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Many point process models have been proposed for describing and fore-
casting earthquake occurrences in seismically active zones such as Califor-
nia, but the problem of how best to compare and evaluate the goodness of fit
of such models remains open. Existing techniques typically suffer from low
power, especially when used for models with very volatile conditional inten-
sities such as those used to describe earthquake clusters. This paper proposes
a new residual analysis method for spatial or spatial–temporal point processes
involving inspecting the differences between the modeled conditional inten-
sity and the observed number of points over the Voronoi cells generated by
the observations. The resulting residuals can be used to construct diagnostic
methods of greater statistical power than residuals based on rectangular grids.

Following an evaluation of performance using simulated data, the sug-
gested method is used to compare the Epidemic-Type Aftershock Sequence
(ETAS) model to the Hector Mine earthquake catalog. The proposed resid-
uals indicate that the ETAS model with uniform background rate appears to
slightly but systematically underpredict seismicity along the fault and to over-
predict seismicity in along the periphery of the fault.

1. Introduction. Considerable effort has been expended recently to assess
and compare different space–time models for forecasting earthquakes in seismi-
cally active areas such as Southern California. Notable among these efforts were
the development of the Regional Earthquake Likelihood Models (RELM) project
[Field (2007)] and its successor, the Collaboratory for the Study of Earthquake
Predictability (CSEP) [Jordan (2006)]. The RELM project was initiated to create
a variety of earthquake forecast models for seismic hazard assessment in Califor-
nia. Unlike previous projects that addressed the assessment of models for seismic
hazard, the RELM participants decided to adopt many competing forecasting mod-
els and to rigorously and prospectively test their performance in a dedicated test-
ing center [Schorlemmer and Gerstenberger (2007)]. With the end of the RELM
project, the forecast models became available and the development of the testing
center was done within the scope of CSEP. Many point process models, including
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multiple variants of the Epidemic-Type Aftershock Sequence (ETAS) models of
Ogata (1998) have now been proposed and are part of RELM and CSEP, though
the problem of how to compare and evaluate the goodness of fit of such models
remains quite open.

In RELM, a community consensus was reached that all entered models be tested
with certain tests, including the Number or N-test that compares the total fore-
casted rate with the observation, the Likelihood or L-test that assesses the quality
of a forecast in terms of overall likelihood, and the Likelihood-Ratio or R-test that
assesses the relative performance of two forecast models compared with what is
expected under one proposed model [Jackson and Kagan (1999), Rhoades et al.
(2011), Schorlemmer et al. (2007), Zechar, Gerstenberger and Rhoades (2010),
Zechar et al. (2013)]. However, over time several drawbacks of these tests were
discovered [Schorlemmer et al. (2010)] and the need for more powerful tests be-
came clear. The N-test and L-test simply compare the quantiles of the total num-
bers of events in each bin or likelihood within each bin to those expected under
the given model, and the resulting low-power tests are typically unable to discern
significant lack of fit unless the overall rate of the model fits extremely poorly. Fur-
ther, even when the tests do reject a model, they do not typically indicate where or
when the model fits poorly, or how it could be improved. Meanwhile, the number
of proposed spatial–temporal models for earthquake occurrences has grown, and
the need for discriminating which models fit better than others has become increas-
ingly important. Techniques for assessing goodness of fit are needed to pinpoint
where existing models may be improved, and residual plots, rather than numerical
significance tests, seem preferable for these purposes.

This paper proposes a new form of residual analysis for assessing the goodness
of fit of spatial point process models. The proposed method compares the normal-
ized observed and expected numbers of points over Voronoi cells generated by the
observed point pattern. The method is applied here in particular to the examina-
tion of a version of the ETAS model originally proposed by Ogata (1998), and its
goodness of fit to a sequence of 520 M ≥ 3 Hector Mine earthquakes occurring
between October 1999 and December 2000. In particular, the Voronoi residuals
indicate that assumption of a constant background rate ρ in the ETAS model re-
sults in excessive smoothing of the seismicity and significant underprediction of
seismicity close to the fault line.

Residual analysis for a spatial point process is typically performed by partition-
ing the space on which the process is observed into a regular grid and comput-
ing a residual for each pixel. That is, one typically examines aggregated values
of a residual process over regular, rectangular grid cells. Alternatively, residuals
may be defined for every observed point in the pattern, using a metric such as de-
viance, as suggested in Lawson (1993). Various types of residual processes were
proposed in Baddeley et al. (2005) and discussed in Baddeley, Møller and Pakes
(2008) and Clements, Schoenberg and Schorlemmer (2011). The general form of
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these aggregated residual measures is a standardized difference between the num-
ber of points occurring and the number expected according to the fitted model,
where the standardization may be performed in various ways. For instance, for
Pearson residuals, one weights the residual by the reciprocal of the square root of
the intensity, in analogy with Pearson residuals in the context of linear models.
Baddeley et al. (2005) propose smoothing the residual field using a kernel func-
tion instead of simply aggregating over pixels; in practice, this residual field is
typically displayed over a rectangular grid and is essentially equivalent to a ker-
nel smoothing of aggregated pixel residuals. Baddeley et al. (2005) also propose
scaling the residuals based on the contribution of each pixel to the total pseudo-
loglikelihood of the model, in analogy with score statistics in generalized linear
modeling. Standardization is important for both residual plots and goodness-of-fit
tests, since otherwise plots of the residuals will tend to overemphasize deviations
in pixels where the rate is high. Behind the term Pearson residuals lies the impli-
cation [see, e.g., the error bounds in Figure 7 of Baddeley et al. (2005)] that these
standardized residuals should be approximately standard normally distributed, so
that the squared residuals, or their sum, are distributed approximately according to
Pearson’s χ2-distribution.

The excellent treatment of Pearson residuals and other scaled residuals by
Baddeley et al. (2005), the thorough discussion of their properties in Baddeley,
Møller and Pakes (2008), their use for formal inference using score and pseudo-
score statistics as described in Baddeley, Rubak and Møller (2011), and the fact
that such residuals extend so readily to the case of spatial–temporal point pro-
cesses may suggest that the problem of residual analysis for such point processes
is generally solved. In practice, however, such residuals, when examined over a
fixed rectangular grid, tend to have two characteristics that can limit their effec-
tiveness:

I. When the integrated conditional intensity (i.e., the number of expected
points) in a pixel is very small, the distribution of the residual for the pixel be-
comes heavily skewed.

II. Positive and negative values of the residual process within a particular cell
can cancel each other out.

Since Pearson residuals are standardized to have mean zero and unit (or approxi-
mately unit) variance under the null hypothesis that the modeled conditional inten-
sity is correct [see Baddeley, Møller and Pakes (2008)], one may inquire whether
the skew of these residuals is indeed problematic. Consider, for instance, the case
of a planar Poisson process where the estimate of the intensity λ is exactly cor-
rect, that is, λ̂(x, y) = λ(x, y) at all locations, and where one elects to use Pearson
residuals on pixels. Suppose that there are several pixels where the integral of λ

over the pixel is roughly 0.01. Given many of these pixels, it is not unlikely that
at least one of them will contain a point of the process. In such pixels, the raw
residual will be 0.99, and the standard deviation of the number of points in the
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pixel is
√

0.01 = 0.1, so the Pearson residual is 9.90. This may yield the following
effects: (1) such Pearson residuals may overwhelm the others in a visual inspec-
tion, rendering a plot of the Pearson residuals largely useless in terms of evaluating
the quality of the fit of the model, and (2) conventional tests based on the normal
approximation may have grossly incorrect p-values, and will commonly reject the
null model even when it is correct. Even if one adjusts for the nonnormality of the
residual and instead uses exact p-values based on the Poisson distribution, such a
test applied to any such pixel containing a point will still reject the model at the
significance level of 0.01.

These situations arise in many applications, unfortunately. For example, in mod-
eling earthquake occurrences, typically the modeled conditional intensity is close
to zero far away from known faults or previous seismicity, and in the case of mod-
eling wildfires, one may have a modeled conditional intensity close to zero in ar-
eas far from human use or frequent lightning, or with vegetation types that do not
readily support much wildfire activity [e.g., Johnson and Miyanishi (2001), Keeley
et al. (2009), Malamud, Millington and Perry (2005), Xu and Schoenberg (2011)].

These challenges are a result of characteristic I above, and one straightforward
solution would be to enlarge the pixel size such that the expected count in each
cell is higher. While this would be effective in a homogeneous setting, in the case
of an inhomogeneous process it is likely that this would induce a different prob-
lem: cells that are so large that even gross misspecification within a cell may be
overlooked, and thus the residuals will have low power. This is the problem of
characteristic II. When a regular rectangular grid is used to compute residuals for
a highly inhomogenous process, it is generally impossible to avoid either highly
skewed residual distributions or residuals with very low power. These problems
have been noted by previous authors, though the important question of how to
determine appropriate pixel sizes remains open [Lawson (2005)].

Note that, in addition to Pearson residuals and their variants, there are many
other goodness-of-fit assessment techniques for spatial and spatial–temporal point
processes [Bray and Schoenberg (2013)]. Examples include rescaled residu-
als [Meyer (1971), Schoenberg (1999)] and superthinned residuals [Clements,
Schoenberg and Veen (2012)], which involve transforming the observed points
to form a new point process that is homogeneous Poisson under the null hypoth-
esis that the proposed model used in the transformation is correct. There are also
functional summaries, such as the weighted version [Baddeley and Turner (2000),
Veen and Schoenberg (2006)] of Ripley’s K-function [Ripley (1976)], where each
point is weighted according to the inverse of its modeled conditional intensity so
that the resulting summary has conveniently simple properties under the null hy-
pothesis that the modeled conditional intensity is correct, as well as other similarly
weighted numerical and functional summaries such as the weighted R/S statis-
tic and weighted correlation integral [Adelfio and Schoenberg (2009)]. As noted
in Bray and Schoenberg (2013), all of these methods can have serious deficiencies
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compared to the easily interpretable residual diagrams, especially when it comes to
indicating spatial or spatial–temporal locations where a model may be improved.

This paper proposes a new form of residual diagram based on the Voronoi cells
generated by tessellating the observed point pattern. The resulting partition ob-
viates I and II above by being adaptive to the inhomogeneity of the process and
generating residuals that have an average expected count of 1 under the null hy-
pothesis.

For an Introduction to point processes and their intensity functions, the reader is
directed to Daley and Vere-Jones (1988). Throughout this paper we are assuming
that the point processes are simple and that the observation region is a complete
separable metric space equipped with the Lebesgue measure, μ. Note that we are
not emphasizing the distinction between conditional and Papangelou intensities,
as the methods and results here are essentially equivalent for spatial and spatial–
temporal point processes.

This paper is organized as follows. Section 2 describes Voronoi residuals and
discusses their properties. Section 3 demonstrates the utility of Voronoi residual
plots. The simulations shown in Section 4 demonstrate the advantages of Voronoi
residuals over conventional pixel-based residuals in terms of statistical power. In
Section 5 we apply the proposed Voronoi residuals to examine the fit of the ETAS
model with uniform background rate to a sequence of Hector Mine earthquakes
from October 1999 to December 2000, and show that despite generally good agree-
ment between the model and data, the ETAS model with uniform background rate
appears to slightly but systematically underpredict seismicity along the fault line
and to overpredict seismicity in certain locations along the periphery of the fault
line, especially at the location 35 miles east of Barstow, CA.

2. Voronoi residuals. A Voronoi tessellation is a partition of the metric space
on which a point process is defined into convex polygons, or Voronoi cells. Specif-
ically, given a spatial or spatial–temporal point pattern N , one may define its cor-
responding Voronoi tessellation as follows: for each point τi of the point process,
its corresponding cell Ci is the region consisting of all locations which are closer
to τi than to any other point of N . The Voronoi tessellation is the collection of such
cells. See, for example, Okabe et al. (2000) for a thorough treatment of Voronoi
tessellations and their properties.

Given a model for the conditional intensity of a spatial or space–time point
process, one may construct residuals simply by evaluating the residual process
over cells rather than over rectangular pixels, where the cells comprise the Voronoi
tessellation of the observed spatial or spatial–temporal point pattern. We will refer
to such residuals as Voronoi residuals.

An immediate advantage of Voronoi residuals compared to conventional pixel-
based methods is that the partition is entirely automatic and spatially adaptive.
This leads to residuals with a distribution that tends to be far less skewed than
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pixel-based methods. Indeed, since each Voronoi cell has exactly one point inside
it by construction, the raw Voronoi residual for cell i is given by

r̂i := 1 −
∫
Ci

λ̂dμ

(2.1)
= 1 − |Ci |λ̄,

where λ̄ denotes the mean of the proposed model, λ̂, over Ci . This raw residual
can be scaled in various ways, as is well addressed by Baddeley et al. (2005). Note
that when N is a homogeneous Poisson process, the sizes |Ci | of the cells are ap-
proximately gamma distributed. Indeed, for a homogeneous Poisson process, the
expected area of a Voronoi cell is equal to the reciprocal of the intensity of the
process [Meijering (1953)], and simulation studies have shown that the area of a
typical Voronoi cell is approximately gamma distributed [Hinde and Miles (1980),
Tanemura (2003)]; these properties continue to hold approximately in the inho-
mogeneous case provided that the conditional intensity is approximately constant
near the location in question [Barr and Diez (2012), Barr and Schoenberg (2010)].

The raw Voronoi residual in (2.1) will therefore tend to be distributed approx-
imately like a modified gamma random variable. More specifically, the second
term, |Ci |λ̄, referred to in the stochastic geometry literature as the reduced area,
is well approximated by a two-parameter gamma distribution with a rate of 3.569
and a shape of 3.569 [Tanemura (2003)]. The distribution of the raw residuals is
therefore approximated by

r ∼ 1 − X; X ∼ �(3.569,3.569).(2.2)

By contrast, for pixels over which the integrated conditional intensity is close to
zero, the conventional raw residuals are approximately Bernoulli distributed.

The exact distributions of the Voronoi residuals are generally quite intractable
due to the fact that the cells themselves are random, but approximations can be
made using simulation. Consider the point process defined by the intensity func-
tion λ(x, y) = 200x2|y| on the subset S = [−1,1] × [−1,1]. Figure 1 presents a
realization of the process along with the corresponding Voronoi tessellation (top
panels) and a regular rectangular pixel grid (bottom panels). Two locations in S

were selected for investigation: one with relatively high intensity, the other with
relatively low intensity. Residual distributions were simulated by generating 5000
point patterns from the model, identifying the pixel/cell occupied by the location
of interest, then calculating the difference between the number of observed points
and the number expected under the same model.

It can be seen from Figure 1 that the distribution of Voronoi residuals under the
null hypothesis is well approximated by distribution (2.2) at both the high inten-
sity and low intensity locations. By comparison, the distribution of pixel residu-
als is that of a Poisson distributed variable with intensity

∫
Gi

λ̂dμ, for pixel Gi ,
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FIG. 1. Residual distributions under the null hypothesis based on a Voronoi tessellation (top pan-
els) and a pixellated grid (bottom panels). The underlying point process is Poisson with intensity
λ(x, y) = 200x2|y|. The middle panels show results at location � where λ = 1.35; the right panels
show results at location � where λ = 73.5. The distribution (2.2) is overlaid for the top middle and
top right plots.

centered to have mean zero. At the location where the intensity is high, this dis-
tribution is moderately skewed, but for the low intensity location the distribution
becomes extremely skewed to the point of being effectively a two-valued random
variable.

In addition to distribution (2.2) being a good approximation for the distribution
of the Voronoi residuals at a given location across many realizations, it is also
a close approximation for the distribution of all residuals for a single realization
(see, e.g., the lower left plot in Figure 2). It is important to note that such residuals
are not strictly independent of one another due to the nature of the tessellation,
however, our assessment is that this dependence is fairly minor. See the discussion
for additional comments on independence.

3. Voronoi residual plots. In this section the utility of Voronoi residuals will
be demonstrated using a series of simulations of spatial Poisson processes. The
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FIG. 2. Simulated Poisson process with intensity λ(x, y) = 1001{|x|,|y|>0.35} with Voronoi tes-
sellation overlaid (top left), Voronoi residual plot for this simulation using a proposed intensity
of λ(x, y) = 100 (top right), histogram of the Voronoi residuals, with the density of the reference
distribution (2.2) overlaid (bottom left), quantile plot of the Voronoi residuals with respect to dis-
tribution (2.2), with pointwise 95% confidence limits obtained via simulation of the proposed model
(bottom right). The color scale of the Voronoi residual plot is �−1{F(r)}, where F is the distribution
function of (2.2). Tiles intersecting the boundary of the space are ignored.

simulations are random samples from a specified generating model. These simu-
lations are then modeled, correctly or incorrectly, by a proposed model. Voronoi
residuals are then computed and used to assess the degree to which the proposed
model agrees with simulations.

3.1. Correctly specified model. We first consider the simplest case, where the
proposed model is the same as the generating model. As a result, one expects
residuals that are spatially unstructured and relatively small in magnitude, that is,
the only variation should be due to sampling variability.
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FIG. 3. Simulated Poisson process with intensity λ(x, y) = 200x2|y| with Voronoi tessellation
overlaid (top left), Voronoi residual plot of this simulation (top right), histogram of the Voronoi
residuals, with the density of the reference distribution (2.2) overlaid (bottom left), quantile plot of
the Voronoi residuals with respect to the distribution (2.2), with pointwise 95% confidence limits
obtained via simulation (bottom right). The color scale of the Voronoi residual plot in the top right
is �−1{F(r)}, where F is the distribution function of (2.2). Tiles intersecting the boundary of the
space are ignored, as the distribution of these tile areas may differ substantially from the gamma
distribution.

Figure 3 shows a simulation of a spatial Poisson process with intensity λ(x, y) =
200x2|y| on the subset S = [−1,1] × [−1,1], along with its corresponding
Voronoi tessellation.

In the Voronoi residual plot in the top right panel of Figure 3, each tile is shaded
according to the value of the residual under the distribution function of the modi-
fied gamma distribution (2.2). The resulting p-values are then mapped to the color
scale using an inverse Normal transformation. Thus, brightly shaded red areas in-
dicate unusually low residuals, corresponding to areas where more points were
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expected than observed (overprediction), and brightly shaded blue indicates un-
usually high residuals, corresponding to areas of underprediction of seismicity.

The tiles in the Voronoi residual plot in Figure 3 range from light to moderate
hues, representing residuals that are within the range expected under the reference
distribution. Similarly, the histogram and quantile plot of the Voronoi residuals
demonstrate that the distribution of the residuals is well approximated by distribu-
tion (2.2).

3.2. Misspecification. In order to evaluate the ability of Voronoi residuals to
detect model misspecification, simulations were obtained using a generating model
and then residuals were computed based on a different proposed model. The top
left panel of Figure 2 displays a realization of a Poisson process with intensity
λ(x, y) = 1001{|X|,|Y |>0.35}.

The proposed model assumes a constant intensity across the space, λ̂ = 100.
Because of the lack of points near the origin, the tiles near the origin are larger
than expected under the proposed model and, hence, for such a cell C near the ori-
gin, the integral

∫
C λ̂(x, y)dx dy exceeds 1, leading to negative residuals of large

absolute value. These unusually large negative residuals are evident in the Voronoi
residual plot and clearly highlight the region where the proposed model overpre-
dicts the intensity of the process. These residuals are also clear outliers in the left
tail of the reference distribution of the residuals and, as a result, one sees deviations
from the identity line in the quantile–quantile plot in Figure 2.

4. Statistical power. We now consider the manner in which the statistical
power of residual analysis using a Voronoi partition differs from that of a pixel
partition. In the context of a residual plot, a procedure with low power would
generate what appears to be a structureless residual plot even when the model is
misspecified. To allow for an unambiguous comparison, here we focus on power in
the formal testing setting: the probability that a misspecified model will be rejected
at a given confidence level.

4.1. Probability Integral Transform. As was discussed in Section 2, the dis-
tribution of Voronoi residuals under the null hypothesis is well approximated by a
modified gamma distribution, while the distribution of pixel residuals is that of a
Poisson distributed variable with intensity

∫
Gi

λ̂dμ, for pixel Gi , centered to have
mean zero. To establish a basis to compare the consistency between proposed mod-
els and data for these two methods, we utilize the Probability Integral Transform
(PIT) [Dawid (1984)]. The PIT was proposed to evaluate how well a probabilistic
forecast is calibrated by assessing the distribution of the values that the observa-
tions take under the cumulative distribution function of the proposed model. If the
observations are a random draw from that model, a histogram of the PIT values
should appear to be standard uniform.
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One condition for the uniformity of the PIT values is that the proposed model
be continuous. This holds for Voronoi residuals, which are approximately gamma
distributed under the null hypothesis, but not for the Poisson counts from pixel
residuals. For such discrete random variables, randomized versions of the PIT have
been proposed. Using the formulation in Czado, Gneiting and Held (2009), if F

is the distribution function of the proposed discrete model, X ∼ F is an observed
random count and V is standard uniform and independent of X, then U is standard
uniform, where

U = F(X − 1) + V
(
F(X) − F(X − 1)

)
, X ≥ 1,(4.1)

U = V F(0), X = 0.(4.2)

The method can be thought of as transforming a discrete c.d.f. into a continuous
c.d.f. by the addition of uniform random noise.

4.2. Formal testing. The PIT, both standard and randomized, provides a for-
mal basis for testing two competing residual methods. For a given proposed model
and a given realization of points, the histogram of PIT values, u1, u2, . . . , un, for
each residual method should appear standard uniform if the proposed model is the
same as the generating model. The sensitivity of the histogram to misspecifications
in the proposed model reflects the statistical power of the procedure.

There are many test statistics that could be used to evaluate the goodness of fit
of the standard uniform distribution to the PIT values. Here we choose to use the
Kolmogorov–Smirnov (K–S) statistic [Massey (1951)],

Dn = sup
n

∣∣Fn(x) − F(x)
∣∣,

where Fn(x) is the empirical c.d.f. of the sample and F(x) is the c.d.f. of the stan-
dard uniform. Since the Voronoi residuals of a given realization are not indepen-
dent of one another, we use critical values from a simulated reference distribution
instead of the limiting distribution of the statistic.

4.3. Simulation design. Two models were considered for the simulation study.
The first was a homogeneous Poisson model on the unit square with intensity λ

on R
2. The second was an inhomogeneous Poisson model with intensity

λ(x, y) = 100 + 200
(
x̃β ỹβcβ

)
,(4.3)

on R
2, where x̃ = 1

2 − |x − 1
2 |, ỹ = 1

2 − |y − 1
2 | and β > 0. The constant cβ is a

scaling constant chosen so that the parenthetical term integrates to one. The result
is a function that is symmetric about x = 0.5 and y = 0.5, reaches a maximum
at (0.5,0.5), integrates to 300 regardless of the choice of β , and is reasonably
flat along the boundary box. This final characteristic should allow the alternative
approach to the boundary problem, described below, to be relatively unbiased.
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Additionally, it presents inhomogeneity similar to what might be expected in an
earthquake setting.

The procedure for the inhomogeneous simulation was as follows. A point pat-
tern was sampled from the true generating model, (4.3) with β = 4. For a given
proposed model, (4.3) with β = β0, and a fixed number of pixels n on the unit
square [0,1]2, PIT values were calculated for the counts in each pixel, Gi . The
empirical c.d.f. of the PIT transformed residuals was then compared to the c.d.f.
of the standard uniform using the K–S test. After many iterations of this proce-
dure, the proportion of iterations with an observed K–S statistic that exceeded the
critical value served as the estimate of the power of the method. An analogous pro-
cedure was followed for the Voronoi partition, but with the PIT values calculated
by evaluating the Voronoi residuals (2.1) under the gamma distribution (2.2).

The homogeneous simulation was conducted in the same manner, but drew sam-
ples from a generating model of λ = 500 and compared them to estimates from a
proposed model λ0.

It is known that Voronoi cells generated along the boundary of the space do not
follow the same distribution as the interior cells. One recourse is to omit them from
the analysis, as in Section 3. Here we consider realizations of the model (4.3) on
the entire plane but consider only the distribution of all cells generated by points
inside the unit square [0,1]2.

4.4. Results. For the homogeneous model, Figure 4 shows the resulting esti-
mated power curves for several pixel partitions, including n ∈ {36,324,900,2500}.
The power of each method was computed for a series of proposed models,

FIG. 4. Estimated power curves for the K–S test based on five different pixel partitions as well as
the Voronoi tessellation. The model under consideration is homogeneous Poisson with a generating
intensity of λ = 500.
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λ0 ∈ (375,625). The best performance was by the method that used the Voronoi
partition, which shows high power throughout the range of misspecification. For
the pixel partitions, n = 36 had the highest power, but as the number of parti-
tions increases, the K–S test loses its power to detect misspecification. This trend
can be attributed to characteristic I: when the space is divided into many small
cells, the integrated conditional intensity is very small and the distribution of the
residuals is highly skewed. As a consequence, the majority of counts are zeros, so
the majority of the PIT values are being generating by V F(0) [equation (4.2)] and,
thus, the resulting residuals have little power to detect model misspecification. The
most powerful test in this homogeneous setting is in fact one with no partitioning,
which is equivalent to the Number-test from the earthquake forecasting literature
[Schorlemmer et al. (2007)].

For the inhomogeneous case, power curves were computed for a series of pro-
posed models of the form (5), with β0 ∈ (0.5,11). The results are shown in Fig-
ure 5. The power curve for the Voronoi method presents good overall performance,
particularly when the model is substantially misspecified. The Voronoi residuals
are not ideally powerful for detecting slight misspecification, however, perhaps
because the partition itself is random, thus introducing some variation that is diffi-
cult to distinguish from a small change in β .

Focusing only on the four pixel methods, the best performance is at n = 324
pixels. The poor performance of n = 36 in detecting the large positive misspec-
ification is due to the fact that the model becomes more inhomogeneous as β0
increases, but that inhomogeneity is averaged over cells that are too large (the
problem associated with characteristic II in Section 1). Meanwhile, the poor over-

FIG. 5. Estimated power curves for the K–S test based on five different pixel partitions as well
as the Voronoi tessellation. The model under consideration is λ(x, y) = 100 + 200(x̃β ỹβc), where
x̃ = 1

2 − |x − 1
2 | and ỹ = 1

2 − |y − 1
2 |. The generating model is β = 4.
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all performance of n = 2500 is due to the same problem that exists in the homoge-
neous setting, where the PIT values are dominated by the random uniform noise.

In applications such as earthquake modeling, the use of pixel methods often
results in situations with extremely low intensities in some pixels, similar to the
case considered here with n = 2500, but perhaps even more extreme. For instance,
one of the most successful forecasts of California seismicity [Helmstetter, Kagan
and Jackson (2007)] estimated rates in each of n = 7682 pixels in a model that
estimated a total of only 35.4 earthquakes above M 4.95 over the course of a pre-
diction experiment that lasted from 2006 to 2011. Estimated integrated rates were
as low as 0.000007 in some pixels, and 58% of the pixels had integrated rates that
were lower than 0.001. An immediate improvement could be made by aggregating
the pixels, but this in turn will average over the strong inhomogeneity along fault
lines in the model, which will lower power. For this reason, the Voronoi residual
method may be better suited to the evaluation of seismicity models, as well as other
processes that are thought to be highly inhomogeneous.

5. Application to models for Southern California seismicity.

5.1. The ETAS model and the Hector Mine earthquake catalog. In this section
we apply Voronoi residual analysis to the spatial–temporal Epidemic-Type After-
shock Sequence (ETAS) model of Ogata (1998), which has been widely used to
describe earthquake catalogs.

According to the ETAS model of Ogata (1998), the conditional intensity λ may
be written

λ(t, x, y) = μρ(x, y) + ∑
j : tj<t

g(t − tj , x − xj , y − yj ;Mj),(5.1)

where ρ(x, y) is a spatial density on the spatial observation region S, t and (x, y)

are temporal and spatial coordinates, respectively, Mj is the magnitude of earth-
quake j , and where the triggering function, g, may be given by one of several
different forms. One form for g proposed in Ogata (1998) is

g(t, x, y;M) = K(t + c)−pea(M−M0)
(
x2 + y2 + d

)−q
,(5.2)

where M0 is the lower magnitude cutoff for the catalog.
There is considerable debate in the seismological community about the best

method to estimate the spatial background rate ρ(x, y) [Helmstetter and Werner
(2012), Ogata (2011), Zhuang et al. (???)]. When modeling larger, regional cata-
logs, ρ is often estimated by smoothing the largest events in the historical catalog
[Ogata (1998)], and in such cases a very important open question is how (and
how much) to smooth [Helmstetter, Kagan and Jackson (2007), Helmstetter and
Werner (2012), Schoenberg (2003), Zhuang et al. (???)]. For a single earthquake-
aftershock sequence, however, can one instead simply estimate ρ as constant
within a finite, local area, as in Schoenberg (2013)? A prime catalog to investigate
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FIG. 6. Locations of the 520 earthquakes that make up the Hector Mine earthquake sequence. All
events occurred between 10/16/1999 to 12/23/2000 in the Mojave Desert 35 miles east of Barstow,
CA and were above magnitude 3.0.

these questions is the catalog of California earthquakes including and just after the
1999 Hector Mine earthquake (Figure 6). This data set was analyzed previously in
Ogata, Jones and Toda (2003), and consists of the origin times, epicentral locations
and magnitudes of the 520 earthquakes with magnitude at least 3.0, from latitude
34 to 35, longitude −116 to −117, from 10/16/1999 to 12/23/2000, obtained from
the Southern California Seismic Network (SCSN).

The parameters in the model were estimated by maximum likelihood esti-
mation, using the progressive approximation technique described in Schoenberg
(2013). For the purpose of this analysis, we focused on the purely spatial aspects
of the residuals, and thus integrated over the temporal domain to enable planar
visualization of the residuals. The result is a Voronoi tessellation of the spatial do-
main where for tile Ci , for the integral in equation (2.1), the estimated conditional
intensity function λ̂(t, x, y) is numerically integrated over the spatial tile Ci and
over the entire time domain from 10/16/1999 to 12/23/2000.

5.2. Assessing the fit of the model. We take two approaches to detecting incon-
sistencies between the ETAS model and the Hector Mine catalog: the inspection
of plots for signs of spatial structure in the residuals and the evaluation of PIT
histograms as overall indicators of goodness of fit.

Figure 7 shows residual plots based on both the pixel partition and the Voronoi
tessellation. As in Figures 3 and 2, the magnitude of each residual cell is rep-
resented by the value that the residual takes under the distribution function ap-
propriate to that model (Poisson or gamma), which is the PIT value discussed in
Section 4.1. The pixel residual plot shows that the ETAS model estimates a much
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FIG. 7. Residual plots of fitting the ETAS model to the Hector Mine sequence using the pixel (left
panel) and Voronoi partition (right panel). In both plots, the PIT value is transformed to a color
scale using the inverse normal transformation. In the Voronoi plot, tiles intersecting the boundary of
the space are ignored, as the distribution of these tile areas may differ substantially from the gamma
distribution.

higher conditional intensity along the fault region running from (−116.4, 33.9) to
(−116.1, 33.3) than was observed in the Hector Mine sequence. Away from the
fault, the residuals are less structured, with no indication of model misspecifica-
tion.

The Voronoi residual plot shares the same color scale as the pixel plot, but ex-
cludes the boundary cells by shading them white. Some strong overprediction is
apparent in several large cells in the general area of the fault line, but the structure
is more nuanced than that found in the pixel plot. Figure 8 provides an enlarged
version of the fault region, showing systematic underprediction along the fault and
overprediction on the periphery of the fault. Such structure in the residuals indi-
cates that the ETAS model with uniform background rate may be oversmoothing.
This suggests modeling the background rate ρ(x, y) in equation (5.1) as inhomo-
geneous for Southern California seismicity, in agreement with Ogata (1998) who
came to a similar conclusion for Japanese seismicity.

This structure is lost when the residuals are visualized using the pixel parti-
tion because the over- and underprediction are averaged over the larger fixed cells
(a case of characteristic II). The true intensity in this region is likely highly spa-
tially variable, which makes the spatially adaptive Voronoi partition a more appro-
priate choice.

As discussed in Section 4.1, PIT values will be uniformly distributed if the fitted
model is correct, therefore, PIT histograms can be used as a means to assess gen-
eral goodness of fit [Thorarinsdottir (2013)]. Figure 9 shows the distribution of the
randomized PIT values resulting from the pixel partition (left panel) alongside the
PIT values from the Voronoi partition (right panel). Both histograms show devia-
tions from uniformity, suggesting model misspecification. The histogram resulting
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FIG. 8. Enlarged Voronoi residual plot focusing on the region of Figure 7 that covers the fault
line, which runs from approximately (−116.4, 34.85) to (−116.25, 34.4). PIT values are transformed
to a color scale using the inverse normal transformation and tiles intersecting the boundary of the
space are ignored, as the distribution of these tile areas may differ substantially from the gamma
distribution.

FIG. 9. Histograms of PIT values from the ETAS model and Hector Mine catalog based on the pixel
partition (left panel) and the Voronoi tessellation (right panel). Dashed lines represent pointwise 90%
coverage intervals calculated by simulation.
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from the Voronoi parition suggests more deviation, however, which is consistent
with the finding in Section 4 that this partition is more sensitive to misspecification
than the pixel partition. It also suggests that there are areas of strong underpredic-
tion as well as overprediction, while the pixel PIT values primarily identify the
overprediction. The PIT histogram is a useful tool to visualize overall goodness of
fit, while the Voronoi residual plot seems to be more powerful for identifying areas
of poor fit.

6. Discussion. Applying Voronoi residual analysis to the ETAS model and
the Hector Mine earthquake sequence suggests model misspecification—over-
smoothing along the fault—that is undetected by other methods. These Voronoi
residuals may of course be used in tandem with standard, pixel-based residuals,
which may in turn be based on a judicious choice of pixel size, or perhaps using a
different spatially adaptive grid than the one proposed here.

The use of PIT values, both in residual plots and histograms, relies upon a read-
ily computable form for F , the distribution of residuals under the fitted model.
In the case of the Voronoi partition, this requires Monte Carlo integration of the
conditional intensity function over the irregular cells. This process can be time
consuming if the intensity function is sufficiently inhomogenous or if the number
of earthquakes in the catalog is very high. The PIT values of the pixel partition
are easier to compute and they benefit from a more straightforward interpretation
in the residual plot simply because the fixed grid is a more familiar configuration.
However, because of their improved statistical power, Voronoi residuals are more
informative and thus worth the additional computation and consideration.

The importance of selecting the size of the cell on which to compute a residual is
not unique to this PIT–K–S statistic testing environment. The discrepancy measure
proposed by Guan (2008) is defined on a Borel set of a given shape S. The author
emphasizes the importance of choosing an appropriate size for S (page 835) and
points out that if the cell is too small or too large, the power will suffer. A related
problem arises in the selection of the bandwidth of the kernel used to smooth a
residual field [Baddeley et al. (2005), Section 13 and discussion].

Although we have focused on formal testing at the level of the entire collection
of residuals, testing could also be performed at the level of individual cells. For the
Voronoi partition, this extension is straightforward and is essentially what is being
done informally in the shaded residual plots. For any pixel partition, such testing
may be problematic, as any pixel with an integrated conditional intensity close to
zero would contain zero points with more than 95% probability, so any hypothesis
test with α = 0.05 using a rejection interval would necessarily have a type I error
near 1.

Generating the partition using a tessellation of the observed pattern has advan-
tages and disadvantages. The advantage is that it is adaptive and requires no input
from the user regarding tuning parameters. The disadvantages are that some sam-
pling variability is induced by the random cell areas and that the residuals are de-
pendent, so techniques relying upon an i.i.d. assumption must be used cautiously.
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A promising future direction is to consider residuals based on a model-based cen-
troidal Voronoi tessellation [Du, Faber and Gunzburger (1999)], which mitigates
characteristics I and II of the pixel method while providing a partition that creates
residuals that are independent of one another if the underlying model is Poisson.

It should also be noted that the standardization methods proposed in Baddeley
et al. (2005) may be used with Voronoi residuals or instead one may elect to plot
deviance residuals [Clements, Schoenberg and Schorlemmer (2011)] in each of the
Voronoi cells. In general, our experience suggests that the standardization chosen
for the residuals seems far less critical than the choice of grid. The results seem
roughly analogous to kernel density estimation, where the selection of a kernel
function is far less critical than the choice of bandwidth governing its range.
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