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Space-time Hawkes point process models for the conditional rate
of earthquake occurrences traditionally make many parametric as-
sumptions about the form of the triggering function for the rate of
aftershocks following an earthquake. Marsan and Lengliné (2008) de-
veloped a completely nonparametric method that provides an esti-
mate of a stationary background rate for mainshocks, and a histogram
estimate of the triggering function. At each step of the procedure the
model estimates rely on computing the probability each earthquake
is a mainshock or aftershock of a previous event. The focus of this
paper is the improvement and assessment of Marsan and Lengliné’s
method in the following ways: (a) the proposal of novel ways to in-
corporate a nonstationary background rate; (b) adding error bars to
the histogram estimates which capture the sampling variability and
bias in the estimation of the underlying seismic process. A simulation
study is designed to evaluate and validate the ability of our methods
to recover the triggering function and spatially varying background
rate. An application to earthquake data from the Tohoku District in
Japan is discussed at the end, and the results are compared to a well
established parametric model of seismicity for this region.

1. Introduction. Hawkes point process models of earthquake seismicity usually rely
heavily on parametric assumptions about the triggering function for the spatial-temporal
rate of aftershock activity following an earthquake. Some important examples are the para-
metric forms of the Epidemic Type Aftershock Sequences (ETAS) model of Ogata (1998).
Marsan and Lengliné (2008) proposed a more flexible nonparametric approach for estimat-
ing Hawkes process models of seismicity which makes no a-priori assumptions about the
shape of the triggering function, and provides a data-driven estimate instead. Their method,
named Model Independent Stochastic Declustering (MISD), is an iterative algorithm that
alternates between first estimating the probability each earthquake in the catalog is either a
mainshock or aftershock and second, updating a stationary background rate for mainshock
activity and a probability weighted histogram estimate for the triggering function.

Nonparametric methods for estimating point process models have shown a wide rage
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of applications, especially in situations where the form of the intensity function is un-
known and difficult to determine. Using wavelets Brillinger (1998) described a technique
for estimating the conditional intensity and second order intensity with applications to neu-
rophysiology and seismology. Adelfio and Chiodi (2013, 2015) considered a semi-parametric
estimation procedure that simultaneously estimates a nonparametric background rate and
parametric triggering function for a space-time Hawkes process model of seismicity. Marsan
and Lengliné (2008) applied the fully nonparametric MISD method to a Southern Califor-
nia earthquake catalog to estimate the spatial-temporal rates aftershock activity following
an earthquake of given magnitude. They also demonstrated the application of their routine
for stochastically declustering earthquake catalogs to isolate mainshocks and remove after-
shock clusters. Nichols and Schoenberg (2014) used MISD as a diagnostic tool to evaluate
the dependency between the magnitude of an earthquake and the magnitudes of its after-
shocks. By repeatedly applying the MISD algorithm to stochastically assign earthquakes
as either mainshocks or aftershocks they created confidence intervals for the average mag-
nitude of aftershocks following an earthquake of given magnitude. In an application to
criminology, Mohler et al. (2011) developed a Monte-Carlo based nonparametric method
similar to MISD to estimate a space-time point process model for the occurrence rate of
burglaries in a Los Angeles district. They demonstrated that this approach leads to im-
proved hotspot maps for flagging times and locations where burglaries are likely to occur.
An interesting result of this study is that crimes spur other crimes nearby in space and
time, much as earthquakes trigger local aftershock sequences.

The focus of this paper is the improvement and assessment of the nonparametric method
of Marsan and Lengliné (2008) for estimating space-time Hawkes point process models of
earthquake occurrences. Along these lines, our primary goals are,

1. The proposal of novel ways to incorporate a nonstationary background rate into the
MISD algorithm.

2. Adding error bars to the histogram estimates of the triggering function which quantify
the sampling variability and bias in the estimation of the underlying seismic process.

The original MISD algorithm assumes that the background rate for mainshocks is a
stationary Poisson process in time and space. While an estimate of the mean mainshock rate
over an observation region is useful, the expansion of MISD to incorporate a nonstationary
background component is an important next step and improvement by allowing for localized
estimates mainshock activity related to variations in the underlying tectonic field and the
locations major faults. Moreover, an estimate of a spatially varying background rate can be
used to identify regions with a persistent and heightened incidence of large seismic events,
independent of aftershock clustering features which diminish over time.

Nichols and Schoenberg (2014) proposed a way to adjust MISD to incorporate nonsta-
tionarities in the background process by initially kernel smoothing over all events in the
catalog and weighing each event by its corresponding kernel estimate. However, a main
shortcoming of this approach is that nonstationarities in the background rate are only
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defined on the observed data and not at each pixel of the observation window. Moreover,
the authors of this work were primarily interested in applying the method to evaluate the
dependence between the magnitudes of earthquakes and their aftershocks, and the explicit
assessment or validation of the proposed estimation technique was not addressed.

In this paper, we propose two novel ways to incorporate a spatially varying background
rate into the MISD method. First, we discuss a histogram estimator approach, which
is a natural extension of the stationary rate estimator of Marsan and Lengliné (2008).
Second, we apply the variable kernel estimator, used by Zhuang, Ogata and Vere-Jones
(2002) for semi-parametric estimation, into the context of MISD. We validate and assess
new methodology by simulating earthquake catalogs from a space-time model (ETAS)
and evaluating the ability of each method to recover the true form of the nonstationary
background rate and triggering function governing the simulations.

Simulation is also a powerful tool for understanding the statistical properties of the
histogram estimators of the triggering function. By repeatedly simulating and re-estimating
an earthquake model error bars can be computed which capture the sampling distributions
of the estimates. An easily calculated analytic approximation for the error bars found
through simulation is discussed at the end of the paper.

This paper is organized as follows: In Section 2, we provide an overview of space-time
point process models of seismicity. In Section 3, we describe our modified version of the
MISD algorithm, and propose a couple new ways to incorporate a nonstationary back-
ground rate. In Section 4, we validate and assess our methods with simulation studies, and
discuss boundary issues. In Section 5, we apply our method to an earthquake dataset from
the Tohoku District in Japan. In the Discussion Section we summarize and speculate about
our results and suggest future directions and applications for this research.

2. Space-time Point Process Models. Consider a marked space-time point process
N(t, x, y) representing the times, locations, and magnitudes, {(ti, xi, yi,mi) : i = 1 · · · , N},
of earthquake occurrences. Space-time point process models of seismicity are usually speci-
fied with a conditional intensity function which is defined as the infinitesimal expected rate
at which events occur around (t, x, y) given the history of the process Ht = {(ti, xi, yi,mi) :
ti < t}. That is,

λ(t, x, y|Ht)

= lim
∆t,∆x,∆y↓0

E[N{(t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)}|Ht]

∆t∆x∆y
.(1)

Conditional intensities are a natural way to model point processes as all finite-dimensional
distributions of a simple point process are uniquely determined by its condition intensity
(Daley and Vere-Jones, 2003).

In seismology, one typically models the conditional intensity in (1) as a Hawkes-type
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self-exciting point process taking the following form:

λ(t, x, y,m|Ht) = J(m)λ(t, x, y|Ht)

λ(t, x, y|Ht) = µ(x, y) +
∑
{i:ti<t}

ν(t− ti, x− xi, y − yi;mi).(2)

For example, models of this type, referred to as Epidemic Type Aftershock Sequences
(ETAS) models, were introduced by Ogata (1988) for the description of earthquake cata-
logs. Such models categorize earthquake occurrences into two types: mainshocks and after-
shocks. The rate of mainshocks occurring over a spatial region is modeled by the background
intensity µ(x, y), which is assumed a nonstationary Poisson process in space and stationary
in time. The rate of aftershock activity following an earthquake occurring at (ti, xi, yi) with
magnitude mi is modeled by the triggering function ν, which is often assumed Gaussian or
power-law in parametric models. The summation term gives the contribution of all previ-
ously occurring events in the catalog to the overall rate of seismicity at time t and location
(x, y). The distribution of earthquake magnitudes J(m) is typically assumed independent
of all other model components, and follows an exponential distribution according to the
well known magnitude frequency law of Gutenberg and Richter (1944). Note that model
(2) specifies a space-time branching process since any earthquake occurrence (including an
aftershock) is capable of triggering its own aftershock sequence.

Ogata (1998) considered many parameterizations of the response function of (2) which
take the following standard form:

ν(t− ti, x− xi, y − yi;mi) = κ(mi)g(t− ti)f(x− xi, y − yi;mi).(3)

Here κ(mi) is the magnitude productivity function, which gives the expected number of
aftershocks following an earthquake of magnitude mi. The temporal component g is a
probability density function governing the rate of aftershocks following an earthquake at
time ti. The spatial component f is a probability density function for the spatial distribution
of aftershocks occurring around an earthquake with epicenter (xi, yi). The dependence of
the spatial response function on the magnitude mi is built into some models.

One example of a parametrization of the triggering function for ETAS is given by:

κ(m) = Aeα(m−mc),(4)

g(t) = (p− 1)c(p−1)(t+ c)−p,(5)

f(x, y) =
(q − 1)dq−1

π
(x2 + y2 + d)−q,(6)

where mc is the magnitude cut-off for the catalog, t > 0, and (A,α, p, c, q, d) are parameters
to be estimated. Here g corresponds to the modified Omori formula (see Utsu, Ogata and
Matsu’ura (1995) for details), and f is isotropic (rotation invariant) with a long range
power-law decay rate.
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The parameters of model (2) can be estimated by maximizing the log-likelihood function
(Ogata, 1998) with respect to the parameters of the model:

log(L) =
N∑
i=1

log(λ(ti, xi, yi|Ht))−
∫ T

0

∫ ∫
S
λ(t, x, y|Ht)dxdydt,(7)

where S × [0, T ] is the space-time observation window. In practice (7) can be maximized
using the EM algorithm (Veen and Schoenberg, 2008) or numerical routines (Schoenberg,
2013) that optimize an approximation to (7). The nonstationary background component,
µ(x, y), can be estimated with nonparametric techniques such as bi-cubic B-splines (Ogata,
1998) or kernel smoothing (Zhuang, Ogata and Vere-Jones, 2002; Musmeci and Vere-Jones,
1992). The techniques for estimating µ(x, y) are often implemented in conjunction with a
declustering algorithm used to isolate mainshocks.

Marsan and Lengliné (2008) proposed the MISD algorithm to nonparametrically estimate
the triggering function ν and stationary background rate µ(x, y) = µ for the space-time
Hawkes process model (2). Marsan and Lengliné (2010) showed that their method is an
EM-type algorithm under the assumption that the background rate is stationary and the
triggering function is piecewise constant. For the E-step, the branching structure of the
process is estimated by computing the probabilities, for each pair (i, j) of earthquakes, of
earthquake i having directly triggered earthquake j, as well as the probability of being a
mainshock for each observed earthquake. For the M-step, the estimated branching structure
is used to update an estimate of the stationary background rate and triggering function with
probability weighted histogram estimators. The two-step procedure is repeated until the
algorithm converges. A similar method is discussed in Mohler et al. (2011) using a Monte-
Carlo based approach that alternates between sampling a realization of the estimated
branching structure and updating estimates of the background rate and triggering function
using kernel density estimation on the sampled data.

3. Nonparametric Methods. This section discusses the nonparametric method of
Marsan and Lengliné (2008) to estimate the space-time Hawkes process model (2) using
histogram estimators. We make the following modifications to the original algorithm:

1. We incorporate a nonstationary background rate;
2. We assume the separability of the triggering function into components for magnitude,

time, and distance;
3. We perform histogram density estimation on the temporal and spatial triggering

components g(t) and f(r), where r =
√
x2 + y2.

The above modifications make the method consistent with estimating the standard form
of the triggering function in (3). As in Marsan and Lengliné (2008), we assume the spa-
tial triggering component is isotropic, that is f(x, y) = f(x2 + y2); this means the rate
of aftershock activity following an earthquake only depends on the distance r from the
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earthquake’s epicenter and not direction (circular aftershock regions). Also, to be consis-
tent with model (2), the background component µ(x, y) is assumed nonstationary in space
and stationary in time.

3.1. Histogram Estimators. Let P be a N ×N lower triangular probability matrix with
entries,

pij =


probability earthquake i is an aftershock of j, i > j

probability earthquake i is a mainshock, i = j

0, i < j

(8)

P =


p11 0 0 · · · 0
p21 p22 0 · · · 0
p31 p32 p33 · · · 0
...

...
...

. . . 0
pN1 pN2 pN3 · · · pNN

 P (0) =


1 0 0 · · · 0

1/2 1/2 0 · · · 0
1/3 1/3 1/3 · · · 0

...
...

...
. . . 0

1/N 1/N 1/N · · · 1/N


The only constraint for matrix P is

∑N
j=1 pij = 1. The rows must sum to 1 since each

earthquake in the branching process is either a mainshock or an aftershock of a previously
occurring earthquake. P (0) is one possible initialization. For this matrix,

∑N
i=1 pii can be

interpreted as the estimated number of mainshocks, while
∑N
i=1

∑i−1
j=1 pij (sum of the non-

diagonal elements) is the estimated number of aftershocks.
Below is the MISD algorithm of Marsan and Lengliné (2008) with the modifications

specified in the beginning of this section. For the spatial component, we specify a histogram
density estimator of h(r) = 2πrf(r) since

∫∞
−∞

∫∞
−∞ f(x, y)dxdy =

∫∞
0 2πrf(r)dr = 1; here

h(r) represents the underlying probability density function for the distance r between an
earthquake and its aftershock.

Algorithm 1.

1. Initialize P (0), set iteration index v = 0.
2. Estimate nonstationary background rate µ(x, y):

µ
(v)
k,l =

1

T∆x∆y

∑
Dk,l

p
(v)
ii , k = 0, · · · , nbinsx − 1, l = 0, · · · , nbinsy − 1.
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3. Estimate triggering components κ(m), g(t), and h(r):

κ
(v)
k =

∑
Ak
p

(v)
ij

Nmag
k

, k = 0, · · · , nbinsm − 1;

g
(v)
k =

∑
Bk
p

(v)
ij

∆tk
∑N
i=1

∑i−1
j=1 p

(v)
ij

, k = 0, · · · , nbinst − 1;

h
(v)
k =

∑
Ck
p

(v)
ij

∆rk
∑N
i=1

∑i−1
j=1 p

(v)
ij

, k = 0, · · · , nbinsr − 1.

4. Update probabilities P (v+1), letting rij be the epicentral distance between earth-
quakes i and j and f (v)(rij) = h(v)(rij)/(2πrij):

p
(v+1)
ij =

κ(v)(mj)g
(v)(ti − tj)f (v)(rij)

µ(v)(xi, yi) +
∑i−1
j=1 κ

(v)(mj)g(v)(ti − tj)f (v)(rij)
for i > j,

p
(v+1)
ii =

µ(v)(xi, yi)

µ(v)(xi, yi) +
∑i−1
j=1 κ

(v)(mj)g(v)(ti − tj)f (v)(rij)
.

5. If maxi,j |p(v+1)
ij −p(v)

ij | < ε, where i ≤ j, then the algorithm has converged (in practice

we take ε = 10−3). Otherwise, set v ← v + 1 and repeat steps 2–5 until convergence.

For step 2 of Algorithm 1, the notation is defined as follows:

• nbinsx and nbinsy are the number of bins along the x and y axis for the 2-dimensional

histogram estimator of µ(x, y) (nbinsx · nbinsy bins total).
• Dk,l = {i : k∆x < xi ≤ (k + 1)∆x, l∆y < yi ≤ (l + 1)∆y} where ∆x and ∆y are the

fixed bin widths along the x and y axes.

For step 3 of Algorithm 1, the notation is defined as follows:

• nbinsm , nbinst , and nbinsr are the number of bins for the the histogram estimators of the
magnitude κ, temporal g, and spatial h components of the triggering function.
• Ak = {(i, j) : δmk < mj ≤ δmk+1, i > j} is the set of indices of all pairs of earth-

quakes whose mainshock magnitudes fall within the kth bin (δmk, δmk+1] of the
histogram estimator for κ(m), where ∆mk = δmk+1 − δmk is the bin width.
• Nmag

k =
∑N
j=1 I(δmk < mj ≤ δmk+1) is the number of earthquakes whose magnitudes

fall within the interval (δmk, δmk+1].
• Bk = {(i, j)|δtk < ti−tj ≤ δtk+1, i > j}, is the set of indices of all pairs of earthquakes

whose time differences fall within the kth bin (δtk, δtk+1] of the histogram estimator
for g(t), where ∆tk = δtk+1 − δtk is the bin width.
• Ck = {(i, j)|δrk < rij ≤ δrk+1, i > j} is the set of indices of all pairs of earthquakes

whose epicentral distances rij fall within the kth bin (δrk, δrk+1] of the histogram
estimator for h(r), where ∆rk = δrk+1 − δrk is the bin width.
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In step 2 of Algorithm 1 the nonstationary background rate is estimated with a histogram
estimator which is a generalization of the stationary estimator in the original MISD algo-
rithm. In our modified method, the spatial observation window S is partitioned into equally
sized cells of width ∆x and height ∆y. The estimated rate within each cell is given by the
sum of the background probabilities, pii, corresponding to earthquakes occurring within
that cell, and then dividing the sum by ∆x ·∆y ·T to give the rate of mainshocks per unit
area per unit time. Note, the histogram estimator in step 2 reduces to the stationary case
in Marsan and Lengliné (2008) when nbinsx = nbinsy = 1 and ∆x ·∆y = S (i.e. only one cell
equal to the spatial observation window is specified). Also note that the estimator of g is

itself a density since
∑nbins

t −1
k=0 ∆tkĝk = 1, and similarly for the histogram estimator of h.

The assumption of separability allows for robust computation of model components
by substantially reducing the number of bins needed to estimate the model (only a one-
dimensional support is needed for the histogram estimator of each triggering component).
Furthermore, since we perform histogram density estimation on g and f the output of
Algorithm 1 has meaningful interpretation as in Ogata (1998). For instance, the histogram
estimate of the magnitude productivity κ̂k(m) has the natural interpretation as the esti-
mated mean number of aftershocks directly triggered by an earthquake with magnitude m
falling in the kth magnitude bin (δmk, δmk+1].

3.2. Variable Kernel Estimation. A shortcoming of the histogram method for estimat-
ing the background rate in Algorithm 1 is the implicit assumption of constancy within each
bin. If a large mainshock occurs, then the contribution of that event to the background
seismicity is limited to the bin in which the event is contained. If a bin does not contain
any earthquake events, then the estimated rate of mainshocks in that bin is zero. Hence,
the method does not allow for the estimate to vary smoothly over the spatial observation
region and is highly dependent on the choice of the partition. This motivates considering
a kernel smoothing approach, where the background rate estimate only depends on the
choice of the smoothing parameter (bandwidth) and varies continuously over the pixels in
the spatial window.

As an alternative to the histogram approach (Algorithm 1, step 2) for estimating the
nonstationary background rate, we adopt the variable bandwidth kernel estimator used by
Zhuang, Ogata and Vere-Jones (2002):

µ(x, y) = γτ(x, y),(9)

τ(x, y) =
1

T

N∑
i=1

piikdi(x− xi, y − yi).(10)

Here the index i runs through all the events in the catalog, γ is a scaling factor, and k is
the Gaussian kernel function,

kdi(x, y) =
1

2πd2
i

exp

(
−x

2 + y2

2d2
i

)
.
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The kernel is weighted by pii, the probability that event i is a mainshock, and has a varying
bandwidth di specified for each event in the catalog. The bandwidth di is computed by
finding the radius of the smallest disk centered at (xi, yi) that contains at least np other
events, and is greater than some small value ε representing the location error. Zhuang,
Ogata and Vere-Jones (2002) suggest taking np between 15–100 and ε = 0.02 degrees. A
variable bandwidth estimate is preferred since a large fixed bandwidth over-smooths areas
with clustered events, and a small fixed bandwidth under-smooths areas with sparsely
located events.

In Zhuang, Ogata and Vere-Jones (2002) the estimate (9) is part of a semi-parametric
model for ETAS, with parameters estimated via maximum likelihood. Since our approach
is completely nonparametric, the scaling factor γ for the estimate of the background rate
needs to be carefully defined. This leads to the following algorithm for estimating the
space-time Hawkes process model (2) with a variable kernel estimator for the background
seismicity:

Algorithm 2.

1. Initialize P (0) and compute di for each event i = 1, · · · , N .
2. Estimate nonstationary background rate µ(x, y):

µ(v)(x, y) =

∑N
i=1 p

(v)
ii

Z(v)
τ (v)(x, y).

3. Follow Steps 3–5 in Algorithm 1.

The normalizing factor Z(v) at iteration v is chosen so that

1

Z(v)

∫ T

0

∫ ∫
S
τ (v)(x, y)dxdydt = 1,

and consequently, ∫ T

0

∫ ∫
S
µ(v)(x, y)dxdydt =

N∑
i=1

p
(v)
ii ,

where
∑
i p

(v)
ii is the estimated number of mainshocks occurring in the space-time observa-

tion window. In practice, Z(v) can be found by first computing τ (v)(x, y) as defined in (10)
at each pixel, and then evaluating the integral of τ (v)(x, y) over S × [0, T ] with a Reimann
sum over those pixels.

4. Simulation Results.

4.1. Histogram Estimator Method. In this section we assess the performance of the
nonparametric method described in Algorithm 1 to recover an earthquake model from
synthetic catalogs. For this study, earthquake occurrences are simulated from the ETAS
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model with parametric triggering function given by (4, 5, 6). The parameter values are the
maximum likelihood estimates (A,α, p, c, d, q) = (0.322, 1.407, 1.121, 0.0353, 0.0159, 1.531)
from Table 2, row 8 of Ogata (1998) (parameters estimated from earthquake data over a
36 ∼ 42◦N latitude and 141 ∼ 145◦E longitude region off the east coast of Tohoku District,
Japan with time span 1926–1995). Earthquake magnitudes are generated independently
of other model components according to an exponential density J(m) = βe−β(m−mc) with
β = ln(10) (equivalent to a Gutenberg-Richter b-value equal to 1). The observation window
for the simulation is S×T = [0, 4]× [0, 6]× [0, 25000], and the magnitude cut-off is mc = 0.
The nonstationary background rate is specified by partitioning the spatial observation
window S into 4 equally sized cells with the varying rates shown in Figure 2(a). An example
of a simulated realization is shown in Figure 1. For a description of the simulation procedure
for ETAS please see Algorithm C from Zhuang, Ogata and Vere-Jones (2004).

We simulate and re-estimate the ETAS model 200 times to assess the variability in the
estimates over multiple realizations of earthquake catalogs from the specified model. The
results for the estimation of the nonstationary background rate are shown in Figure 2(b).
Each cell in Figure 2(b) shows the 0.025 and 0.975 quantiles of the estimates, and the mean
of the estimates which correspond to the cell’s grey scale level. Figure 2(b) reveals that
the nonparametric method (Algorithm 1) is able to recover the sharp differences between
the rates in each cell with reasonably small errors. While the means of the estimates are
close to the true rates (Figure 2(a)), a bias is apparent, as the 95% coverage intervals fall
consistently above the true values. In the next section we show that this over-estimation is
due to boundary effects induced by excluding aftershocks that occur outside the space-time
observation window.

The results for the estimation of the magnitude, temporal, and distance components
of the triggering function from the 200 realizations of ETAS are shown in Figure 3. The
histogram density estimates of g(t) and h(r) are plotted on log-log scales with equally
spaced logarithmic bins since the true densities are power-law. The bins for the histogram
estimator of the magnitude productivity κ(m) are also equally spaced.

The method is able to recover the form of each component of the triggering function
since the true value governing the simulations is contained within the 95% coverage error
bars for most bins. The error bars for the estimates of g(t) and h(r) reveal that the es-
timation is most accurate in the middle range. The high variability in the estimates for
bins corresponding to small time differences t and distances r is not surprising since the
partition is logarithmically scaled, and therefore these bin widths are very small. The error
bars at the right-tail ends of the distributions of g(t) and h(r) do not cross and underes-
timate the true densities. In the next section we show that this estimation bias is due to
boundary issues. The error bars for the estimates of the magnitude productivity function
κ(m) increase with magnitude, although this is expected since earthquake magnitudes are
exponentially distributed and therefore only a few large magnitude events occur in each
simulation.
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4.2. Boundary Issues. When simulating earthquake catalogs from the ETAS model the
mainshocks are restricted to occur within the space-time observation window S × [0, T ].
However, the times and locations of aftershocks, simulated from the triggering function
components g and f , may occur outside of this boundary. In the last section, we neglected
boundary effects, and only used simulated data occurring within the space-time observation
window to estimate the model using Algorithm 1.

To evaluate the boundary effects on the estimation we include simulated aftershocks
which occur within a distance εr of the spatial boundary and a time εt of the temporal
boundary, i.e. all aftershocks occurring within [−εr, 6 + εr]× [−εr, 4 + εr]× [0, 25000 + εt].
We then run Algorithm 1 on the expanded simulation data, and slightly modify step 4 so
that µ(xi, yi) = 0 if event (ti, xi, yi,mi) falls outside of S × [0, T ].

To measure the change in performance of Algorithm 1 on estimating the nonstationary
background rate as we increase εr and εt we use the root-mean-square deviation (RMSD):√√√√ 1

nbinsx nbinsy

∑
i,j

(µ̂ij − µij)2.(11)

Here µ̂ij and µij are the estimate and true value for the background rate in the (i, j)
cell respectively. We simulate the ETAS model 10 times using the same parameters and
background rate as in Section 4.1, with mainshocks again restricted to S × [0, T ] = [0, 4]×
[0, 6]× [0, 25000], but aftershocks allowed to occur outside that region. For each simulation,
the RMSD is computed for increasing values of εr and εt. Figure 4 shows the mean RMSD
from the 10 realizations at selected values of εr and εt; the vertical lines represent a standard
deviation in RMSD above and below the mean. The incorporation of aftershocks falling
outside the space-time observation window significantly improves the performance of the
estimation of the background rate. The RMSD appears to level off when εr = 100.5 = 3.16
and εt = 10000.

Figure 5 shows the results from simulating and re-estimating ETAS with Algorithm 1 200
times with a boundary correction of εr = 1000 and εt = 106. Again, we simulate events with
the same parameters and space-time window as Section 4.1. The only difference is that in
the estimation we use aftershocks occurring within a distance εr = 1000 and time εt = 106

of the boundary of the observation window. Since the temporal and distance components of
the triggering function used to generate the data are power-law it is possible for aftershocks
to occur at very far distances and times from the observation window.

The background rate estimate in Figure 5 is a substantial improvement over the estimate
in Figure 2, which neglected boundary effects. The true rates are contained in the 95%
coverage intervals for each cell in Figure 5. Moreover, the consistent over-prediction of
the rates evident in Figure 2 is no longer present, and the results suggest the bias in the
cell means is negligible once the boundary effects are accounted for. The error bars for
the triggering function components in Figure 5 also show substantial improvement when
compared to Figure 3. The histogram estimates for g(t) and h(r) contain the true density
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values for large time differences t and distances r. Moreover, accounting for boundary
effects expands the reach of the estimation (histogram estimates at bins beyond r = 10
and t = 25000) and reduces the error at the tail ends. Lastly, the error bars for the estimates
of the magnitude productivity κ(m) in Figure 5 appear more centered around the true value
than in Figure 3.

4.3. Variable Kernel Estimation Method. In this section we use simulation to assess the
ability of Algorithm 2 to recover the components of the space-time Hawkes process model
(2) with a smoothly varying background rate. Here we simulate from a parametric ETAS
model with the same triggering function and parameter values as Section 4.1. However,
instead of the background rate in Figure 2(a) with stationary rates in each cell on a
2 × 2 grid, we simulate from the smoother background rate shown in Figure 7(a). This
nonstationary background rate was generated by performing fixed bandwidth kernel density
estimation over the locations of 883 earthquakes of magnitude 5.0 or greater, longitude
141 ∼ 145◦E, latitude 36 ∼ 42◦N, and time between 16 Jan 2007 to 28 Dec 2014.1 To
simulate from the kernel smoothed background rate in Figure 7(a) we use the thinning
procedure of Lewis and Shedler (1979) and set the expected number of background events
equal to 2000.

Figure 7(b) shows the probability weighted variable kernel estimate (Algorithm 2, step
2) of the nonstationary background rate from a single simulated realization of the ETAS
model. The epicentral location and space-time plots of the simulated earthquake data used
for this estimate are shown in Figure 6. The kernel estimate of the background rate depends
on the smoothing parameter np (Section 3.2). Here we choose np = 50, since this value gives
the lowest RMSD (11) for np ∈ {10, 15, · · · , 95, 100}. The kernel estimates are evaluated
on a 100× 100 pixel grid (making nbinsx = nbinsy = 100 when evaluating (11)).

As discussed in Section 3.2, the nonparametric estimation of ETAS is sensitive to bound-
ary effects. As a boundary correction for the estimation with Algorithm 2, we allow for
aftershocks occurring within εr = 3 degrees and εt = 3000 days of the space-time boundary
S×[0, T ] = [0, 4]×[0, 6]×[0, 25000]. Note that the selected values, εr = 3 and εt = 3000, cor-
respond to where the RMSD in Figure 4 begins to level off. The panels in Figure 6 show the
boundary (dashed rectangles) and simulated aftershocks occurring in the specified region
outside the boundary.

This estimate in Figure 7(b) resembles the overall form of the true background intensity
Figure 7(a) and recovers many of the mainshock hotspots. However, near location (2.06,
2.33), a hotspot appears to have been erroneously estimated, i.e. a false positive has been
identified. This is due to the large magnitude event (m > 4) that occurred in the simulation
at this location, as denoted by the asterisk in Figure 6(a). The mean of 200 estimates of
the background rate from 200 simulated realizations of ETAS is shown in Figure 7(c),
and appears to closely resemble the true background rate. Hence, while there may be

1Data gathered from http://www.quake.geo.berkeley.edu/anss/catalog-search.html with spatial
observation window the same as Ogata (1998).

http://www.quake.geo.berkeley.edu/anss/catalog-search.html
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discrepancies for estimates from a single realization due to sampling variation, the variable
kernel estimator appears to be unbiased since the mean of the estimates from repeated
simulation is close to the true background intensity. Moreover, the pointwise 0.025 and 0.975
quantiles for 200 estimates of the number of background events, given by (1943.7, 2219.4),
contains the true value of 2000 background events specified for the simulation.

The histogram estimates and corresponding 95% coverage error bars in Figure 8 appear
to successfully describe the true triggering components. This demonstrates the ability of
Algorithm 2 to recover the nonstationary background rate with a variable kernel estimator
and triggering function with histogram estimators. There are slight discrepancies between
the histogram estimates of the triggering function and the true values due to boundary
effects. Most noticeably, the 95% coverage error bars for the estimates of g(t) and h(r) do
not contain the true density values at the right-tail ends of the distributions. Boundary
correction values larger than εr = 3 and εt = 3000 may result in more accurate estimates,
as in the asymptotic case shown in Figure 5. However, the selected values seem sufficient
for estimating the background intensity.

5. Application to Japan Dataset. We apply the MISD algorithm (Algorithm 2)
to earthquake data from the ANSS catalog http://www.quake.geo.berkeley.edu/anss/

catalog-search.html. The dataset contains 6075 earthquakes of magnitude 4.0 or greater
occurring over a 10 year period between 5 Jan 2005 – 31 Dec 2014. The spatial widow is
a 141 ∼ 145◦E longitude and 36 ∼ 42◦N latitude region off the east coast of the Tohoku
District in northern Japan. This is the same spatial region analyzed in Ogata (1998),
although the time window in this study is different. An epicentral and space-time plot of
the data is show in Figure 9, with the asterisk corresponding to the 2011 magnitude 9.0
Tohoku earthquake.

The variable kernel estimate of the background rate (Algorithm 2, step 2) is shown in
Figure 10. Here we chose the smoothing parameter np = 50, corresponding to the best
choice for the simulation study in Section 4.3. Figure 10 is an important plot for assessing
seismic risk since it shows the estimate of the underlying spatial Poisson processes µ(x, y) for
maishock activity which persists over time in the region. In total, the algorithm estimated
there to have been 809 mainshocks, or 13.3% of the total seismicity; this suggests that most
of the events in the dataset are aftershocks, temporally and spatially linked to previously
occurring earthquakes.

The histogram estimates of the components of the triggering function are shown in
Figure 11. The grey error bars approximate ±2 standard errors, capturing the sampling
variation for the histogram estimates in each bin (see Appendix A for the derivation of
the analytic standard errors). The estimates of g(t) and h(r) both exhibit power-law type
distributions, and the error bars appear similar to the ones obtained in the simulation study
(Section 4.3). Note, the estimates at the right-tail ends of these distributions (t > 1000 days
and r > 1 degree) are perhaps unreliable and underestimate the truth due to boundary
effects, as demonstrated in the simulation study (Section 4.2).

http://www.quake.geo.berkeley.edu/anss/catalog-search.html
http://www.quake.geo.berkeley.edu/anss/catalog-search.html
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The estimate of the magnitude productivity function κ(m) appears to follow an expo-
nential form. The error in the estimation of the productivity increases with magnitude, as
also demonstrated in the simulation study (Section 4.3). In the dataset there are only 3
events of magnitude 7.4 or greater, and hence large sampling variation for the estimates
of the mean productivity for large magnitude events. The estimate in the last bin was
estimated with only one event, namely the magnitude 9.0 Tohoku earthquake. It appears
that the magnitude productivity for this event is underestimated; perhaps this is due to
boundary effects since many of the aftershocks may have occurred outside the observation
window.

Superimposed on Figure 11 are the parametric estimates of the ETAS model (4, 5, 6)
for this same region from Table 2, row 11 of Ogata (1998). Amazingly, the parametric and
nonparametric estimates agree closely. This suggests that seismicity in this region is well
captured by an ETAS model with power-law g(t) and f(r), and exponential κ(m). Since
our dataset was gathered over a different time window than Ogata (1998), the results also
suggest that properties of aftershock sequences in this region are rather invariant over time.

Note that in Figure 11 the nonparametric estimate of the triggering density g(t) is slightly
higher than what Ogata previously estimated for small time intervals t . This could perhaps
be attributable to increased accuracy of seismometers in this region detecting aftershocks
occurring shortly after large earthquakes more accurately than previously.

6. Discussion. The results of this article demonstrate that the MISD algorithm per-
forms remarkably well at nonparametrically estimating space-time Hawkes process models
(2) for earthquake occurrences. By repeatedly simulating and re-estimating a known para-
metric earthquake model (ETAS), we verified and evaluated novel ways to incorporate a
nonstationary background rate into the method. Moreover, the error bars added to the his-
togram estimates of the triggering function captured the true values and showed reasonable
sampling variation in the estimates over most bins. While the simulation results showed
bias in the estimation of the background rate and right-tail ends of the triggering function
components, this problem became noticeably less severe once boundary effects were taken
into account.

A striking result in the application to earthquake data from the Tohoku region in Japan
is that the nonparametric estimate matched closely with a previously estimated parametric
form of the ETAS model. This further justifies the ETAS model as an adequate model of
seismicity for the selected region in Japan.

The parametric forms for point process models in seismology are the result of many
decades of refinement. However, for any given seismic region, a multitude of different pa-
rameterizations of ETAS may be considered. The nonparametric methods discussed in this
paper can serve as a diagnostic to assess which parametrization is a good fit to the data. In
other applications of self-exciting point processes, such as crime or finance, there is a less
established literature on parametric models. In such applications, nonparametric estima-
tion can be a powerful exploratory tool in determining a suitable parameterization of the
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triggering function. The error bars on the histograms estimates can be used for statistical
inference, and to identify places where the nonparametric estimate is more or less reliable
as either a diagnostic or exploratory tool.
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APPENDIX A: ANALYTIC ERROR BARS

Here we provide a derivation of an analytic approximation for computing standard errors
for the histogram estimators of the triggering function components (error bars in Figure 11,
Section 5). We proceed by first deriving an approximation of the standard error for the
histogram estimator of g(t), and then note that the standard errors for the histogram
estimators of κ(m) and h(r) can be approximated similarly. Please use Section 2.1 as a
reference for much of the notation in this appendix, and note that pij refers to the triggering
probability (8) after Algorithm 2 has converged.

Let t ∈ (δtk, δtk+1] and ĝ(t) = gk be the histogram density estimator of g(t). Now
suppose Sk is a random variable representing the number of triggered events in bin k, i.e.
the number of aftershocks occurring between (δtk, δtk+1] days after the earthquakes that
directly trigger them. Then Sk follows a binomial distribution with number of trials nt equal
to the true number of triggered events (aftershocks) for the process, and success probability
θgk equal to the true probability an aftershock occurs between (δtk, δtk+1] days after the
earthquake that directly triggers it. Since we do not know the true values for the binomial
parameters we estimate them with n̂t =

∑N
i=1

∑i−1
j=1 pij and θ̂gk =

∑
Bk
pij/n̂t. Hence, an

approximation of the variance of the histogram density estimator gk = Sk/(∆tknt) is given
by:

V̂ ar(gk) =
(θ̂gk)(1− θ̂

g
k)

n̂t∆t2k

Similarly, we can approximate the variances for the other histogram estimators:

V̂ ar(κk) =
n̂t(θ̂

κ
k)(1− θ̂κk)

(Nmag
k )2

V̂ ar(hk) =
(θ̂hk )(1− θ̂hk)

n̂t∆r2
k

where θ̂κk =
∑
Ak
pij/n̂t and θ̂hk =

∑
Ck
pij/n̂t.
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Fig 1. Simulated realization of ETAS model (4–6) with background rate varying in each quadrant; (a)
epicentral locations, and (b) space-time plot of simulated earthquakes.
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Fig 2. (a) True background rate for simulation study in Section 4.1. (b) Results for estimating the back-
ground rate with Algorithm 1 from 200 simulations of ETAS. The means of the estimates printed in each
cell correspond to the grey scale levels; the intervals are the 0.025 and 0.975 quantiles for the estimates in
each cell.
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Fig 3. Magnitude, temporal, and distance components for triggering function from the simulation study in
Section 4.1. The black curves are the true triggering components used for the simulation. The light grey
horizontal lines in each bin are the histogram estimates from the 200 simulations of ETAS; the dark grey
boxes are the 95% coverage intervals (error bars) for the estimates in each bin (i.e. pointwise 0.025 and
0.975 quantiles).
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Fig 6. Simulated realization of ETAS model (4–6) with smooth nonstationary background rate; (a) epicentral
locations, and (b) space-time plot of simulated earthquakes. The dotted rectangles in each plot are the spatial
and temporal boundaries for the observation window S × [0, T ] = [0, 4] × [0, 6] × [0, 25000]. Aftershocks
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The asterisks denote events with magnitudes m > 4.
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Fig 7. (a) True background rate for simulation study in Section 4.2. (b) Estimate of background rate from
one simulated realization of ETAS and, (c) mean estimate from 200 realizations.
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Fig 8. Magnitude, temporal, and distance components for triggering function from the simulation study in
Section 4.3. The black curves are the true triggering components used for the simulation. The light grey
horizontal lines in each bin are the histogram estimates from the 200 simulations; the dark grey boxes are
the 95% coverage error bars for the estimates.
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Fig 9. Epicentral locations (a) and space-time plot (b) of earthquakes, magnitude 4.0 or greater, occurring
off the east coast of the Tohoku District, Japan. The asterisk corresponds to the 2011 Tohoku earthquake of
magnitude 9.0.
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Fig 10. Estimate of background rate (Algorithm 2, step 2) for Japan earthquake dataset (Section 5). Rate
values are in events/day/degree2.
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Fig 11. Magnitude, temporal, and distance components for triggering function estimated from the Japan
earthquake dataset (Section 5). The black horizontal lines are the estimates in each bin. The grey boxes
are the error bars covering ±2 standard errors. The black curves are the parametric estimates from Ogata
(1998) in the same region.
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