex, c("Female", "Male"))

https://rafalab.github.io/dsbook/cross-validation.html#cross-validation
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1. Show summary statistics that indicate that the  type  is predictive of sex.

2. Instead of using height to predict sex, use the  type  variable.

3. Show the confusion matrix.

4. Use the  confusionMatrix  function in the caret package to report accuracy.

5. Now use the  sensitivity  and  specificity  functions to report specificity and sensitivity.

6. What is the prevalence (% of females) in the  dat  dataset defined above?

27.6  Conditional probabilities and expectations
In machine learning applications, we rarely can predict outcomes perfectly. For example, spam
detectors often miss emails that are clearly spam, Siri often misunderstands the words we are
saying, and your bank at times thinks your card was stolen when it was not. The most common
reason for not being able to build perfect algorithms is that it is impossible. To see this, note that
most datasets will include groups of observations with the same exact observed values for all
predictors, but with different outcomes. Because our prediction rules are functions, equal inputs
(the predictors) implies equal outputs (the predictions). Therefore, for a challenge in which the
same predictors are associated with different outcomes across different individual observations,
it is impossible to predict correctly for all these cases. We saw a simple example of this in the
previous section: for any given height , you will have both males and females that are  inches
tall.

However, none of this means that we can’t build useful algorithms that are much better than
guessing, and in some cases better than expert opinions. To achieve this in an optimal way, we
make use of probabilistic representations of the problem based on the ideas presented in
Section 17.3. Observations with the same observed values for the predictors may not all be the
same, but we can assume that they all have the same probability of this class or that class. We
will write this idea out mathematically for the case of categorical data.

27.6.1  Conditional probabilities

https://rafalab.github.io/dsbook/regression.html#conditional-expectation
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We use the notation  to represent the fact that we have observed
values  for covariates . This does not imply that the outcome  will take a
specific value. Instead, it implies a specific probability. In particular, we denote the conditional
probabilities for each class :

To avoid writing out all the predictors, we will use the bold letters like this: 
and . We will also use the following notation for the conditional probability of
being class :

Note: We will be using the  notation to represent conditional probabilities as functions of the
predictors. Do not confuse it with the  that represents the number of predictors.

These probabilities guide the construction of an algorithm that makes the best prediction: for any
given , we will predict the class  with the largest probability among . In
mathematical notation, we write it like this: .

In machine learning, we refer to this as Bayes’ Rule. But keep in mind that this is a theoretical
rule since in practice we don’t know . In fact, estimating these conditional
probabilities can be thought of as the main challenge of machine learning. The better our
probability estimates , the better our predictor:

So what we will predict depends on two things: 1) how close are the  to 1 or 0
(perfect certainty) and 2) how close our estimates  are to . We can’t do anything
about the first restriction as it is determined by the nature of the problem, so our energy goes
into finding ways to best estimate conditional probabilities. The first restriction does imply that
we have limits as to how well even the best possible algorithm can perform. You should get used
to the idea that while in some challenges we will be able to achieve almost perfect accuracy,
with digit readers for example, in others our success is restricted by the randomness of the
process, with movie recommendations for example.

Before we continue, it is important to remember that defining our prediction by maximizing the
probability is not always optimal in practice and depends on the context. As discussed above,
sensitivity and specificity may differ in importance. But even in these cases, having a good
estimate of the  will suffice for us to build optimal prediction models, since
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we can control the balance between specificity and sensitivity however we wish. For instance,
we can simply change the cutoffs used to predict one outcome or the other. In the plane
example, we may ground the plane anytime the probability of malfunction is higher than 1 in a
million as opposed to the default 1/2 used when error types are equally undesired.

27.6.2  Conditional expectations

For binary data, you can think of the probability  as the proportion of 1s in
the stratum of the population for which . Many of the algorithms we will learn can be
applied to both categorical and continuous data due to the connection between conditional
probabilities and conditional expectations.

Because the expectation is the average of values  in the population, in the case in
which the s are 0 or 1, the expectation is equivalent to the probability of randomly picking a one
since the average is simply the proportion of ones:

As a result, we often only use the expectation to denote both the conditional probability and
conditional expectation.

Just like with categorical outcomes, in most applications the same observed predictors do not
guarantee the same continuous outcomes. Instead, we assume that the outcome follows the
same conditional distribution. We will now explain why we use the conditional expectation to
define our predictors.

27.6.3  Conditional expectation minimizes squared loss
function

Why do we care about the conditional expectation in machine learning? This is because the
expected value has an attractive mathematical property: it minimizes the MSE. Specifically, of all
possible predictions ,

Due to this property, a succinct description of the main task of machine learning is that we use
data to estimate:
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for any set of features . Of course this is easier said than done, since this
function can take any shape and  can be very large. Consider a case in which we only have one
predictor . The expectation  can be any function of : a line, a parabola, a sine
wave, a step function, anything. It gets even more complicated when we consider instances with
large , in which case  is a function of a multidimensional vector . For example, in our digit
reader example ! The main way in which competing machine learning algorithms
differ is in their approach to estimating this expectation.

27.7  Exercises
1. Compute conditional probabilities for being Male for the  heights  dataset. Round the heights
to the closest inch. Plot the estimated conditional probability  for
each .

2. In the plot we just made, we see high variability for low values of height. This is because we
have few data points in these strata. This time use the  quantile  function for quantiles 

 and the  cut  function to assure each group has the same number of points.
Hint: for any numeric vector  x , you can create groups based on quantiles like this:

3. Generate data from a bivariate normal distribution using the MASS package like this:

You can make a quick plot of the data using  plot(dat) . Use an approach similar to the
previous exercise to estimate the conditional expectations and make a plot.

27.8  Case study: is it a 2 or a 7?

cut(x, quantile(x, seq(0, 1, 0.1)), include.lowest = TRUE)

Sigma <- 9*matrix(c(1,0.5,0.5,1), 2, 2) 

dat <- MASS::mvrnorm(n = 10000, c(69, 69), Sigma) %>%  

  data.frame() %>% setNames(c("x", "y"))
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In the two simple examples above, we only had one predictor. We actually do not consider these
machine learning challenges, which are characterized by cases with many predictors. Let’s go
back to the digits example in which we had 784 predictors. For illustrative purposes, we will start
by simplifying this problem to one with two predictors and two classes. Specifically, we define
the challenge as building an algorithm that can determine if a digit is a 2 or 7 from the predictors.
We are not quite ready to build algorithms with 784 predictors, so we will extract two simple
predictors from the 784: the proportion of dark pixels that are in the upper left quadrant ( ) and
the lower right quadrant ( ).

We then select a random sample of 1,000 digits, 500 in the training set and 500 in the test set.
We provide this dataset in the  dslabs  package:

We can explore the data by plotting the two predictors and using colors to denote the labels:

We can immediately see some patterns. For example, if  (the upper left panel) is very large,
then the digit is probably a 7. Also, for smaller values of , the 2s appear to be in the mid range
values of .

library(tidyverse)  

library(dslabs)  

data("mnist_27")

mnist_27$train %>% ggplot(aes(x_1, x_2, color = y)) + geom_point()
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These are the images of the digits with the largest and smallest values for : And here are the
original images corresponding to the largest and smallest value of :

We can start getting a sense for why these predictors are useful, but also why the problem will
be somewhat challenging.

We haven’t really learned any algorithms yet, so let’s try building an algorithm using regression.
The model is simply:

We fit it like this:

We can now build a decision rule based on the estimate of :

fit <- mnist_27$train %>%  

  mutate(y = ifelse(y==7, 1, 0)) %>%  

  lm(y ~ x_1 + x_2, data = .)

library(caret)  

p_hat <- predict(fit, newdata = mnist_27$test) 

y_hat <- factor(ifelse(p_hat > 0.5, 7, 2)) 

confusionMatrix(y_hat, mnist_27$test$y)$overall[["Accuracy"]] 

#> [1] 0.75



11/10/2020 Chapter 27 Introduction to machine learning | Introduction to Data Science

https://rafalab.github.io/dsbook/introduction-to-machine-learning.html 28/29

We get an accuracy well above 50%. Not bad for our first try. But can we do better?

Because we constructed the  mnist_27  example and we had at our disposal 60,000 digits in
just the MNIST dataset, we used this to build the true conditional distribution . Keep in
mind that this is something we don’t have access to in practice, but we include it in this example
because it permits the comparison of  to the true . This comparison teaches
us the limitations of different algorithms. Let’s do that here. We have stored the true  in
the  mnist_27  object and can plot the image using the ggplot2 function  geom_raster() . We
choose better colors and use the  stat_contour  function to draw a curve that separates pairs 

 for which  and pairs for which :

Above you see a plot of the true . To start understanding the limitations of logistic
regression here, first note that with logistic regression  has to be a plane, and as a result
the boundary defined by the decision rule is given by: , which implies the boundary
can’t be anything other than a straight line:

mnist_27$true_p %>% ggplot(aes(x_1, x_2, z = p, fill = p)) +  

  geom_raster() +  

  scale_fill_gradientn(colors=c("#F8766D", "white", "#00BFC4")) +  

  stat_contour(breaks=c(0.5), color="black")
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Note that for this boundary,  is a linear function of . This implies that our logistic regression
approach has no chance of capturing the non-linear nature of the true . Below is a
visual representation of . We used the  squish  function from the scales package to
constrain estimates to be between 0 and 1. We can see where the mistakes were made by also
showing the data and the boundary. They mainly come from low values  that have either high
or low value of . Regression can’t catch this.

We need something more flexible: a method that permits estimates with shapes other than a
plane.

We are going to learn a few new algorithms based on different ideas and concepts. But what
they all have in common is that they permit more flexible approaches. We will start by describing
nearest neighbor and kernel approaches. To introduce the concepts behinds these approaches,
we will again start with a simple one-dimensional example and describe the concept of
smoothing.

99. https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

