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Abstract

Residual analysis methods for examining the fit of multi-dimensional point process models

are applied to point process models for the space-time-magnitude distribution of earthquake oc-

currences, using in particular the multi-dimensional version of Ogata’s epidemic-type aftershock

sequence (ETAS) model and a 30-year catalog of 580 earthquakes occurring in Bear Valley,

California. One method involves rescaled residuals, obtained by transforming points along one

coordinate to form a homogeneous Poisson process inside a random, irregular boundary. Another

method involves thinning the point process according to the conditional intensity to form a ho-

mogeneous Poisson process on the original, untransformed space. The thinned residuals suggest

that the fit of the model may be significantly improved by using an anisotropic spatial distance

function in the estimation of the spatially varying background rate. Using rescaled residuals,

it is shown that the temporal-magnitude distribution of aftershock activity is not separable,

and that in particular, in contrast to the ETAS model, the triggering density of earthquakes

appears to depend on the magnitude of the secondary events in question. The residual analysis

highlights that the fit of the space-time ETAS model may be improved by allowing the param-

eters governing the triggering density to vary for earthquakes of different magnitudes. Such

modifications may be important since the ETAS model is widely used in seismology for hazard

analysis.

Key words: conditional intensity, spatial-temporal marked point process, ETAS model, seismology,

separability.

1 Introduction.

Stochastic point process models have become essential components in the assessment of seismic

hazard or risk, which are in turn critical for many purposes including civil engineering and insurance.

Excellent reviews are provided by Brillinger (1993) and Vere-Jones (1995). In particular, the
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Epidemic-Type-Aftershock-Sequence (ETAS) model of Ogata (1988) has proven to be extremely

useful in the description and modeling of earthquake occurrence times and locations.

The ETAS model examined in Ogata (1988) incorporates time and magnitude, but has no

spatial component. In recent years extensions characterizing the space-time-magnitude behavior of

earthquake occurrences have been offered (e.g. Ogata 1998, Zhuang et al. 2002), but little attention

has been paid to the examination of the goodness-of-fit of such models. The focus of the current

paper is to assess the fit of space-time ETAS models to earthquake occurrence data from Bear

Valley, California. We present methods for assessing the fit of multi-dimensional point process

models using residual analysis and show how these methods may be used to identify defects in space-

time ETAS models and to suggest ways in which the models may be improved. In particular, in

California, where most earthquake hypocenters lie on or very near pre-existing faults, incorporation

of basic fault geometry into the spatial background rate in the ETAS model seems desirable, and

the methods also suggest that some relaxation of the separability assumption in the space-time

ETAS model may be appropriate.

Another aim of this paper is the development and application of residual analysis methods for

multi-dimensional point process models. For many statistical models such as ordinary regression

models, examination of residuals is straightforward and widely considered standard practice. For

the case of multi-dimensional point processes, consideration of residuals is a bit trickier, since

mere subtraction of the mean from a point process does not result in a very useful diagnostic.

We propose the inspection of both rescaled and thinned residuals. Following a review of some

multidimensional point process models for earthquake occurrences in Section 2, seismological data

from Bear Valley, California are described in Section 3. Thinned residuals are used in Section 4

to highlight deficiencies in standard spatial background rate estimates, and in Section 5 rescaled

residuals are used to assess the separability of the magnitude distribution in the ETAS model.
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Section 6 contains some concluding remarks.

2 Space-time-magnitude point process models for earthquakes

Catalogs of earthquake occurrences are conveniently modeled as spatial-temporal marked point

processes, i.e. as σ-finite random measures on a portion S of space-time-magnitude, taking values

in the non-negative integers or infinity. One typically assumes the process to be completely simple,

i.e. that with probability one all the points occur at distinct times. As any such process N may

be uniquely characterized by its associated conditional rate process λ (Fishman and Snyder 1976;

Daley and Vere-Jones 2003), in modeling the process N one typically prescribes a model for λ. For

S a collection of times t, spatial locations x, and magnitudes m, λ(t,x,m) may be thought of as

the frequency with which events are expected to occur around the particular location and time and

magnitude (t,x,m) in S, conditional on the entire prior history Ht of the point process up to time

t. Though various types of conditional rate exist corresponding to conditioning on different forms

of histories (see e.g. Merzbach and Nualart 1986), for most spatial-temporal marked point processes

the prior temporal history Ht is the most relevant for applications (Schoenberg et al. 2002), so we

restrict our attention to this type of conditional rate.

Formally, a version of the conditional rate λ(t,x,m) associated with a spatial-temporal point

process N may be defined as the limiting conditional expectation

lim
∆t,∆x,∆m↓0

E[N{(t, t + ∆t)× (x,x + ∆x)× (m,m + ∆m)}|Ht]
∆t∆x∆m

,

provided the limit exists (Brémaud 1981; Schoenberg et al. 2002). See Jacod (1975) for conditions

for existence and uniqueness of the conditional rate and its integrated form called the compensator.

Note that although in the statistical literature (e.g. Daley and Vere-Jones 2003; Karr 1991), λ is

commonly referred to as the conditional intensity rather than conditional rate, to avoid confusion
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the term rate may be preferred in this context, since the term intensity is also used in seismology

to describe the destructiveness of an earthquake.

There are numerous spatial-temporal-magnitude models for earthquake occurrences; for reviews

see Kagan (1991), Vere-Jones (1992), Rathbun (1993), Kagan and Vere-Jones (1996), and especially

Ogata (1998). The widely-used ETAS models of Ogata (1988, 1998) are based on the principle that

earthquakes are clustered due to the occurrence of aftershocks, and furthermore aftershocks can in

turn have aftershocks, etc. Given a collection of points {ti,xi,mi}, i = 1, 2, . . ., the model may be

written

λ(t,x,m) = f(m)

µ(x) +
t∫

0

∫
x

m1∫
m0

g(t− t′, ||x− x′||,m′)dN(m′,x′, t′)


= f(m)

µ(x, y) +
∑

i:ti<t

g(t− ti, ||x− xi||,mi)

 . (1)

The functions f and µ govern the magnitude-frequency and background seismicity rate, respectively,

and the function g, called the triggering density, describes how the rate of earthquakes increases

after an earthquake, and how this increase in seismicity decays over time and space, and as a

function of the magnitude of the triggering event. Various forms for f , g, and µ are suggested in

Ogata (1998) based on well-known seismological relations. For instance, one typically takes for the

magnitude-frequency term

f(m) ∝ exp{−β(m−m0)}, (2)

where m0 is the minimal magnitude threshold for the earthquake catalog, in agreement with the

Gutenberg-Richter relation (Gutenberg and Richter 1944). When the spatial coordinate x repre-

sents epicentral origin location (x, y) in the plane, a form for the triggering density g given in Ogata

(1998) is

g(t, x, y,m) =
K0exp{α(m−m0)}

(t + c)p(x2 + y2 + d)q
, (3)
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whose temporal component agrees with the modified Omori law (Utsu 1971). Functional forms for

the background rate µ(x) are not typically given; instead µ is assumed constant or estimated by

smoothing the main events in the catalog, e.g. using bi-cubic B-splines or kernel smoothing (Ogata

1998; Zhuang et al. 2002). In what follows we refer to the model governed by relations (1-3) and

with background rate estimated by kernel smoothing simply as model (1).

Note that model (1) is separable with respect to magnitude and the spatial-temporal coordi-

nates, in the sense that the frequency of earthquakes of magnitude m at any time and location

depends only on the overall density of earthquakes of magnitude m given by f(m) and on the

overall rate of events dictated by µ and g, but not on the interaction of the two. That is, while

the triggering density g depends on the magnitude of the triggering event, it does not depend on

the magnitude of the event m whose rate is being calculated in the formula for λ(t,x,m). This

separability property is an important feature of the model (1) that is explored in Section 5 below.

As an alternative we consider allowing the parameter vector θ to vary with magnitude, m. That

is, we consider the model

λ(t, x, y,m) = (4)

J∑
j=1

I{m∈Mj}ajexp{−βj(m−m0)}

µ(x, y) +
∑

i:ti<t

Kjexp{αj(mi −m0)}
(t− ti + cj)pj{(x− xi)2 + (y − yi)2 + dj}qj


where {Mj ; j = 1, 2, . . . , J} is a partition of the observed magnitude range. Note that this revised

model (4) is not inconsistent with the modified Omori law, which governs the decay of aftershocks

over time for all magnitudes in the observed range.

3 Bear Valley Earthquake Data

The Bear Valley earthquake catalog obtained from the Council of the National Seismic System

(CNSS) consists of 580 earthquakes of magnitude 3.0 and higher (up to magnitude 5.5) occuring
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along a 35 kilometer portion of the San Andreas Fault around Bear Valley, California (latitude

36.5 to 37.0, longitude -121.5 to -121.0), between 1970 and 2000. The catalog is described in

Schoenberg and Bolt (2000), where it is noted that this dataset is typical of a catalog used as a

basis for seismic hazard calculations. Details about the data may be obtained from the CNSS at

http://quake.geo.berkeley.edu.

The space-time-magnitude distribution of the Bear Valley earthquakes is shown in Figure 1.

The locations are epicentral origin estimates, the magnitude of each event is represented in the

Figure by the size of the circle, and the time by its darkness. One sees in Figure 1 that most of

the events occur approximately along a narrow strip, which corresponds to a portion of the San

Andreas Fault. The time-magnitude distribution of the points is highlighted in Figure 2, where one

sees the increased frequency with which the smaller earthquakes occur. No obvious trend in the

magnitude distribution over time is easily discernable in Figure 2; this issue of separability of the

marginal distributions is investigated further below.

4 Thinned spatial residuals and improved spatial background rate

estimates

The fit of the spatial component of model (1) is conveniently investigated using thinned residuals,

using a variation on the useful simulation technique of Lewis and Shedler (1979) and Ogata (1981).

Given a space-time-magnitude point process N with conditional intensity λ, one may obtain a

homogeneous Poisson process with rate b by keeping each point (ti, xi, yi,mi) in the original point

process independently with probability b/λ(ti, xi, yi,mi), where b is the minimum of λ(t, x, y,m)

over the entire observation region, S. When this thinning is done using the estimated conditional

intensity λ̂ in place of λ, the remaining points, which we call the thinned residual points, may be
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examined for uniformity.

We consider the model (1) with background rate µ(x, y) estimated by kernel-smoothing of the

larger events (those with magnitude at least 4.0). After fitting this model by maximum likelihood to

obtain an estimate θ̂ of the parameter vector θ = (β, K0, α, c, p, d, q, ρ, a), where ρ is the bandwidth

in the kernel smoothing for µ and a is the constant of proportionality in (2), the thinned residuals

were obtained. That is, the original dataset was thinned by keeping each point (ti, xi, yi,mi) with

probability b/λ̂(ti, xi, yi,mi), where λ̂(ti, xi, yi,mi) = λ(ti, xi, yi,mi; θ̂) and b = min
S

λ̂(ti, xi, yi,mi).

Because b is rather small due to small values of λ at certain locations, each realization of thinned

residuals consists of only a few points. Figure 3 shows a typical example of thinned residuals based

on the model (1).

Examination of one realization for homogeneity is a very low-power method for assessing the

model, but one may readily generate many realizations of thinned residuals and examine them

collectively. Under the null hypothesis that the model is correctly specified, each realization should

approximate a homogeneous Poisson process. A powerful test for the alternative hypothesis that

the points are instead more (or less) spatially clustered than a homogeneous Poisson process is the

estimated K-function, which indicates the proportion of pairs of points per unit area available that

are within distance d of one another. That is, for any spatial distance d, K(d) is estimated as

AN−2
∑
i<j

||xi−xj ||<d

s(xi,xj),

where A is the area of the observation window, N is the number of observed points, and s(xi,xj)−1 is

the proportion of area of the ball centered at xi passing through xj that falls within the observation

window (see Ripley 1981).

The K-functions (not shown) for thinned residuals from model (1) generally indicate excessive

spatial clustering, i.e. spatial clustering in the data not adequately accounted for by model (1). One
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may suspect that the source of this clustering is the tendency for the points in Figure 1 to fall near

the fault line, as previously mentioned. In fitting the model (1), the estimated background rate

µ̂(x, y) is determined by kernel-smoothing the larger earthquakes in the dataset, hence locations at

greater Euclidean distances from larger earthquakes have lower estimated background rate. The

estimated background rate, corresponding to the maximum likelihood estimation (MLE) of the

parameters in the model (1), is shown in Figure 4 along with the larger earthquakes used for the

smoothing. The kernel smoothing using Euclidean distance is clearly too smooth in this case, so

that points near the fault line, which occur at a high rate, are estimated to occur at a relatively

low rate. Hence many of these points remain in the thinned residuals, causing excessive clustering

in these residual processes. It should be noted that kernel smoothing using variable bandwidths,

as proposed in Zhuang et al. (2002), does not solve the problem of residual clustering; in fact,

application of the method of Zhuang et al. (2002) still results in an overly smoothed background

similar to that in Figure 4, since the kernel smoothes are still isotropic and have even larger

bandwidths around the outlying points.

The obvious pattern in Figure 1 and the clustering in the K-functions of the thinned residuals

suggest modifying the estimation of µ(x, y) in model (1) by using a non-isotropic distance function

that takes into account the approximate colinearity of most of the earthquake locations. For

instance, one may simply fit a line ` (e.g. by regression) to the locations of the larger earthquakes

and then replace Euclidean distance in the smoothing procedure for µ(x, y) with a new distance

function such that distances between two points orthogonal to ` are weighted γ times the distance

in the direction of `. Like the other model parameters, the parameter γ may be estimated by

maximum likelihood. The resulting estimate of the background rate µ(x, y) is shown in Figure

5. Hereafter we refer to the model governed by equations (1-3) and with µ estimated using the

non-isotropic distance function as model (1’).
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The smoothing in Figure 5 is not nearly as smooth as that in Figure 4, and clearly corre-

sponds much more closely with the spatial distribution of the actual events. After using the

modified, anisotropic estimate of µ(x, y) and obtaining an intensity estimate λ̂ by MLE, the

value b, defined as the minimum of λ̂ over the entire space S, is now miniscule, so each re-

alization of thinned residuals contains only very few points (indeed, on average less than one).

This suggests instead inspecting approximate residuals for model (1’), obtained by randomly se-

lecting k of the original N(S) points such that the point (ti, xi, yi,mi) is chosen with probabil-

ity kλ̂(ti, xi, yi,mi)−1/(
N(S)∑
i=1

λ̂(ti, xi, yi,mi)−1) with the number k of points per residual process

a Poisson random variable with mean equal to the mean number of residual points when thin-

ning according to the original model (1). Since the occurrance rate of a point at (t, x, y,m) is

given by λ(t, x, y,m) and since each such point is kept with probability inversely proportional to

λ̂(ti, xi, yi,mi), the resulting process should again resemble a homogeneous Poisson process provided

λ̂ closely approximates the true conditional intensity, λ. Empirical 95% bounds for K-functions

corresponding to 1000 realizations of such thinned residuals for the model (1’) are shown in Figure

6, along with corresponding 95% bounds based on uniformly distributed points in S. The bounds

in Figure 6 agree rather closely with those of the uniformly distributed points, and most of the

clustering in the residual K-functions is no longer indicated. That is, on balance, the thinned

residuals from model (1’) do not appear to be substantially more clustered than points uniformly

distributed in S.
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5 Rescaled temporal-magnitude residuals and assessment of mag-

nitude separability

The time-magnitude distribution of the earthquake process may be investigated using rescaled

residuals based on the method due to Meyer (1971), who showed that for a collection {Ni} of

completely simple univariate point processes on the real half-line, provided
∞∫
0

λ(t, i)dt = ∞ for each

i, if one rescales the points by moving each point (t, i) to the point (
t∫
0

λ(t′, i)dt′, i), then one obtains

a sequence of independent homogeneous Poisson processes of unit rate. This type of horizontal

rescaling was shown to be extremely useful by Ogata (1988), who performed residual analysis of

an ETAS model for the temporal-magnitude (i.e. non-spatial) behavior of earthquakes. Results

on vertical rescaling for have also been derived for spatial point processes (see Schoenberg 1999,

and references therein), and Meyer’s result also extends directly to spatial-temporal marked point

processes; i.e. by transforming each point (ti,xi,mi) to (
t∫
0

λ(t′, i)dt′,xi,mi), one again obtains

an independent sequence of homogeneous Poisson processes of unit rate. The requirement that

∞∫
0

λ(t, i)dt = ∞ may be neglected in applications, since if the original process is observed within

a compact space-time-magnitude range S, then the rescaled residual process is Poisson within a

random, irregular boundary, as described in Schoenberg (1999). In the present case, because of the

temporal volatility of the conditional intensity under the ETAS model for California earthquakes,

the boundary corresponding to vertically-rescaled residuals (not shown) is highly irregular, making

inspection of uniformity of the residuals quite difficult. The boundary for the horizontally-rescaled

residuals, shown in Fig. 7, is not nearly as irregular, and the residual points in Fig. 7 appear to

be relatively uniformly dispersed, though some clustering of points of magnitude 3.1 and 3.3 may

be observed. Deviations from uniformity are difficult to discern directly by eye, so in order to

investigate further, one may inspect the residual points corresponding to each magnitude value,
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i.e. the residuals along each horizontal line in Fig. 7. If the model is correctly specified, then the

points on each line should be distributed as independent Poisson processes. A natural alternative

hypothesis is that points on certain lines are clustered; this corresponds to the notion that the

aftershock triggering process is not separable with respect to time and magnitude as specified

in equation (1). That is, for certain times, the proportion of earthquakes in certain magnitude

ranges may be higher than this proportion at other times. This would result in clustering in the

horizontally rescaled residuals within these magnitude ranges.

To test for nonseparability (clustering), we propose examining the second-order properties of

the residuals along each horizontal line. For example, we estimate the second moment, or one-

dimensional analog of the K-function of Ripley (1981). For the residual process, one may estimate

the standardized second moment for each magnitude m and each transformed time-lag u as the

quantity (k1(u, m)− k2(u, m))/
√

k2(u, m), where k1(u, m) is the number of pairs of residual points

with magnitude m whose transformed times are within u of one another, and k2(u, m) is the the

expected number of such pairs for a homogeneous Poisson process. The dotted curves in Fig.

8 show the estimated standardized second moment functions for model (1’), for the residuals of

several different magnitudes, along with 95% bounds for the homogeneous Poisson process (dashed

lines). Inspection of the estimated standardized second moment of the residuals for each magnitude

reveals that the model (1’) fits extremely well for most magnitudes, especially magnitudes greater

than 3.5. However, there is excessive clustering at small distances for magnitudes between 3.1 and

3.25, inclusive; this clustering is not evident, however, for magnitudes smaller than 3.1.

Fig. 8 suggests that the residuals in certain magnitude ranges are overly clustered; hence the

assumption of temporal-magnitude separability in model (1’) appears to be invalidated. By con-

trast, the second moment function for the horizontally rescaled residuals obtained after fitting the

non-separable model (4) by maximum likelihood are also displayed in Fig. 8 (solid curves), and do
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not show the highly significant residual clustering characteristic of model (1’). In fitting (4), J is set

to 2, M1 to the magnitude range [3.1, 3.25], M2 to the set of all other magnitudes in the observed

range, and the background rate µ is estimated in exactly the same way as model (1’). Note that

the confidence bounds for the homogeneous Poisson process on the transformed space using model

(1’) were indistinguishable from those using the transformed space corresponding to model (4), so

in Fig. 8, only the former is shown.

For comparison with Fig. 7, the horizontally-rescaled residuals for model (4) are shown in Fig.

9. One sees from Figs. 8 and 9 that after fitting the model (4), the clustering in the residuals for

magnitudes 3.1 and 3.2 is no longer present, and in general the residuals appear to be scattered

quite uniformly across the transformed boundary. The modified form (4) apparently provides an

adequate description of the clustering in the original dataset.

6 Summary.

In the seismological application here it was demonstrated that anisotropic kernel smoothing enables

better estimation of the spatially varying background rate µ(x, y) in the space-time-magnitude

ETAS model when applied to earthquakes in Bear Valley, California. This is no great surprise

because of the apparent fault structure in this region, which is accounted for in the anisotropic

smoothing. More surprising, however, is the result that the assumption of separability of the

magnitude distribution, assumed not only in the ETAS model but in virtually all existing models

for earthquake occurrences, appears to be invalidated in this case. It is shown that for earthquakes

in certain magnitude ranges (here, magnitude 3.1 to 3.25) the previous triggering events appear

to affect the rate of earthquakes in this magnitude range differently than for other events. Hence,

in future use of models such as ETAS for purposes of seismic hazard estimation and other uses, it

may be advisable to allow the model parameters to vary across different magnitude scales.
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Our conclusions are not seriously affected by the problem of boundary effects, since in each case

our estimates of second moment properties are compared with simulated Poisson processes observed

on identical boundaries. However, the possibility that the non-separability is an artifact of some

feature of the data collection and magnitude estimation cannot be ruled out. Another potential

issue deserving further consideration is the problem of artifactual regularity of the residuals when

the model parameters are estimated rather than known. Indeed, if the model parameters are

known, then the residual processes discussed here are distributed exactly as homogeneous Poisson

processes, but if the parameters are estimated, then the residuals are typically slightly more regular

than Poisson; see e.g. Schoenberg (2002) for details. Though some authors (e.g. Khamaladze 1988,

Heinrich 1991, Andersen et al. 1993) discuss the role of estimation on the distributions of certain test

statistics for point processes, the extent to which the regularity of residuals, as well as dependence

of successive iterations of thinned residuals, affects statistics such as the K-function of the residuals

is an important topic for future consideration.

The residual analysis methods discussed here may be used to supplement likelihood criteria

such as the AIC in assessing the goodness-of-fit for multi-dimensional point process models. Unlike

likelihood criteria, examination of thinned and rescaled residuals enables hypothesis testing against

various alternatives such as clustering and trend, as well as graphical depiction of when and where

models appear to fit well or poorly.

Thinned residuals appear to be especially useful for examining the spatial components of spatial-

temporal marked point process models, since such residuals do not require transformation of the

spatial coordinates. For epidemic-type processes such as the ETAS model for earthquake occur-

rences, horizontally rescaled residuals may be preferred over vertically rescaled residuals, since in

the latter case the residuals are observed in a very highly irregular boundary due to the high

volatility of the conditional rate function over time. By comparison, the conditional rate tends not

14



to vary as wildly with magnitude; hence the horizontally rescaled residuals are observed within a

much smoother and more regular boundary, facilitating their direct examination by eye as well as

the estimation of statistical properties such as the second moment or higher-order properties of the

residuals.
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Figure 1: Locations, times and magnitudes of moderate-sized (M ≥ 3.5) earthquakes in Bear Valley,

CA, between 1970 and 2000.
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Figure 2: Times and magnitudes of Bear Valley, CA earthquakes.
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Figure 3: Sample thinned residual process, for model (1).
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Figure 4: Spatially-varying background rate µ(x, y), estimated by isotropic kernel smoothing of the

M ≥ 4 events. Circles reperesent M ≥ 4 events. The magnitude scale corresponding to the size of

the circles is same as for Figure 1.
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Figure 5: Anisotropic kernel estimate of the spatially-varying background rate µ(x, y), based on

smoothing the M ≥ 4 events.
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Figure 6: Middle 95%-ranges of estimated K-functions for 1000 thinned residuals based on model

(1’) [solid curve] and for 1000 homogeneous Poisson processes on the same space [shaded area]. The

dashed curve indicates the mean estimated K-function of the thinned residuals of model (1’).

24



0 200 400 600

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

transformed time

m
a
g
n
it
u
d
e

x

x

x

x

x

x

xx

x

xx

x

x

x

x

x

x

x

xx

x

x

x

xx

xx

x

xx

x

x

x

x

x

x

xx

x

x

xx

x

xx

x

x

xx

x

x

x

x

x

xx

x

x

xx

x

x

x

x

x

x

x

xx

xx

xx

x

x

x

x

xx

x

x

xx

x

x

x

x

x

xx

xx

x

xx

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

xx

x

xx

x

x

xx

x

x

x

x

x

x

x

x

x

xxx

x

x

x

xxxx

x

xx

x

x

xx

x

x

x

xxx

x

xx

xxx

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

xx

xx

x

x

x

xx

xxx

x

x

x

x

x

x

x

xx

x

xx

x

x

xx

x

x

x

x

x

xx

x

x

x

x

x

xx

x

x

x

x

x

x

x

xx

x

x

x

x

xx

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

xx

xxx

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

xxx

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

xx

x

x

x

xx

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

xxx

xx

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

xx

x

x

x

xx

xx

x

x

x

xx

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

xxx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xxx

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

xx

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

xx

xx

x

x

x

x

x

x

xxx

x

x

x

x

x

x

x

x

x

x

x

x

Figure 7: Horizontally rescaled residuals based on model (1’), in the time-magnitude plane.
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Figure 8: Estimated standardized second moments of horizontally rescaled residuals, for (a) mag-

nitude 3.1; (b) magnitude 3.2; (c) magnitude 3.5; (d) magnitude 3.8. In each case the dotted

curve corresponds to model (1’), the solid curve corresponds to model (4), and the dashed lines

indicate 95% confidence bounds for the homogeneous Poisson process on the transformed space

corresponding to model (1’).
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Figure 9: Horizontally rescaled residuals based on model (4).
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