
11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 1/18

Chapter 28 Smoothing
Before continuing learning about machine learning algorithms, we introduce the important
concept of smoothing. Smoothing is a very powerful technique used all across data analysis.
Other names given to this technique are curve fitting and low pass filtering. It is designed to
detect trends in the presence of noisy data in cases in which the shape of the trend is unknown.
The smoothing name comes from the fact that to accomplish this feat, we assume that the trend
is smooth, as in a smooth surface. In contrast, the noise, or deviation from the trend, is
unpredictably wobbly:

Part of what we explain in this section are the assumptions that permit us to extract the trend
from the noise.

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 2/18

To understand why we cover this topic, remember that the concepts behind smoothing
techniques are extremely useful in machine learning because conditional
expectations/probabilities can be thought of as trends of unknown shapes that we need to
estimate in the presence of uncertainty.

To explain these concepts, we will focus first on a problem with just one predictor. Specifically,
we try to estimate the time trend in the 2008 US popular vote poll margin (difference between
Obama and McCain).

For the purposes of this example, do not think of it as a forecasting problem. Instead, we are
simply interested in learning the shape of the trend after the election is over.

We assume that for any given day , there is a true preference among the electorate , but
due to the uncertainty introduced by the polling, each data point comes with an error . A
mathematical model for the observed poll margin is:

To think of this as a machine learning problem, consider that we want to predict given a day .
If we knew the conditional expectation , we would use it. But since we
don’t know this conditional expectation, we have to estimate it. Let’s use regression, since it is

library(tidyverse)

library(dslabs)

data("polls_2008")

qplot(day, margin, data = polls_2008)

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 3/18

the only method we have learned up to now.

#> `geom_smooth()` using formula 'y ~ x'

The line we see does not appear to describe the trend very well. For example, on September 4
(day -62), the Republican Convention was held and the data suggest that it gave John McCain a
boost in the polls. However, the regression line does not capture this potential trend. To see the
lack of fit more clearly, we note that points above the fitted line (blue) and those below (red) are
not evenly distributed across days. We therefore need an alternative, more flexible approach.

28.1 Bin smoothing
The general idea of smoothing is to group data points into strata in which the value of can
be assumed to be constant. We can make this assumption because we think changes
slowly and, as a result, is almost constant in small windows of time. An example of this
idea for the poll_2008 data is to assume that public opinion remained approximately the same
within a week’s time. With this assumption in place, we have several data points with the same
expected value.

If we fix a day to be in the center of our week, call it , then for any other day such that
, we assume is a constant . This assumption implies that:

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 4/18

In smoothing, we call the size of the interval satisfying the window size,
bandwidth or span. Later we will see that we try to optimize this parameter.

This assumption implies that a good estimate for is the average of the values in the
window. If we define as the set of indexes such that and as the number
of indexes in , then our estimate is:

The idea behind bin smoothing is to make this calculation with each value of as the center. In
the poll example, for each day, we would compute the average of the values within a week with
that day in the center. Here are two examples: and . The blue segment
represents the resulting average.

By computing this mean for every point, we form an estimate of the underlying curve .
Below we show the procedure happening as we move from the -155 up to 0. At each value of ,
we keep the estimate and move on to the next point:

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 5/18

The final code and resulting estimate look like this:

span <- 7

fit <- with(polls_2008,

 ksmooth(day, margin, kernel = "box", bandwidth = span))

polls_2008 %>% mutate(smooth = fit$y) %>%

 ggplot(aes(day, margin)) +

 geom_point(size = 3, alpha = .5, color = "grey") +

 geom_line(aes(day, smooth), color="red")

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 6/18

28.2 Kernels
The final result from the bin smoother is quite wiggly. One reason for this is that each time the
window moves, two points change. We can attenuate this somewhat by taking weighted
averages that give the center point more weight than far away points, with the two points at the
edges receiving very little weight.

You can think of the bin smoother approach as a weighted average:

in which each point receives a weight of either or , with the number of points in the
week. In the code above, we used the argument kernel="box" in our call to the function
 ksmooth . This is because the weight function looks like a box. The ksmooth function provides
a “smoother” option which uses the normal density to assign weights.

This is kernel regression.

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 7/18

The final code and resulting plot for the normal kerenl look like this:

Notice that the final estimate now looks smoother.

span <- 7

fit <- with(polls_2008,

 ksmooth(day, margin, kernel = "normal", bandwidth = span))

polls_2008 %>% mutate(smooth = fit$y) %>%

 ggplot(aes(day, margin)) +

 geom_point(size = 3, alpha = .5, color = "grey") +

 geom_line(aes(day, smooth), color="red")

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 8/18

There are several functions in R that implement bin smoothers. One example is ksmooth ,
shown above. In practice, however, we typically prefer methods that use slightly more complex
models than fitting a constant. The final result above, for example, is still somewhat wiggly in
parts we don’t expect it to be (between -125 and -75, for example). Methods such as loess ,
which we explain next, improve on this.

28.3 Local weighted regression (loess)
A limitation of the bin smoother approach just described is that we need small windows for the
approximately constant assumptions to hold. As a result, we end up with a small number of data
points to average and obtain imprecise estimates . Here we describe how local weighted
regression (loess) permits us to consider larger window sizes. To do this, we will use a
mathematical result, referred to as Taylor’s theorem, which tells us that if you look closely
enough at any smooth function , it will look like a line. To see why this makes sense,
consider the curved edges gardeners make using straight-edged spades:

(“Downing Street garden path edge” by Flckr user Number 10 . CC-BY 2.0 license .)

Instead of assuming the function is approximately constant in a window, we assume the function
is locally linear. We can consider larger window sizes with the linear assumption than with a
constant. Instead of the one-week window, we consider a larger one in which the trend is
approximately linear. We start with a three-week window and later consider and evaluate other
options:

100 101 102

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 9/18

For every point , loess defines a window and fits a line within that window. Here is an example
showing the fits for and :

#> `geom_smooth()` using formula 'y ~ x'

The fitted value at becomes our estimate . Below we show the procedure happening as
we move from the -155 up to 0.

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 10/18

The final result is a smoother fit than the bin smoother since we use larger sample sizes to
estimate our local parameters:

total_days <- diff(range(polls_2008$day))

span <- 21/total_days

fit <- loess(margin ~ day, degree=1, span = span, data=polls_2008)

polls_2008 %>% mutate(smooth = fit$fitted) %>%

 ggplot(aes(day, margin)) +

 geom_point(size = 3, alpha = .5, color = "grey") +

 geom_line(aes(day, smooth), color="red")

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 11/18

Different spans give us different estimates. We can see how different window sizes lead to
different estimates:

Here are the final estimates:

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 12/18

There are three other differences between loess and the typical bin smoother.

1. Rather than keeping the bin size the same, loess keeps the number of points used in the
local fit the same. This number is controlled via the span argument, which expects a
proportion. For example, if N is the number of data points and span=0.5 , then for a given ,
 loess will use the 0.5 * N closest points to for the fit.

2. When fitting a line locally, loess uses a weighted approach. Basically, instead of using least
squares, we minimize a weighted version:

However, instead of the Gaussian kernel, loess uses a function called the Tukey tri-weight:

To define the weights, we denote as the window size and define:

This kernel differs from the Gaussian kernel in that more points get values closer to the max:

different bws.

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 13/18

3. loess has the option of fitting the local model robustly. An iterative algorithm is
implemented in which, after fitting a model in one iteration, outliers are detected and down-
weighted for the next iteration. To use this option, we use the argument family="symmetric" .

28.3.1 Fitting parabolas

Taylor’s theorem also tells us that if you look at any mathematical function closely enough, it
looks like a parabola. The theorem also states that you don’t have to look as closely when
approximating with parabolas as you do when approximating with lines. This means we can
make our windows even larger and fit parabolas instead of lines.

This is actually the default procedure of the function loess . You may have noticed that when
we showed the code for using loess, we set degree = 1 . This tells loess to fit polynomials of
degree 1, a fancy name for lines. If you read the help page for loess, you will see that the
argument degree defaults to 2. By default, loess fits parabolas not lines. Here is a comparison
of the fitting lines (red dashed) and fitting parabolas (orange solid):

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 14/18

The degree = 2 gives us more wiggly results. We actually prefer degree = 1 as it is less
prone to this kind of noise.

28.3.2 Beware of default smoothing parameters

 ggplot uses loess in its geom_smooth function:

total_days <- diff(range(polls_2008$day))

span <- 28/total_days

fit_1 <- loess(margin ~ day, degree=1, span = span, data=polls_2008)

fit_2 <- loess(margin ~ day, span = span, data=polls_2008)

polls_2008 %>% mutate(smooth_1 = fit_1$fitted, smooth_2 = fit_2$fitted) %>%

 ggplot(aes(day, margin)) +

 geom_point(size = 3, alpha = .5, color = "grey") +

 geom_line(aes(day, smooth_1), color="red", lty = 2) +

 geom_line(aes(day, smooth_2), color="orange", lty = 1)

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 15/18

But be careful with default parameters as they are rarely optimal. However, you can conveniently
change them:

polls_2008 %>% ggplot(aes(day, margin)) +

 geom_point() +

 geom_smooth()

polls_2008 %>% ggplot(aes(day, margin)) +

 geom_point() +

 geom_smooth(method = "loess", span = 0.15, method.args = list(degree=1))

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 16/18

28.4 Connecting smoothing to machine learning
To see how smoothing relates to machine learning with a concrete example, consider our 27.8
example. If we define the outcome for digits that are seven and for digits that are
2, then we are interested in estimating the conditional probability:

with and the two predictors defined in Section 27.8. In this example, the 0s and 1s we
observe are “noisy” because for some regions the probabilities are not that close to 0
or 1. So we need to estimate . Smoothing is an alternative to accomplishing this. In
Section 27.8 we saw that linear regression was not flexible enough to capture the non-linear
nature of , thus smoothing approaches may provide an improvement. In the next
chapter we describe a popular machine learning algorithm, k-nearest neighbors, which is based
on bin smoothing.

28.5 Exercises
1. In the wrangling part of this book, we used the code below to obtain mortality counts for
Puerto Rico for 2015-2018.

https://rafalab.github.io/dsbook/introduction-to-machine-learning.html#two-or-seven
https://rafalab.github.io/dsbook/introduction-to-machine-learning.html#two-or-seven
https://rafalab.github.io/dsbook/introduction-to-machine-learning.html#two-or-seven

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 17/18

Use the loess function to obtain a smooth estimate of the expected number of deaths as a
function of date. Plot this resulting smooth function. Make the span about two months long.

library(tidyverse)

library(purrr)

library(pdftools)

library(dslabs)

fn <- system.file("extdata", "RD-Mortality-Report_2015-18-180531.pdf",

 package="dslabs")

dat <- map_df(str_split(pdf_text(fn), "\n"), function(s){

 s <- str_trim(s)

 header_index <- str_which(s, "2015")[1]

 tmp <- str_split(s[header_index], "\\s+", simplify = TRUE)

 month <- tmp[1]

 header <- tmp[-1]

 tail_index <- str_which(s, "Total")

 n <- str_count(s, "\\d+")

 out <- c(1:header_index, which(n == 1),

 which(n >= 28), tail_index:length(s))

 s[-out] %>% str_remove_all("[^\\d\\s]") %>% str_trim() %>%

 str_split_fixed("\\s+", n = 6) %>% .[,1:5] %>% as_tibble() %>%

 setNames(c("day", header)) %>%

 mutate(month = month, day = as.numeric(day)) %>%

 gather(year, deaths, -c(day, month)) %>%

 mutate(deaths = as.numeric(deaths))

}) %>%

 mutate(month = recode(month,

 "JAN" = 1, "FEB" = 2, "MAR" = 3,

 "APR" = 4, "MAY" = 5, "JUN" = 6,

 "JUL" = 7, "AGO" = 8, "SEP" = 9,

 "OCT" = 10, "NOV" = 11, "DEC" = 12)) %>%

 mutate(date = make_date(year, month, day)) %>%

 filter(date <= "2018-05-01")

11/10/2020 Chapter 28 Smoothing | Introduction to Data Science

https://rafalab.github.io/dsbook/smoothing.html 18/18

2. Plot the smooth estimates against day of the year, all on the same plot but with different
colors.

3. Suppose we want to predict 2s and 7s in our mnist_27 dataset with just the second
covariate. Can we do this? On first inspection it appears the data does not have much predictive
power. In fact, if we fit a regular logistic regression, the coefficient for x_2 is not significant!

Plotting a scatterplot here is not useful since y is binary:

Fit a loess line to the data above and plot the results. Notice that there is predictive power,
except the conditional probability is not linear.

100. https://www.flickr.com/photos/49707497@N06/7361631644

101. https://www.flickr.com/photos/number10gov/

102. https://creativecommons.org/licenses/by/2.0/

library(broom)

library(dslabs)

data("mnist_27")

mnist_27$train %>%

 glm(y ~ x_2, family = "binomial", data = .) %>%

 tidy()

qplot(x_2, y, data = mnist_27$train)

https://www.flickr.com/photos/49707497@N06/7361631644
https://www.flickr.com/photos/number10gov/
https://creativecommons.org/licenses/by/2.0/

