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Abstract

The Burning Index (BI) is commonly used as a predictor of wildfire activity. An

examination of data on the BI and wildfires in Los Angeles County, California from

January 1976 to December 2000 reveals that although the BI is positively associated

with wildfire occurrence, its predictive value is quite limited. Wind speed alone has a

higher correlation with burn area than BI, for instance, and a simple alternative point

process model using wind speed, relative humidity, precipitation and temperature well

outperforms the BI in terms of predictive power. The BI is generally far too high in

Winter and too low in Fall, and may exaggerate the impact of individual variables such

as wind speed or temperature during times when other variables, such as precipitation

or relative humidity, render the environment ill-suited for wildfires.

1 Introduction.

Fire danger is a concept that figures prominently in fire management planning. It is an

assessment of the fire environment that determines the ease of ignition, rate of spread,

difficulty of control and fire impact, and these are often referred to as the fire potential.

Fire danger rating is an integration of weather elements, fuels and other factors affecting

fire potential and is often used to direct fire management activities, scheduling prescribed

fires, fire prevention activities, staffing for fire control, and forest closures (Pyne et al. 1996).

It is expressed as a numerical index and weighting of the factors that make up this index

vary regionally, due in part to differences in fire regimes. For example, Australia has long

used the McArthur Forest Fire Danger Index (FFDI) (McArthur 1967), Canada the Fire

Weather Index (FWI), and the USA the National Fire Danger Rating System (NFDRS).



Schoenberg, Chang, Keeley, Pompa, Woods, Xu. Burning Index. 3

Each fire danger rating uses weather observations at a fixed site and broad generalizations

about fuels and other landscape characteristics to assess fire potential regionally, such as

for entire national forests. Recently, inventories of fuel distributions have the potential for

creation of more specific fire danger assessments (Woodall et al. 2005), and as specificity

increases, fire behavior models provide an even finer scale prediction of fire danger (Andrews

et al. 2003).

The NFDRS produces three main indices, the fire Spread Component (SC), the Energy

Release Component (ERC), and the Burning Index (BI). SC and ERC are controlled largely

by fuel structure, weather and antecedent drought, and both contribute to BI, the fireline

intensity or flame length. This is of immense concern because it gives some indication of the

potential for escape and eventual fire size as well as the possible destructiveness of a fire. Fire

managers use this information in making decisions about the appropriateness of prescribed

burning or alerts for increased preparedness, both in terms of fire suppression staffing and

fire prevention activities. Since fireline intensity is an important factor in predicting fire

containment and the likelihood of fire escape, the Burning Index is the rating of most interest

to many fire managers. This is particularly true for natural crown-fire ecosystems such as

southern California shrublands, where BI is commonly employed to assess fire danger (Mees

and Chase 1991).

Evaluating the predictability of fire danger measures is important to improving and fine-

tuning these indices for different regions. For example, the NFDRS system, initially designed

for western systems, was revised after the first decade of use indicated it was not a good

predictor of fire incidence in the more mesic eastern forests (Burgan 1988). The main fire
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danger indices have been developed for forested ecosystems and often they are less applicable

to shrublands. For example the Australian McArthur FFDI was originally developed to

describe fire danger in dry sclerophyll forests, but it is a poor predictor of area burned in

mallee shrublands (Krusel et al. 1993). In these natural crown-fire ecosystems, a simple

model utilizing a few meteorological variables offered vast improvement over the McArthur

system (Krusel et al. 1993).

Evaluating the importance of fire danger rating systems to fire managers could be ac-

complished in a variety of ways, ranging from evaluating the cost-effectiveness of staffing

decisions to historical patterns of burning associated with annual changes in these fire dan-

ger indices. Considering the extraordinary importance of fire danger in many parts of the

world, relatively few studies have investigated the effectiveness of fire danger rating systems.

Most of these studies have focused on relating fire danger rating systems to ultimate fire

responses, including fire incidence and fire size, and since these rating systems are largely

based on climate parameters, these studies have focused on historical relationships. Indeed,

Andrews and Bradshaw (1997), whose work was instrumental in the current implementa-

tion of the BI, suggested that the value of a fire danger index be evaluated according to

its relationship with fire activity, which may be defined as the incidence of large wildfires.

The use of fire danger ratings by fire department officials for wildfire suppression and pre-

vention may confound the empirical relationship between fire danger ratings and observed

wildfire activity. Such empirical relationships have nevertheless been reported and used as

support for the use of such rating systems for predictive purposes. For instance, Haines et

al. (1983) and Haines et al. (1986) examined the NFDRS Ignition Component and Spread
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Component (as well as a few other Fire Danger Rating Systems) in the northeastern US

with respect to the number of fires per day, the total area burned per day, the occurrence

of at least one wildfire on a day, and the occurrence of at least one fire of at least a certain

size. They found statistically significant relationships between ranked indices and these four

response variables, though regression equations typically explained less than a quarter of the

variation. Mees and Chase (1991) observed a positive association between percentiles of BI

with percentiles of burn area and number of fires in Southern California and concluded that

the BI is successful as an indicator of potential fire workload. Mandallaz and Ye (1997a,b)

and Viegas et al. (1999) assessed the performance of various European and Canadian fire

danger indices in predicting wildfire activity in southern Europe and the former found that

using weather variables and other covariates in addition to a fire danger index could produce

substantial improvement in prediction of wildfires. Andrews et al. (2003) evaluated the US

NFDRS indices and fire activity in the Tonto National Forest in Arizona, finding that a

logistic function of ERC predicts wildfire incidence better than a logistic function of BI.

Here we evaluate the empirical relationship between the Burning Index and wildfire

activity in Los Angeles County, California. This region is well-suited to such historical

analysis because the Los Angeles County Fire Department and Department of Public Works

have collected and compiled a wealth of data on the locations burned by large wildfires

dating back over a century. The landscape in Los Angeles County is vulnerable to high

intensity crown-fires due to the vast expanse of dense contiguous chaparral shrublands under

the Mediterranean-type climate of summer and fall drought (Keeley 2000). An additional

factor is that the dry season is followed in the Fall by high winds known locally as Santa Ana
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winds (Keeley and Fotheringham 2003). These offshore winds reach speeds exceeding 100

kph at a relative humidity below 10%, and are annual events lasting several days to several

weeks, creating the most severe fire weather in the United States (Schroeder et al. 1964).

We show that although the BI is positively associated with wildfire incidence in Los Angeles

County, its empirical performance in predicting wildfire activity is poor relative to simple

alternatives involving direct use of the weather variables incorporated by the Burning index.

2 Data

Since 1976, the Forest Service has implemented and monitored Remote Automatic Weather

Stations (RAWS) across the United States. We focus here on data from 16 stations located

within Los Angeles County, California. Each of the RAWS records information on a host

of meteorological variables, including air temperature, relative humidity, precipitation, wind

speed, and wind direction (Warren and Vance 1981). Daily summaries of these measurements

are collected each afternoon at 1300 hr and transmitted via satellite to a central station for

archiving. For some of the variables, such as relative humidity and temperature, not only is

the current 1300 hr value used, but also its maximum and minimum values over the previous

24 hours. In what follows, for simplicity we refer to the maximum relative humidity from

1300 hr on day t− 1 to 1300 hr on day t as simply the maximum relative humidity for day t.

Daily RAWS measurements are used to construct several wildfire indices, as part of the

United States Fire Danger Rating System (NFDRS), which was developed by the USDA For-

est Service in 1972 and revised in 1978 (Deeming et al. 1977; Bradshaw et al. 1983). Since

then there have been some minor adjustments (Burgan 1988). The NFDRS relies on RAWS
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data, a manager-selected, stylized fuel model considered suitable for representing local con-

ditions, estimates of live fuel moisture and four size classes of dead fuel moisture calculated

based on a combination of weather data as well as prior fuel stick moisture readings, slope

class and herbaceous fuel type information, in order to construct a Spread Component (SC)

and an Energy Release Component (ERC). These two components are combined to produce

the Burning Index, based on a suite of physics-based nonlinear dynamic equations. These

equations describe heat transfer and moisture exchange, and were developed to predict flame

length in a fire given that ignition has already occurred (see Pyne et al. 1996, Andrews and

Bradshaw 1997).

Of the values produced by the NFRDS, the Burning Index is the most commonly em-

ployed, and is used by about 90% of station managers according to the USDA Forest Service,

including those in Los Angeles County. Here, we examine the daily BI values, computed us-

ing FireFamily Plus software, which was made freely available from the Forest Service via

www.fire.org. The local fuel model used in the computation of the BI was that for mature

chaparral (fuel model B). For several of the 16 RAWS, data were missing on certain days

in the time range considered here (January 1976 - December 2000); proportions and poten-

tial impacts of this missing data for certain stations and months are discussed in Peng et

al. (2005). In what follows, for any particular day we consider the BI values and weather

variables averaged across the number of RAWS which were available on that day, as in Mees

and Chase (1991) and Peng et al. (2005). The distribution of the BI values is right-skewed:

the mean BI recorded during this period is 69.7 and the median is 54. Mean daily BI records

ranged from 0 to 351 during this 25-year period, with a standard deviation of 55.3. The
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Los Angeles County Fire Department (LACFD) generally considers BI values above 150 to

indicate a high likelihood for wildfire activity.

Detailed data on Los Angeles County wildfires have been collected and compiled by sev-

eral agencies, including the LACFD, the Los Angeles County Department of Public Works

(LACDPW), the Santa Monica Mountains National Recreation Area, and the California De-

partment of Forestry and Fire Protection. These data include the origin dates and polygons

demarking locations burned in wildfires dating back to 1878. According to the LACFD, the

wildfire data before 1950 is believed to be complete for fires burning at least 0.405 km2 (100

acres), and though the LACFD has been mapping fires as small as 0.00405 km2 (1 acre) since

1950, the data appear to be complete only for fires burning at least 0.0405 km2 (Schoenberg

et al. 2003b). We restrict our attention here to the 592 wildfires of at least 0.0405 km2 (10

acres) recorded between January 1976 and December 2000. During this time period, there

were 362 days with exactly one such wildfire recorded, and 66 days with two or more such

wildfires. For further detail and images of the spatial locations of these wildfires, see Peng

et al. (2005).

3 Methods.

Because BI presumably reflects on the probability of containment, particularly at initial

attack, and this is tied to the number of large fires and ultimate fire size, one measure of

the predictive value of the Burning Index is the historical relationship of variation in the

index to area burned. The relationships between BI and daily outcomes such as number of

wildfires ignited on that day or the area burned by those fires are initially inspected using
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basic exploratory analysis such as correlations and conditional means and medians. For

comparison, corresponding summaries of the relationships between these outcome variables

and individual weather variables or smoothed historical (pre-1976) wildfire activity for each

date are reported.

In order to investigate ways in which the BI’s relationship with burn area or number of

wildfires may be improved, particular attention is paid to seasonal patterns in the relationship

between BI and these outcome variables to see if there are months when the BI tends to

over-predict or under-predict wildfire activity in Los Angeles County. Since fuel moisture is

thought to be an important factor influencing wildfire activity, we compare the cumulative

precipitation on preceding days (a proxy for fuel moisture) on days when wildfires occurred

with all other days on which BI values were similar. In particular, we inspect the average

daily precipitation over the k preceding days, for all n days on which wildfires occurred and

on which the BI was in a particular range, for various values of k. Since the distribution

of cumulative precipitation over prior days appears to be approximately normal, the results

are then compared with 95%-confidence bounds obtained using x̄±1.96s/
√

n, where x̄ and s

are the sample mean and standard deviation, respectively, of the average precipitation over

the k preceding days for all days on which the BI was in the corresponding range.

One way to assess the association between the BI and wildfire activity is to investigate the

fit and predictive performance of different marked point process models for wildfire incidence,

where BI is a covariate in the model. In order to shed light on whether the BI uses weather

information optimally in the sense of predicting wildfire activity, we compare these results

with marked point process models where the weather variables recorded by the RAWS are
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covariates. Note that in point process modeling, there is no need to choose either number

of wildfires or area burned as a response variable: one may readily model the entire process,

including the origin dates, centroid locations, and areas burned for each fire, as a marked

point process. That is, essentially the response variable is the number of wildfires of each

possible size.

A point process N is a random measure defined on subsets of the observed space. For

a bounded subset B of space-time, for instance, the random variable N(B) represents the

number of points occurring in B. In a marked point process, to each point there corresponds

a random variable whose value may depend on the time, location, and history of points of

the process. We consider here the origin times and centroid locations of LACFD wildfires

as points of the point process, with area burned in the fire as a mark. Equivalently, one

may consider the domain of observation to be a portion of space-time-area burned, and thus

each wildfire represents one point in this domain. A point process may be characterized by

its conditional intensity or rate λ; here λ(t, x, y, a) indicates the limiting expected rate of

occurrence of wildfires of area a occurring on day t at location (x, y), conditioned on the

historical information available prior to time t. We will use the term rate in place of intensity

here in order to differentiate the limiting expected number of points per unit of space-time-

area from a physical attribute of a wildfire. For more information on definitions, models, and

methods related to point processes and conditional rates, see Daley and Vere-Jones (1988).

One way to address the fact that not all locations in Los Angeles County are equally

likely to burn is to estimate a spatially-varying background rate of wildfires, µ(x, y). Such a

function µ can be estimated by kernel smoothing the observed wildfires. However, there is
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an especially serious risk of over-fitting if all fires in the dataset are used for this purpose.

Some authors estimate such a background rate using only the largest events (Ogata 1998)

or using a historical catalog of prior events (Peng et al. 2005). For instance, in Los Angeles

County, since wildfire histories are available dating back to 1878, one option would be to

kernel-smooth the spatial locations of fires occurring before 1976 in determining the spatial

background rate of wildfires occurring since 1976. Since there are thought to be severe

missing data problems before 1950, we elected to smooth the centroids of fires occurring

between 1950 and 1975 in estimating µ. As noted in Pompa et al. (2006), one problem with

simply kernel-smoothing the centroids of historical fires using a standard (e.g. Gaussian)

kernel is that the resulting estimate of µ(x, y) will be non-zero for locations (x, y) outside of

the boundary of Los Angeles County, including locations in the Pacific Ocean. One way to

address this while still giving each point in the historical dataset equal weight is to allow the

kernel and/or bandwidth to vary spatially. For instance, a simple adjustment is to truncate

the kernel used to smooth a historical fire whose centroid is at location (x, y), letting k(u) = 0

for u > d, where d is the shortest distance from (x, y) to the boundary of Los Angeles County.

This suggests a background model of the form

λ(t, x, y, a) = αµ(x, y)g(a), (1)

where α is a parameter to be estimated, µ(x, y) is the spatial background rate estimated

by kernel smoothing the 1950-1975 fires as in Pompa et al. (2006), and g(a) represents the

distribution of wildfire areas. The tapered Pareto distribution may be chosen for g(a) as

suggested in Schoenberg et al. (2003b).
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In order to incorporate BI measurements, one may also consider a model such as

λ(t, x, y, a) = f(B(t))µ(x, y)g(a), (2)

for some function f , where B(t) represents the average BI on day t. For instance, for f

one might select a linear function, so that f(B(t)) = α1 + α2B(t), where α1 and α2 are

parameters to be estimated.

As an alternative to the model (2), one may consider a model using the RAWS weather

variables directly. For instance, one might compare the model (2) with a model such as

λ(t, x, y, a) = f(R(t))µ(x, y)g(a), (3)

where R(t) represents the maximum relative humidity for day t. In order to incorporate

more weather variables, one might consider a model such as

λ(t, x, y, a) = f1(R(t))f2(W (t))f3(P (t))f4(A(t; k))f5(T (t))f6(D(t))µ(x, y)g(a), (4)

where R(t), W (t), P (t), T (t) represent the maximum relative humidity, 1300 hr wind speed,

1300 hr precipitation, and 1300 hr temperature, respectively, for day t, averaged over all

available weather stations, A(t; k) represents the average precipitation on the k days prior

to day t, and D(t) is the date within the year corresponding to day t. The variables in this

model represent a subset of the variables recorded at each RAWS station on each day for

which the BI is computed, and hence the direct use of such information might be considered

a suitable basis for comparison with the BI. The variables listed above were selected based

on their apparent significance in the output of simple linear regressions of daily burn area

on each of the weather variables.
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The model (4) is entirely multiplicative, or separable in the terminology of Cressie (1993).

Such a multiplicative form may be reasonable in light of the fact that high values of certain

variables such as windspeed do not individually result in significantly increased wildfire

activity unless the conditions as measured by other weather variables are also conducive to

wildfires. As a result, the output of a model such as (4) will tend to be considerably higher

on days when each of the variables is moderate than on days when one variable is very

highly conducive to wildfires and the others are not. Tests for separability in point processes

were proposed in Schoenberg (2004), based on comparing bivariate kernel estimates of the

rate as a function of two variables or coordinates with the product of the two corresponding

univariate kernel rate estimates. An example is the statistic S3, which is defined as the

integrated squared difference between these two kernel rate estimates. Confidence bounds for

S3 may be obtained by re-sampling from the separable (product) rate estimate, as described

in Schoenberg (2004). Such tests are used here to assess whether the form in (4) appears to

be appropriate.

In the case that the separability hypothesis is seriously violated for a pair of coordinates,

an alternative type of model proposed in Schoenberg (2006) is to partition one of the coordi-

nates and fit a separable model for each segment of the partition. For instance, one possible

problem with the model (4) is that the distribution of the areas of wildfires may vary sig-

nificantly with season, so that D(t) and g(a) are not separable. The relations between the

weather variables and wildfire activity may similarly depend on the season in question. One

possible solution is to consider a model such as

λ(t, x, y, a) = f1(R(t))f2(W (t))f3(P (t))f4(A(t; k))f5(T (t))µ(x, y)g(a),
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for each season. That is, for each season within the year, a different set of parameters govern

the functions fi and g. The full model then becomes

λ(t, x, y, a) = f1{R(t); β(D(t))}f2{W (t); β(D(t))}f3{P (t); β(D(t))}

× f4{A(t, k); β(D(t))}f5{T (t); β(D(t))}µ(x, y)g{a; β(D(t))}, (5)

where β, the vector of parameters for the functions fi and g, may vary depending on the

date D corresponding to day t.

A convenient feature of separable point process models is that each component of the

model may be estimated individually, and the functional forms in the model can be derived

using non-parametric methods. For instance, one may use kernel regression of burn area or

number of fires per day on maximum daily relative humidity in order to suggest a functional

form for f1. For the present paper, we use Gaussian kernels with bandwidths determined

according to Silverman’s formula (Silverman 1986). The parameter vector β may then be es-

timated using maximum likelihood estimation (MLE), using a standard optimization routine.

Here, this estimation is performed using the Newton-Raphson minimization algorithm in the

R statistical programming environment, which is freely available from www.r-project.org.

One way to compare two ore more competing point process models is using the Akaike

Information Criterion (AIC), which is defined as−2L(β)+2p, where L(β) is the log-likelihood

and p is the number of fitted parameters. Lower values of AIC indicate better fit. The AIC

thus rewards a model for having a higher likelihood, indicating greater agreement with the

data, but penalizes a model for fitting more parameters, as a safeguard against over-fitting.

Competing point process models may also be compared by directly examining their power

in predicting wildfires in the historical dataset. Consider issuing an alarm, or prediction of
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a wildfire occurrence, on any day when λ(t) is above a certain threshold. For any particular

threshold, there is a success rate (percentage of wildfires occurring at times when λ is above

the threshold) as well as a false alarm rate (number of times per year when λ exceeded

the threshold yet no wildfires occurred). For any fixed choice of false alarm rate, one may

compare the corresponding success rates of the competing models, in order to determine

which model appears to have greater efficacy in predicting wildfire activity.

For further evaluation of the model and to assess the sensitivity of the results to overfitting

and to the fact that the same data were used in the model fitting and assessment, we use

a jackknife procedure in which one year of the dataset is removed at a time. For each year

i, the model is fit by MLE using only the data from all years other than year i, and the

resulting variation in parameter estimates is inspected.

4 Results.

We find several shortcomings to the Burning Index and its use in predicting wildfire activity.

Before detailing the problems with the BI and suggesting alternative ways of using weather

variables to predict daily wildfire activity, we begin this Section by discussing the evidence

in favor of the BI.

Evidence supporting the BI.

For the Los Angeles County data from 1976-2000 described in Section 2, the Burning

Index is indeed positively associated with wildfire incidence. The correlation between the

daily average BI score and the daily number of wildfires is 0.147; the correlation between the

BI and the total area burned is 0.098. Note that since the BI was designed to indicate the
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potential for a large wildfire, rather than the potential for mere ignition, one might suspect

the BI to correlate more highly with area burned than with the number of wildfires, so it may

be somewhat surprising that in fact the opposite is observed. The correlation between BI

and the area burned per fire is even lower (r = 0.084). Given the large day-to-day variability

in wildfire activity and the high dependence of the BI on human activities such as land

use, fire prevention and suppression efforts, and arson, a low correlation between wildfire

incidence and the BI, which is dependent solely on weather variables, is to be expected.

Figure 1 confirms that the BI is higher on days when wildfires occur. The upward shift

in the distribution of BI from days without wildfires to days when one wildfire occurs is

readily apparent in Fig. 1, and a similar shift from days when one wildfire occurs to days

when two or more occur can also be discerned. The right-most boxplot in Fig. 1 shows

the distribution of BI on the days when the largest 50 wildfires during this 25-year period

occurred. The median BI increases from 52.4 on days without wildfires to 81.9 on days when

one fire occurred, jumping to 109.5 when one restricts one’s attention to days when two or

more wildfires occurred, and reaching 134.3 on the days of the 50 largest wildfires.

Discrepancies between BI and Wildfire Activity.

Although the BI is positively associated with wildfire incidence, the correlation is quite

low, and it is readily apparent that much better prediction of wildfire activity can be achieved

quite simply. In fact, while daily burn area has a correlation of 0.098 with BI, the correlation

between burn area and wind speed alone is 0.153. Furthermore, one can obtain a correlation

with daily burn area nearly half as large as that of the BI, using only the date and information

on areas burned in past years as a guide, without any weather data at all. If for each calendar
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date, one takes a kernel smoothing of the average burn area on that date from the years

1951-1975, for example, as illustrated by the dashed curve in Fig. 2, the resulting daily

estimate has a correlation of 0.046 with daily burn area during 1976-2000.

One obvious problem with the BI is that it is generally too high in Winter months

(especially January) and too low in the Fall (especially September and October). The light

grey curve in Figure 2 shows the daily averages of BI by calendar date, averaged over the

years 1976-2000. One sees that the BI is typically highest in late summer, and takes on

moderate values in December, January, and February. These values in Winter months are

surprisingly high, given that the number and sizes of wildfires during these months are

historically very low. Indeed, in the 25 years from 1976-2000, only 25 wildfires greater than

0.0405 km2 (10 acres) were recorded in these three winter months, and these fires account

for just 2.03% of the total area burned in all months.

Figures 3 and 4 illustrate the extent to which the BI overpredicts wildfire activity during

Winter and underpredicts wildfire activity in Fall. The numbers above and to the left of

the regression line in Fig. 3 indicate months in which the BI was too low: one sees that in

July, November, and especially September and October, the average area burned was higher

than one would have predicted using the BI. Numbers below and to the right of the line

in Fig. 3 indicate months when the BI overpredicted wildfire potential: August, December

and January are months with less wildfire activity than one would expect using the BI.

Figure 4 focuses especially on October, November, December and January, four months

when the problems with the BI seem to be among the most severe. One would expect the

total area burned on days when the BI was in a certain range to be similar for these four
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months, but this is not the case. Among days with similar BI values, the area burned is

typically higher in October and November than in December and January. The difference is

especially prominent for days when the BI is above 200. When such days occur in October

and November, wildfire activity tends to be quite high, but very little is burned on such days

in December and January.

One possible explanation for the discrepancy between Fall and Winter is the impact of fuel

moisture. The BI, which incorporates the drought severity index in addition to the weather

on the particular day, does not seem to adequately take into account the cumulative effect of

precipitation (or dry weather) on previous days. Figure 5 shows that, when comparing days

when wildfires occurred with other days with comparable BI values, the average precipitation

per day over preceding days is considerably lower for the days preceding wildfires. Consider,

for instance, days when at least one wildfire occurred and when the BI was between 100 and

150. For such days, the mean daily precipitation over the preceding days is indicated by the

dark, thin, solid curve in Fig. 5, and the corresponding 95%-confidence bounds are indicated

by the dark, thin dashes. As detailed in Section 3, these confidence bounds indicate a range

that would be expected to contain the solid curve if, among days when the BI was between

100 and 150, days when wildfires occurred were similar to days without wildfires. Hence

the fact that the average precipitation on preceding days is outside the range for at least 5

days of prior precipitation indicates that the BI’s use of precipitation and drought severity

data is not optimal in terms of predicting wildfire activity: among days with comparable BI

values, the days on which wildfires occur appear to have significantly lower fuel moistures

than days on which wildfires do not occur. Similarly, comparison of the light, thin solid
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curve with its 95%-confidence bounds (light, thick dashes) indicates that for days when the

BI is between 150 and 200, days with wildfires have significantly lower prior precipitation

over the k preceding days than days without wildfires, for k greater than 20. Note that most

of the weather variables are highly correlated, so the effect suggested in Fig. 5 might not be

causal: it may be that most wildfires occur during relatively dry seasons due to other factors

associated with dryness, such as high temperatures and low relative humidity.

Comparison using simple point process models

In order to evaluate how effectively the BI takes into account the weather information for

the purposes of predicting wildfire activity, the fit of point process models using the BI (2)

is compared with the fit of other models such as (4) and (5) which use the weather variables

directly.

Kernel regression plots of burn area and number of fires per day versus BI suggest a

linear function f for model (2); i.e.

λ(t, x, y, a) = {β1 + β2B(t)}µ(x, y)g(a), (6)

where µ and g are estimated as described in Section 3. Similar kernel regression plots of burn

area and number of daily fires against each of the weather variables suggested exponential

forms for the functions fi in the models (4)-(5), suggesting a point process model of the form

λ(t, x, y, a) =

β1 exp{β2R(t) + β3W (t) + β4P (t) + β5A(t; 60) + β6T (t) + β7[β8 −D(t)]2}µ(x, y)g(a). (7)

Tests of separability of the components of model (7) showed significant departures from

separability for the area burned distribution g(a) and the date within the year D(t). The
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statistic S3 of Schoenberg (2004) had a value of 1.431 (p < 0.01), indicating that the dis-

tribution of burn area changes significantly with season. However, the distribution appears

to be relatively constant within each of the following three periods: (a) May 1 to August

31; (b) September 1 - November 30; and (c) December 1 to April 30. This suggests a model

such as (5) with exponential forms for fi, so that

λ(t, x, y, a) = β
(i)
1 exp{β(i)

2 R(t) + β
(i)
3 W (t) + β

(i)
4 P (t) + β

(i)
5 A(t; 60) + β

(i)
6 T (t)}µ(x, y)g(a), (8)

for i = 1, 2, 3, corresponding to the three seasons listed above. The separability tests of

Schoenberg (2004) did not reveal any other significant departures from the separability of

the components of model (8). For instance, Figure 6 shows a comparison of the bivariate

kernel smoothing and product of univariate kernel smoothings for temperature and maximum

relative humidity, as suggested in Schoenberg (2004); differences between the two plots

indicate departures from separability. The shading of each pixel is determined by smoothing

the ratio of the number of wildfires occurring on days of the corresponding temperature and

maximum relative humidity to the total number of such days in the dataset. While there are

some noticeable differences for days with temperatures above 100o F, the overall similarity

of the two plots indicates a lack of significant deviation from the separability assumption in

this case.

The maximum likelihood estimates of the parameters for the BI, weather, and date

components of the models (6-8) are listed in Table 1. Table 2 shows the AIC values, relative

to that of the background model (1), for the models (6), (7), and (8). For further comparison,

the AIC for the model (3) with f(x) = β1 exp(β2x) is also given. The entries reported in

Table 2 are the AIC for the corresponding model minus the AIC for the background model
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(1); lower numbers indicate better fit. Note that the fit of the simple model (3), which

uses relative humidity data only and ignores all other weather variables, fits only slightly

worse than the BI model. While the BI model (6) offers substantial improvement over the

background model, the model (8) offers much further improvement over the BI model.

Model β1 × 103 β2 × 104 β3 β4 β5 β6 β7 × 104 β8

BI 14.4 7.49

(7) 1.492 -232.5 0.07493 -2.358 -0.4158 0.06591 1.376 211.1

(8a) 6.741 -252.2 0.06020 -7.079 -0.2097 0.04899

(8b) 16.92 -276.7 0.1040 -2.845 -0.2976 0.02341

(8c) 5.634 -298.8 0.08529 -1.004 -0.3068 0.03198

Table 1: Parameter estimates for models (6), (7), and (8). BI refers to model (6). (8a)

represents the parameters for the period May 1 - August 31. (8b) corresponds to the period

from September 1 to November 30, and (8c) to the period from December 1 to April 30.

RH BI (7) (8)

-218.3 -221.0 -381.5 -652.9

Table 2: Relative AIC values. Table entries are reported as AIC for the selected model

minus AIC for the background model (1). RH refers to model (3), with f(x) = β0e
β1x, and

BI refers to model (6).

We also examined an alternative form of (2) with f an exponential or logistic function of

BI in analogy with Andrews and Bradshaw (1997), but the fit in each case was substantially
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worse than the fit of (6). Note that Andrews and Bradshaw (1997) also observed poor fit of

a model similar to (2), with a logistic function f(x) = [1 + exp(β1 + β2x)]−1, but without

comparison to models based on weather variables.

An alternative way to compare the models (8) and (2) is by directly examining their

power in predicting wildfire activity. Recall from Section 3 that, for a given model for λ and

a fixed alarm threshold, we define the success rate as the percentage of the observed wildfires

occurring at times when λ is above the threshold, and the false alarm rate as the number

of days per year when λ exceeded the threshold yet no wildfires occurred. Figure 8 shows

that the model (8) is uniformly more powerful at predicting wildfires for the years 1976-2000

than the BI model. That is, for any choice of false alarm rate, a higher percentage of the

wildfires would have occurred on days when alarms were issued using model (8) rather than

using model (2).

The discrepancy in predictive efficacy between the two models is in fact quite large.

Consider, for instance, the case where an alarm threshold of BI = 150 is used. This value

is commonly used by fire department personnel in Los Angeles County as a benchmark,

and is indicated in Fig. 8 by the dotted vertical line. With this threshold, for the years

1976-2000, one would have issued 33 false alarms per year; 88.5% of the alarms would have

been false alarms, and the success rate would have been 23.1% (i.e. 23.1% of the observed

wildfires would have occurred on days when alarms were issued). By comparison, if one were

to use the model (8) and to choose a threshold corresponding to 33 false alarms per year,

the success rate would be 44.3%. This amounts to a 91.8% increase in the success rate. An

alarm threshold of BI = 200 would yield 13 false alarms per year, for a false alarm rate
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of 90.0% and a success rate of 9.3%. By comparison, using the model (8) with a threshold

corresponding to 13 false alarms per year, 27.2% of wildfires would have occurred on the

days of alarms. This represents a 192% improvement in the success rate, compared to the

BI model.

Sensitivity Analysis.

The sensitivity of our results is investigated using a jackknife procedure in which each

year of data is alternately set aside as a test year, and the model (7) is then fitted using the

remaining years. Comparison of the mean jackknife estimates in Table 3 with the overall

estimates in Table 1 shows that the estimates are very stable. Table 3 also indicates the

root-mean-square (RMS) deviation and maximum absolute deviation between the jackknife

estimates and the overall estimates in Table 1. The results show that the discrepancies in

any particular year are typically very small. For parameters β2 β3, β5, β6, β7, and β8, the

maximum deviation in any year was less than 10% of the parameter value itself, and the

RMS deviations, indicating the deviations in a typical year, ranged from 0.7% to 2.3% of

the overall parameter estimate for these parameters. For β1 and β4 the deviations were

larger, however, indicating the high variablility in both the overall rate of wildfire incidence

from year to year as well as the volatility of the relationship between wildfire activity and

precipitation. The parameter β1 changed most upon removal of the year 1980, the year with

the highest number of wildfires in the dataset. The parameter β4 deviated most when of the

year 1997 was removed; 1997 was the year in the dataset with 44.1 cm in total precipitation

and contains the day with the highest precipitation record in the dataset (14.5 cm).
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β1 × 104 β2 × 104 β3 × 103 β4 β5 × 103 β6 × 103 β7 × 106 β8

Mean 14.98 -232.6 74.88 -2.379 -415.9 65.95 137.6 211.4

RMS 1.533 4.841 1.910 0.1042 9.504 1.522 3.540 0.5569

Max Dev 5.660 13.99 5.943 0.5206 29.67 5.901 8.610 1.512

Table 3: Parameter estimates for model (7) with one year’s data removed in each iteration.

Mean indicates the average and of the estimate over all 25 iterations. RMS is the root-

mean-squared difference between each of the 25 jackknife estimates and the overall estimate

in Table 1. Max Dev represents the maximum absolute difference between each of the 25

jackknife estimates and the overall estimate from Table 1.

5 Discussion.

The potential for accurate prediction of future wildfire activity given only daily weather vari-

ables is inherently severely limited. Weather is only one of many factors relating to wildfire

occurrence and spread, and human interaction variables such as the propensity for arson or,

conversely, for fire prevention, obviously play a huge role. Indeed, the use by fire department

officials of the BI for allocating fire suppression resources and implementing fire prevention

policies may suggest that, even if the BI were a perfect predictor of wildfire susceptibility,

its correlation with wildfire incidence or burn area might be limited. Because of such human

interactions, if the alternative models discussed here were used by fire department officials in

place of the BI, the correlation of such models with wildfire incidence and burn area might

decrease.
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On the other hand, other studies that have claimed to validate the use of the BI as a

predictor of wildfire activity have done so based on its correlation with wildfire incidence

(Haines et al. 1983; Mees and Chase 1991). Further, there is some evidence suggesting that

fire suppression activities, though critically important in reducing damages and deaths in

wildfires, might not dramatically alter the actual amount of area burned per fire (Moritz

1997, Keeley et al. 1999, Johnson et al. 2001, Keeley 2002). There is substantial need for

empirical validation of the BI, especially since it is an adaptation not only from a predictor

of flame length to an indicator of wildfire activity but also from measurements in well-

controlled laboratory experiments to actual wildland fires. Since such indices are used for

various purposes including insurance and urban planning as well as fire department resource

management (Irby et al. 2000; Pyne et al. 1996), it is important that existing methods be

modified in order to predict wildfire potential as accurately as possible.

It is clear that the BI does not make optimal use of the daily weather variables recorded

by the RAWS in predicting wildfire activity in Los Angeles County. Wind speed alone has a

higher correlation with burn area than the BI. Further, a model using exclusively maximum

relative humidity over the previous 24 hours fits nearly as well as the BI. The BI does

not make optimal use of drought severity records and precipitation readings, and generally

seems to overpredict wildfire activity on days when individual variables such as wind speed

or temperature are high, and other variables, such as fuel moisture or precipitation, render

the conditions relatively poorly suited for the ignition and spread of wildfires.

A word should be said about the spatial and temporal scales of the analyses conducted

here. The problem addressed here is that of predicting wildfire activity on a given day,
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given the current weather. The BI appears to be commonly used for exactly this purpose.

Note, however, that the relationships between certain weather variables and burn area might

depend critically on the temporal scale of the analysis. For instance, Schoenberg et al.

(2003a) found that burn area increases steadily with temperature up to a plateau, rather

than increasing steadily as suggested here by the exponential term in (8). The analysis in

Schoenberg et al. (2003a) dealt with data aggregared on a monthly scale; when one employs

a similar kernel regression to the daily burn area versus temperature, no such plateau is

readily apparent.

Similarly, the trends observed here might not extend to data on very different spatial

scales than that considered here. Los Angeles County is somewhat heterogeneous in its

vegetation, climate, topography, and particularly land use, though the spatial region studied

here is highly localized compared to other analyses of wildfire prediction methods, such as

those mentioned in the Introduction. Averaging BI across all available stations on a given

day, as was done here as in the work of previous authors (e.g. Mees and Chase 1991), may

introduce bias, since in addition to the problems of spatial heterogeneity and differences in

elevation, the data are not missing at random, but rather certain stations have higher rates

of missing data during months when wildfires are less frequent. A related source of bias is

missing data from the LACFD wildfire records. Since the data are thought to be complete for

fires burning at least 0.0405 km2 (10 acres), this threshold is used as a lower threshold for the

present analysis, and as a result the wildfires focused on here may occur predominantly on

days with especially high windspeeds and/or with high numbers of wildfire outbreaks so that

one or more of the wildfires could not be contained by the initial attack response by LACFD
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personnel. If a lower minimum fire size threshold were used, the parameters (especially the

background rate µ in Tables 1 and 2) would be expected to increase, since the overall rate

of wildfires would be higher. For information on missing data and spatial patterns in the

dataset considered here as well as suggestions on the optimal spatial interpolation of the BI

records, see Peng et al. (2005). Further study is needed on the effects of missing data, lower

thresholds for wildfire sizes and study area boundaries on parameter estimates for models

such as those considered here.

The simple model proposed in (8) appears to be much more accurate than the BI, pre-

dicting 91.8% to 192% more wildfires than the BI given the same number of false alarms

per year. However, this should be viewed as a demonstration of the extreme shortcomings

of the BI rather than the success of the weather model in (8). The model in (8) is quite

simplistic and its fit could no doubt be improved by using more complicated functional forms

for each of the terms, as well as considering different interactions between the variables in

the model. In the model (8), the rate of wildfires of a given size occurring in a given region

on a certain day is assumed to depend on various weather variables but not on prior wildfire

activity; hence according to the model, wildfire records on different days are conditionally

independent given the weather records on those days. It seems unlikely that inclusion of

terms involving clustering or inhibition between wildfires would substantially improve the

fit of the model, and indeed our initial efforts at including such terms had little noticeable

impact and were removed from this analysis for the sake of simplicity, but since wildfires

very rarely occur in locations that have burned recently, the inclusion of spatial-temporal

inhibition terms in the model is likely to offer some modest potential for improvement in
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the fit of the model. Furthermore, many important variables are excluded from the model:

not only is it limited to just four of the daily weather variables recorded by the RAWS, but

also other variables such as fuel age, fuel moisture, vegetation, land use and other human

interaction variables, and numerous other important covariates are omitted from the model.

Spatial variations in the weather variables are entirely omitted, as only spatial averages of

the variables are considered. Despite all these shortcomings, the model (8) seems rather

impressive in its ability to predict wildfires, when compared to the BI. Our intention is for

this to speak to the inadequacy of the Burning Index for the purpose of predicting wildfire

activity and the need for substantial improvements, rather than to promote the model (8) in

particular. The investigation of more complex point process models that may offer superior

predictive performance and comparison of our results with other study regions outside of

Southern California are important areas for future research.
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Figure captions:

Figure 1: Boxplots of average daily BI for days with 0 wildfires, days with 1 wildfire,

days with 2 or more wildfires, and days when the largest 50 wildfires occurred, respectively.

Within each box, the solid horizontal line indicates the median, and small circles indicate

outliers.

Figure 2: Smoothed average burn area (BA) and BI per day by date, smoothed using

a Gaussian kernel smoother with bandwidths of 11.8 for BA and 15.3 for BI as determined

by the formula of Silverman (1986). The dark solid curve corresponds to wildfires occurring

between January 1951 and December 1975, and the dashed curve to those from January

1976 to December 2000. The light curve shows the unsmoothed BI values for each calendar

date, averaged over the years 1976-2000.

Figure 3: Area burned versus average BI for each month, from 1976-2000. Each number

indicates a month (1 = January, 2 = February, etc.).

Figure 4: Area burned versus BI for different classes of BI, for fires occurring between

October through January, from 1976-2000.

Figure 5: Average daily precipitation over the days preceding wildfires. The dark, thin

curves corresponds to days when the BI was in the range 100-150 and at least one wildfire

occurred; for such days, the dark, thin, solid curve indicates the mean daily precipitation

over the preceding days, and the dark, thin dashed curves represent the corresponding 95%-

confidence bounds. As described in Section 3, these confidence bounds are constructed

by considering all days with BI in the range 100-150: for each such day, the mean daily

precipitation over the preceding days is calculated, and the sample mean ± 1.96 times the
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sample standard deviation is used to construct the confidence bounds. The light, thick solid

curve corresponds to days when the BI was in the range 150-200 and at least one wildfire

occurred: for such days, this curve indicates the mean daily precipitation over preceding

days. The light, thick dashed curves are the 95%-confidence bounds corresponding to the

light, thick solid curve.

Figure 6: Bivariate kernel smoothing (top) and product of univariate kernel smoothings

(bottom) for temperature and maximum relative humidity. The shading of each pixel indi-

cates the smoothed ratio of the number of wildfires occurring on days of the corresponding

temperature and maximum relative humidity to the total number of such days. The result

is a smoothed rate of occurrence of wildfires, in number of fires per day. Points on the

plot indicate wildfires. In order to restrict attention only to rates that may be stably esti-

mated, pixels corresponding to values of relative humidity and temperature are omitted if

the denominator in the ratio described is in the bottom 10th percentile.

Figure 7: Success rate (percent of fires occurring on days of warnings) versus false alarm

rate (number of alarms per year), for the BI model (6) and Weather model (8). Dashed

curve = Weather model (8); solid curve = BI model (6).
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