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We propose a weighted analogue of Ripley’s K-function for assessing the fit of
point process models. The advantage of the proposed measure is that it can
be used in situations where the null hypothesis is not a stationary Poisson
model. We present its distributional properties for a spatial, two-dimensional
inhomogeneous Poisson process and use it to assess the goodness-of-fit of
two alternative point process models for the spatial distribution of California
earthquakes.

1 Introduction

Ripley’s K-function [Rip76], K(h), is a widely used statistic to detect cluster-
ing or inhibition in point process data. It is commonly used as a test, where
the null hypothesis is that the point process under consideration is a homo-
geneous Poisson process and the alternative is that the point process exhibits
clustering or inhibitory behavior. Much research has been directed towards
describing the asymptotic distribution of the K-function (see [Hei88], [Rip88]
pp. 28–48, [Sil78]) for simple point process models including the homogeneous
Poisson case.

The K-function has also been used in conjunction with point process resid-
ual analysis techniques in order to assess more general classes of point process
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models. For instance, a point process may be rescaled (see [MN86], [Oga88],
[Sch99]) or thinned [Sch03] to generate residuals which are approximately
homogeneous Poisson, provided the model used to generate the residuals is
correct. The K-function can then be applied to the residual process in order to
investigate the homogeneity of the residuals, and the result can be interpreted
as a test of the goodness-of-fit of the point process model in question. Hence,
residual analysis of a point process model involves two steps, the transforma-
tion of the data into residuals and a subsequent test for whether the residuals
appear to be well approximated by a homogeneous Poisson process.

Of course, other methods for assessing the homogeneity of a point pro-
cess exist, including tests for monotonicity [Saw75], uniformity (see [DRS84],
[LL85], [Law88]), and tests on the second and higher-order properties of the
process (see [Bar64], [Dav77], [Hei91]). Likelihood statistics, such as Akaike’s
Information Criterion (AIC, [Aka74]) and the Bayesian Information Criterion
(BIC, [Sch79]) are often used to assess more general classes of models; see e.g.
[Oga98] for an application to earthquake occurrence models.

We focus here on Ripley’s K-function, and in particular on a modified ver-
sion of the statistic that may be used directly to test a quite general class of
null hypothesis models for the point process under consideration. The aim is to
provide a direct test for goodness-of-fit for point process models, without hav-
ing to assume homogeneity or to transform the points using residual analysis,
the latter of which often introduces problems of highly irregular boundaries
and large sampling variability when the conditional intensity in question is
highly variable (see [Sch03]).

In Sect. 2, we introduce the proposed weighted version of the K-function.
The statistic is then used in Sect. 3 to assess goodness-of-fit when applied to
competing models for the spatial background rate for California earthquakes.
Some concluding remarks are given in Sect. 4.

2 A Weighted K-function

In this Section, we propose a weighted analogue of Ripley’s K-function which
is similar to the K-function applied to the thinned residuals described in
[Sch03]. The proposed estimator has the advantage of eliminating the sampling
variability of the thinning procedure, and does not require repetition of the
random thinning, but instead may be calculated directly. We begin with a
review of Ripley’s K-function.

2.1 Ripley’s K-function and Variants

Consider a Poisson process of intensity λ on an interval A of the plane R2 with
finite area A, and let the N points of the process be labelled {p1, p2, . . . , pN}.

Ripley’s K-function K(h) is typically defined as the average number of
other points within h of any given point divided by the overall rate λ, and is
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most simply estimated via

K̂(h) = λ̂−1N−1
∑

r

∑

s 6=s

I(|pr − ps| ≤ h),

where λ̂ = N/A is an estimate of the overall intensity, I(·) is the indicator
function and h is some inter-point distance of interest. In applications, K̂ is
typically calculated for several different choices of h. For a homogeneous Pois-
son process, the expectation of K̂(h) is πh2. Values which are higher than this
expectation indicate clustering, while lower values indicate inhibition. How-
ever, it should be noted that a point pattern can be clustered at some scale,
while it may show inhibition at a different scale. Also, a non-Poisson process
can have the same K-function, as K(h) only takes the first two moments into
account. An example of such a process can be found in [BS84].

Under the null hypothesis that the point process is homogeneous Poisson,
K̂(h) is asymptotically normal:

K̂(h) ∼: N

(
πh2,

2πh2

λ2A

)
,

as the area of observation A tends to infinity (see [Cre93] p.642, [Rip88] pp. 28–
48, [Hei88], [Sil78]).

Several variations on K̂(h) have been proposed. Many deal with correc-
tions for boundary effects, as found in [Rip76], [OS81], and [Ohs83]. Variance-
stabilizing transformations of estimated K-functions which are more easily
interpretable have been proposed (see [Bes77]), such as L̂(h) and L̂(h)− h:

L̂(h) =

√
K̂(h)

π
. (1)

Confidence bounds for L̂(h) can be derived by transforming the confidence
bounds of K̂(h).

2.2 A Weighted Analogue of Ripley’s K-function

Suppose that a given planar point process on an intervalA of R2 of area A may
be specified by its conditional intensity with respect to some filtration onA, for
(x, y) ∈ A (see [DV03]). The point process need not be Poisson; in the simple
case where the point process is Poisson, however, the conditional intensity and
ordinary intensity coincide. Suppose that, under the null hypothesis (H0), the
conditional intensity of the point process is given by λ0(x, y).

We define the weighted K-function, used to assess the model λ0(x, y), as

KW (h) =
1

λ∗ÊH0(N)

∑
r

wr

∑

s 6=r

wsI(|pr − ps| ≤ h) (2)
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where λ∗ := inf{λ0(x, y); (x, y) ∈ A} is the infimum of the conditional
intensity over the observed region under the null hypothesis, ÊH0(N) =∫
(x,y)

∫
∈A

λ0(x, y)dxdy is an estimate of the expected number of points in A
under the null hypothesis, and wr = λ∗/λ0(pr), where λ0(pr) is the condi-
tional intensity at point pr under H0.

One can think of the weighted K-function as a combination of Ripley’s
K-function and the thinning method used for residual analysis in [Sch03]. In
[Sch03], K(h) is repeatedly applied to thinned data where the probability of
retaining a point is inversely proportional to the conditional intensity at that
point. The computation of the weighted K-function KW uses these retaining
probabilities as weights for the points in order to offset the inhomogeneity of
the process. By incorporating all pairs of the observed points, rather than only
the ones that happen to be retained after an iteration of random thinning,
the statistic KW (h) eliminates the sampling variability due to thinning the
process repeatedly.

We conjecture that, provided the conditional intensity λ0 is sufficiently
smooth, KW (h) will be approximately normal as the area of observation A
approaches infinity. Indeed, for the Poisson case where λ0 is locally approxi-
mately constant on blocks of large area relative to the interpoint distance h,
we have the following result.

Theorem 1. Suppose that the observed regions A(n) of areas A(n) increase
in area to infinity such that A(n) may be broken up into disjoint blocks
A(n)

1 ,A(n)
2 , . . . ,A(n)

In
of areas A

(n)
1 , . . . , A

(n)
In

, respectively, where In → ∞ as

n → ∞ and within each subset A(n)
i , the conditional intensity λ0 is approxi-

mately constant, i.e. max
i=1,...,In

{sup{λ0(x, y); (x, y) ∈ A(n)
i }−inf{λ0(x, y); (x, y) ∈

A(n)
i }} → 0 as n →∞ . Suppose also that h is small compared to the area of

each block, i.e. sup
i

πh2/A
(n)
i → 0. Further, assume that the boundaries of the

sets A(n)
i are sufficiently small that, of all pairs of points (pr, ps) within dis-

tance h, the proportion where pr and ps are in different subsets A(n)
i converges

to zero as n → ∞. Let K
(n)
W (h) and ÊH0(N)(n) denote KW (h) and ÊH0(N),

respectively, calculated on the region A(n). Then K
(n)
W (h) is asymptotically

normal as n →∞:

K
(n)
W (h) ∼: N


πh2,

2πh2A(n)

(
ÊH0(N)(n)

)2


 .

Proof. Following [BP04] we will take advantage of the fact that the inter-point
distances drs = |pr − ps| can be treated as independent random variables, as
the number of points on a given domain approaches infinity. Furthermore, it
is evident that the probability of a randomly chosen point ps being within h
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of an arbitrary point pr is πh2/A
(n)
i , provided that pr, ps ∈ A(n)

k . It follows
therefore that at stage n, the number P

(n)
i (h) of pairs of points in subset A(n)

i

with an inter-point distance not larger than h has an approximate Binomial
distribution:

P
(n)
i (h) ∼: B

(
1
2

(
λ

(n)
i A

(n)
i

)2

,
πh2

A
(n)
i

)
,

where λ
(n)
i is the (approximately constant) conditional intensity within A(n)

i ,
since (1/2)(λ(n)

i A
(n)
i )2 represents the expected number of pairs in A

(n)
i and

πh2/A
(n)
i is the probability that the inter-point distance of a given pair is not

greater than h. Hence, the expectation is E(P (n)
i (h)) = (1/2)πh2(λ(n)

i )2A(n)
i

and noting that πh2/A
(n)
i ≈ 0, the variance is approximately the same:

V (P (n)
i (h)) ≈ E(P (n)

i (h).
Because P

(n)
i (h), i = 1, . . . , In are approximately independent by assump-

tion, it follows that

E

(
I∑

i=1

P
(n)
i (h)/λ

(n)
i

)
=

1
2
πh2

In∑

i=1

λ
(n)
i A

(n)
i

V ar

(
I∑

i=1

Pi(h)/λ
(n)
i

)
=

1
2
πh2

In∑

i=1

A
(n)
i .

Noting that K
(n)
W (h) can be written as

K
(n)
W (h) =

2
∑In

i=1
λ

(n)
∗

λ
(n)
i

P
(n)
i (h)

λ
(n)
∗ ÊH0(N)(n)

it follows that the expectation and variance of K
(n)
W (h) are given by

E
(
K

(n)
W (h)

)
= πh2

V ar
(
K

(n)
W (h)

)
=

2πh2A(n)

(
ÊH0(N)(n)

)2 ,

since
∑In

i=1 λ
(n)
i A

(n)
i = ÊH0(N)(n).

Finally, it follows directly from the Central Limit Theorem (since In →∞)
that K

(n)
W (h) has an asymptotic normal distribution

KW (h) ∼: N


πh2,

2πh2A(n)

(
ÊH0(N)(n)

)2


 .
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ut
A variance-stabilized analogue of L(h) in (1), i.e. a variance-stabilized

version of the weighted K-function, could be defined as:

LW (h) =

√
KW (h)

π
.

3 Application

The test statistic KW (h) in (2) is applicable to a very general class of planar
point process models. We investigate their application to models for the spatial
background rate for the occurrences of Southern California earthquakes.

3.1 Data Set

Data on Southern California earthquakes are compiled by the Southern Cal-
ifornia Earthquake Center (SCEC). The data include the occurrence times,
magnitudes, locations, and often even waveforms and moment tensor solu-
tions, based on recordings at an array of hundreds of seismographic stations
located throughout Southern California, including over 50 stations in Los An-
geles County alone. The catalog is maintained by the Southern California
Seismic Network (SCSN), a cooperative project of the California Institute of
Technology and the United States Geological Survey. The data are available
to the public; information is provided at http://www.data.scec.org.

We focus here on the spatial locations of a subset of the SCEC data occur-
ring between 01/01/1984 and 06/17/2004 in a rectangular area around Los
Angeles, California, between longitudes −122◦ and −114◦ and latitudes 32◦

and 37◦ (approximately 733 km × 556 km). The data set consists of earth-
quakes with magnitude not smaller than 3.0, of which 6,796 occurred within
the given 21.5-year period. The epicentral locations of these earthquakes are
shown in Fig. 1.

3.2 Analysis

Spatial background rates are commonly estimated by seismologists by smooth-
ing the larger events only. For instance [Oga98] suggests anisotropic kernel
smoothing of large mainshocks in order to estimate the spatial background
intensity for all earthquakes. In this application, we investigate various spatial
background seismicity rate estimates involving kernel smoothings of only the
2030 earthquakes of magnitude 3.5 and higher, by using KW (h) to assess their
fit to the earthquake data set. The local seismicity at location (x, y) may be
estimated using a bivariate kernel smoothing µ(x, y) of the events of magni-
tude at least 3.5. Figure 2 shows such a kernel smoothing, using an anisotropic
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Fig. 1. Earthquakes in Southern California 1984-2004: The data set consists
of 6796 earthquakes with magnitude 3.0 or larger

bivariate normal kernel with a bandwidth of 8 km and a correlation of −0.611.
That is,

µ(x, y) =
N∑

r=1

f(x− xr, y − yr), (3)

where the sum is over all points (xr, yr) with magnitude mr ≥ 3.5, and f is
the bivariate normal density centered at the origin with standard deviation
σx = σy = 8 km and correlation ρ = −0.611. This correlation is estimated
using the empirical correlation of the values of xr and yr, and the bandwidth
is selected by inspection. The agreement of Figs. 1 and 2 does not seem grossly
unreasonable.

Since such a kernel smoothing only uses the observed seismicity over the
last 20 years (a relatively small time period by geological standards), one may
wish to allow for the possibility of seismicity in regions where no earthquakes
of magnitude 3.5 or higher have recently been observed. One way to do this
is by estimating the spatial background intensity via a weighted average of
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Fig. 2. Kernel smoothing of seismicity in Southern California 1984-2004:
An anisotropic bivariate normal kernel with a bandwidth of 8 km (ρ = −0.611,
σx = σy = 8km) is applied to 2030 earthquakes with magnitude not smaller than
3.5

the kernel-smoothed seismicity of magnitude at least 3.5 and a positive con-
stant representing an estimate of the spatial background intensity under the
assumption that the process is homogeneous Poisson. Hence we consider the
estimate of the form

λ̂a(x, y) = aµ(x, y) + (1− a)ν, (4)

where ν = N/A is the estimated conditional intensity for a homogeneous Pois-
son model and a is some constant with 0 ≤ a ≤ 1. Figure 3 shows KW (h) (2)
applied to several spatial intensity estimates, each of the form (4), using dif-
ferent values for the parameter a. For the competing estimates λ̂a, a takes on
the values 0.95, 0.98, 0.99, 0.9925, 0.995, 0.9975, 0.999, and 0.9999. KW (h)
for the competing models λ̂a can be seen in Fig. 3 where a darker line color
indicates a higher value of a. The lower values of a give more weight to the ho-
mogeneous background rate than higher values of a. For a value of a = 0.999
or higher, λ̂a is virtually identical to the kernel density estimate µ. The dashed
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Fig. 3. Weighted K-function for competing models: The weighted K-function
KW (h) is shown for different values of a in the background intensity model λ̂a (4)

curves denote the 95% bounds for KW (h) based on the result in Theorem 1.
Note that the smoothness condition in Theorem 1 is only appropriate if most
pairs of points which are within distance h have similar estimated intensities,
which is more or less the case for small values of h in this application.

Figure 3 shows that values of a = 0.999 or greater fit very poorly to
the data. For such values of a, the intensity estimate gives weight almost
exclusively to the kernel smoothing, so that pairs of small earthquakes in
areas where there were no earthquakes of magnitude greater than or equal to
3.5 have extremely small probability and are hence given enormous weight in
the computation of KW . Similarly, for values of a below a = 0.99, the intensity
estimate gives too much weight to the homogeneous Poisson component and
too little to the kernel smoothing of the large events, so that the resulting
model underpredicts the intense clustering in the data occurring around the
larger events.

As shown in Fig. 3, for most small values of h the function KW (h) seems
to decrease towards the 95% bounds indicating satisfactory fit for values of
a approaching a = 0.995 from either direction. This value of a appears to
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offer better fit than other values of a (and certainly is far better than the
conventional a = 1.0). However, even for a = 0.995, the values of KW (h)
nevertheless far exceed the 95% bounds. Apparently the data set contains
significant clustering of the smaller events in locations not covered by the
larger events. No mixture of a kernel smoothing of the larger events and
a homogeneous Poisson estimate can possibly adequately account for such
clustering.

4 Concluding Remarks

The application of KW to spatial background rate estimates for Southern
California seismicity suggests that a superior fit is provided by an estimate
that incorporates both a kernel smoothing of the larger events as well as
a homogeneous background rate. The function KW appears to be a quite
reasonable goodness-of-fit test for spatial point process models.

In contrast to standard kernel smoothing of the larger events in the catalog,
the method of spatial background rate estimation which mixes the kernel es-
timate with a homogeneous constant rate appears to offer somewhat superior
fit to the SCEC dataset. This suggests that spatial background rate estimates
in commonly used models for seismic hazard, such as the epidemic-type af-
tershock sequence (ETAS) model of [Oga98], might possibly be improved in
this way as well. Seismologically, the results are consistent with the notion
that Southern California earthquakes, though certainly far more likely to oc-
cur on known faults, can potentially occur on unknown faults as well, and
these faults may be quite uniformly dispersed. The results suggest that a spa-
tial background rate estimate incorporating both of these possibilities could
provide improved fit to existing models for seismic hazard. Such a modifica-
tion may be especially relevant given the occurrences in California of blind
(i.e. previously unknown) faults such as the one which ruptured during the
Northridge earthquake in 1994, causing at least 33 deaths and 138 injuries as
well as extensive public and private property damage [Pee98].

Further study is needed in order to confirm the seismological results sug-
gested herein, for several reasons. First, it remains to be seen whether the fea-
tures observed here may be reproduced elsewhere or are particular to South-
ern California. Second, in Theorem 1 and the conjecture preceding it, the
observation area is thought to expand to infinity, and the smoothness of the
conditional intensity is required. In our application to Southern California
earthquakes, it is a bit unclear whether the observed region is sufficiently large
and whether the intensity estimates of the form (4) are sufficiently smooth
relative to the inter-point distance h to justify applying the results of Theo-
rem 1 with great confidence. Third, in the estimation of the intensities of the
form (4), the bandwidth, correlation, and the choice of kernel were not opti-
mally selected, but chosen rather arbitrarily. Another issue worth mentioning
is that the earthquakes of magnitude greater than 3.5 were used both in the
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fitting and in the testing. This is in keeping with common practice in seis-
mology, though in statistical terms this is certainly non-standard. In addition,
the problem of boundary effects in the estimation of the weighted K-function
has not been addressed in this paper. Instead, we attempted to give a sim-
plified presentation in introducing KW (h) and its application. It should be
noted, however, that exactly the same standard boundary-correction tech-
niques which are used for the ordinary K-function (see Sect. 2.1) can be used
for the weighted K-function as well. Fortunately, in our application the frac-
tion of points within distance h of the boundary was so small for all values of
h considered as to make such considerations rather negligible.
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