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Abstract

Recently developed methods for the non-parametric estimation of Hawkes point
process models facilitate their application for describing and forecasting of spread of
epidemic diseases. We use data from the 2014 Ebola outbreak in West Africa to evaluate
how well a simple Hawkes point process model can forecast the spread of Ebola virus in
Guinea, Sierra Leone, and Liberia. For comparison, SEIR models fit previously to the
same data are evaluated using identical metrics. To test the predictive power of each of
the models, we simulate the ability to make near real-time predictions during an actual
outbreak by using the first 75% of the data for estimation and the subsequent 25% of
the data for evaluation. Hawkes models accurately describe the spread of Ebola in each
of the three countries investigated, and result in a 38% reduction in RMSE for weekly
case estimation across all countries when compared to SEIR models (total RMSE of
59.8 cases/week using SEIR compared to 37.1 for Hawkes). We demonstrate that
the improved fit from Hawkes modeling cannot be attributed to overfitting alone, and
evaluate the advantages and disadvantages of Hawkes models in general for forecasting
the spread of epidemic diseases.

Keywords: Compartmental models, disease epidemics, non-parametric estimation, point pro-
cesses, SEIR models, self-exciting.
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1 Introduction

Between March 2014 and June 2016, the West African countries of Guinea, Sierra Leone,

and Liberia experienced a historical Ebola outbreak, one that eventually surpassed all other

previous Ebola outbreaks combined in terms of total cases reported (WHO Ebola Response

Team, 2014). The epidemic resulted in nearly 30,000 infections and more than 11,000 deaths

(WHO 2016), and also took a severe toll on the economy and quality of life in the region,

due to decreased trade, border closures, and decreased foreign investment (United Nations

Development Programme, 2015). To mitigate future outbreaks of highly infectious diseases,

it is important that governments focus on improving detection and response capacity, among

other important public health policy objectives (Spengler et al., 2016). To this aim, statistical

models can play an important role in forecasting the spread of infectious diseases both during

and after an outbreak, leading to more effective allocation and mobilization of public health

resources.

One of the first major breakthroughs in epidemiological modeling was the development

of the compartmental model by Kermack and McKendrick (1927) which led to the SIR

(Susceptible-Infected-Recovered) model and its variants. Such models involve classifying in-

dividuals according to disease status, and then modeling the changes in numbers of infected,

susceptible, and recovered individuals in each group using a series of differential equation

models. Compartmental modeling has grown to become a primary resource of the epidemi-

ological community for modeling the establishment and spread of many infections such as

HIV, SARS, and influenza. In recent decades, traditional SIR models have been modified

with new parameters or more informed parameter estimates, to better fit individual disease

characteristics (Britton, 2010).

Among these derivations, the SEIR (Susceptible-Exposed-Infected-Recovered) compart-

mental model has become especially popular for describing the dynamics of the Ebola virus,
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most notably by Chowell et al. (2004) and applied to the recent West African Ebola out-

break by Althaus (2014). While effective in predicting some aspects of outbreaks, SEIR

models rely heavily on accurate parameter estimation and rely critically on the assumption

of no community intervention in response to outbreaks as well as the mass action assump-

tion that all susceptible members of the population are equally likely to be infected (Chowell

et al. 2004, Meyers 2007). Although departures from these assumptions are common and

frequently result in wildly inaccurate forecasts, these models provided important insights

about the potential progression of the disease without intervention, and played a critical role

in eliciting a swift public health response.

We put forth a simple, non-parametrically estimated Hawkes point process model as

an addition to the many popular methods used in the disease modeling and forecasting

toolbox. Hawkes models are currently widely used in seismology to describe earthquake cat-

alogs. Though these models have outperformed their competitors in earthquake forecasting

experiments (Schorlemmer et al. 2010, Zechar et al. 2013), rarely have they been applied

to the emergence and spread of infectious diseases. Self-exciting point processes were used

to model the occurrence of smallpox in Brazil by Becker (1977), and by Farrington et al.

(2003) to describe the effect of vaccinations on cases of measles in the United States. Re-

cently, Balderama et al. (2012) fit a modified Hawkes model to sightings of one invasive

species of red banana trees spreading in a Costa Rican rainforest, and Meyer et al. (2012)

used a parametric Hawkes model for the incidence of invasive meningococcal disease (IMD)

in humans, and the results proved useful for estimating spread rates and for the detailed

description of properties of the outbreak. However, both Balderama et al. (2012) and Meyer

et al. (2012) relied on parametric forms for the triggering function rather than more general

non-parametric methods, and neither compared the fit or performance of their fitted model

with those of more traditional compartmental models.
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Here, for the first time, we compare the performance of non-parametrically estimated

Hawkes point process models to more traditional compartmental models (SEIR) for estimat-

ing the spread of an infectious disease outbreak. While many variants and advances exist for

SEIR modeling, including time-varying transmission rates and additional compartments for

pending funerals, hospitals and exposed health care workers (see Viboud et al. 2018, Funk et

al. 2018, Champredon et al. 2018), we sought to test the most general, least parameterized

versions of each model class to enable a baseline-to-baseline comparison. Fortunately, the

application to the spread of Ebola in West Africa by Althaus (2014) provides an ideal test

case, where simple SEIR models have already been proposed, fitted, and shown by an expert

to provide a good description of an outbreak in a well-vetted, large dataset with replicates

across varying environmental and economic conditions in Guinea, Liberia and Sierra Leone.

Comparisons between point process models and compartmental models are particularly

illuminating, as the two types of models rely on different assumptions and operate under

fundamentally different mathematical frameworks. As such, Hawkes models may provide

different insights into the spread of epidemics and invasive species as compared to more

typical models, including a description of the spread via an estimated triggering kernel.

The structure of this paper is as follows. Following a description of the data in Section

2, we briefly review Hawkes and SEIR models in Section 3, as well as methods for model

fitting and assessing their fit. In Section 4, we compare the fit of the two models in Guinea,

Sierra Leone, and Liberia. A discussion and some concluding remarks are given in Section

5.
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2 Data

Data were collected and aggregated from the World Health Organization (WHO) outbreak

reports on Ebola during and after the outbreak period (WHO, 2016). These reports are

typically released sub-weekly by WHO and include the country, geographic location within

country (either by region, closest city, or village) as well as confirmed cases and deaths from

Ebola virus. Following Althaus (2014), data were filtered to include only a count of infection

cases from Ebola at regular, reported time points in three regions: Southeast Guinea, Eastern

Sierra Leone, and Northwest Liberia. The time range of these observations begins on 2014-03-

23 and ends on 2014-09-07, again to align with Althaus (2014). A copy of the data used can

be found at http://wildfire.stat.ucla.edu/rick/ebola. In fitting Hawkes models, estimated

occurrence times were distributed uniformly within report dates. For a small number of

report dates, the cumulative count of cases was subsequently revised downwards by WHO;

these revisions are ignored in the current analysis, as in Althaus (2014). The cumulative

count of cases reported by the WHO, and the data used to fit Hawkes models are plotted in

Figure 1.

3 Methods

3.1 Hawkes models and their non-parametric estimation.

A temporal point process is a collection of points occurring on the real line. Its associated

counting process N(t) counts the number of points occurring between time 0 and time t,

inclusive. Such a process is usually characterized via its conditional intensity λ(t), which is

the infinitesimal expected rate at which points are accumulating at time t, given the history

Ht of all points occurring prior to time t (Daley & Vere-Jones, 2003):
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λ(t) = lim
∆t↓0

E[N(t+ ∆t)−N(t)|Ht]

∆t
.

Because the conditional intensity is a function of time, it is convenient for describing events

that may happen with rates that change dynamically. Hawkes models are often extended

to data occurring in both space and time. However, to provide an equivalent comparison to

SEIR modeling where cases are aggregated over an entire spatial region as in Althaus (2014),

we consider a purely temporal Hawkes process (Hawkes 1971), where λ(t) is written as:

λ(t) = µ+K
∑
i:ti<t

g(t− ti). (1)

This is sometimes called a branching process, or epidemic by Ogata (1988) because every

occurrence ti contributes a secondary series of occurrences (aftershocks) occurring at a time-

varying rate Kg(t− ti), which in turn produces its own aftershock sequence, and so on.

Typically the triggering function g in equation (1) is constrained to be a density, so the

parameter K represents the expected number of new infections directly attributable to each

case. Since each case thus is posited to cause an expected number K of secondary infections,

any particular case is expected to be an ancestor to K + K2 + K3 + ... = 1
1−K − 1 total

infections. Thus K should satisfy 0 ≤ K < 1 in order for the process to be stable.

For many processes, the triggering density g(u) decays gradually as the time delay u in-

creases. Model fitting typically involves choosing a parametric form for g(u), and maximizing

the log-likelihood function (Daley & Vere-Jones, 2003),

l(θ) =
∑
k

log[λ(tk; θ)]−
∫ T

0

λ(t; θ)du (2)

where θ is the vector of parameters governing the shape of g and [0, T ] is the time window

of observation.

In applications to seismology, the parametric form of g has been well established over

decades of research. Because infectious diseases are a relatively newer application, it is desir-
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able to make no assumption about the shape of g. Therefore, we choose to non-parametrically

estimate the triggering function g, constant background rate µ and productivity constant K

using the method proposed by Marsan and Lengliné (2008). This method assumes that g is

a piecewise constant step function with user-defined number of steps and unknown heights

estimated by approximate maximum likelihood. A key principle driving this methodology is

that, given a model for λ(t), the probability that a point tj occurred exogenously due to the

background rate is

pjj =
µ

λ(tj)
, (3)

and the probability that point ti triggered point tj is

pij =
Kg(tj − ti)

λ(tj)
, (4)

as noted in Zhuang, Ogata and Vere-Jones (2002). An initial guess, p
(0)
jj and p

(0)
ij for 1 ≤

i < j ≤ N(T ), gives the full probabilistic branching structure of the point process, and

this is used to obtain estimates µ(0), K(0), and the steps heights of g(u)(0) following the

non-parametric procedure described in Marsan and Lengliné (2008) and Fox et al. (2016).

Knowing these in turn allows updated probabilities p
(1)
jj and p

(1)
ij to be computed using (3)

and (4). This is iterated until the largest update in any p
(k)
jj or p

(k)
ij is less than some small

constant ε. All parameters and triggering densities are estimated separately for each region.

3.2 SEIR models and their estimation.

The SEIR (Susceptible-Exposed-Infected-Recovered) compartmental model embodies the

idea that the infected population spreads the disease at time t with rate β(t), but can only

spread the disease to the proportion of the population still susceptible, and these rates and

proportions can change as an outbreak proceeds. It has been frequently used to describe

Ebola disease dynamics and is characterized by the following set of ordinary differential
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equations (Chowell et al. 2004):

dS

dt
= −β(t)

SI

N
(5)

dE

dt
= β(t)

SI

N
− σE (6)

dI

dt
= σE − γI (7)

dR

dt
= γI. (8)

Here S is the size of the susceptible population, E is the size of the population that has

contracted Ebola but is not yet infectious (latent population), I is the size of the infectious

population, and R is the size of the recovered/deceased population. These four quantities

sum to N , the total population. The populations are assumed to be spatially aggregated,

with a fixed N over time.

When modeling the infectious phase, the primary quantity of interest in this model is

β(t), the transmission rate. Under this model, it is assumed to decline exponentially at rate

κ:

β(t) = βe−κt, (9)

where t is the number of days from the start of the outbreak (Lekone and Finkenstädt, 2006).

Other parameters in the SEIR model include the rate of infectious onset, σ, and the rate of

death or recovery, γ. In model fitting, γ and σ are typically assumed constant, as in Althaus

(2014).

A central feature to compartmental SIR/SEIR modeling is the reproductive number,

R0(t). In the model, R0(t) at any time is given by the transmission rate, β(t), multiplied

by the average duration of infectiousness, 1/γ. Here R0(t) represents the average number

of new infections generated by an infected person until the infected person dies or recovers.

The critical threshold for R0(t) is 1: if R0(t) is above 1, the epidemic can spread to infect a
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large proportion of the population. When R0(t) drops below 1, the epidemic is unsustainable

(Diekmann and Heesterbek 2000, Lipsitch et al. 2003).

As in Althaus (2014), parameter estimates for SEIR models were obtained using maxi-

mum likelihood estimation (MLE) assuming that occurrences of new cases follow a Poisson

distribution. SEIR models were fit separately for Guinea, Sierra Leone, and Liberia using the

original discretely reported Ebola outbreak data containing only cases and deaths at each

reporting date, as in Althaus (2014). The theoretical SEIR model outlined above is purely

deterministic, so to convert this process into a stochastic model for simulating real-world

outbreaks, and to facilitate model evaluation using statistical methods, the tau-leaping ap-

proximation of Cao et al. (2007) was applied. Under the Tau-leaping simulation method

applied to SEIR, transitions from each of the S, E, I, and R populations are simulated based

on a Markov-Chain Monte Carlo (MCMC) process. Transition probabilities from S to E, E

to I, and I to R are all calculated using the current state populations and the fitted R0(t),

κ, σ, and γ. Under each round of simulation, at random one person at one time point will

transfer to a new population based on these probabilities. The transition probabilities are

then recalculated based on the new state populations. The process continues until the end

of the observed time window is reached. Optimization and estimation of the SEIR model

were performed using a Nelder-Mead algorithm and the deSolve R package (Soetaert et al.,

2010), and the tau-leaping method was performed using the adaptivetau R package (Johnson,

2016).

3.3 Evaluation Techniques

Simulations of both SEIR and Hawkes models were used in order to assess statistically the

compatibility of the observations with forecasts made with each model. SEIR and Hawkes

parameter estimates obtained using all available data for each country were used for each
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of 1,000 simulations, and the mean of simulations for each week and each country were

recorded and compared to the actual number of infections per week. Here, different scoring

rules are possible as surveyed in Gneiting and Katzfuss (2014), and we focus primarily on the

root mean square error (RMSE) of weekly predictions and note that our main findings are

not substantially influenced by the choice of scoring rule. SEIR simulations require assumed

values for the starting populations on day 0. Hawkes models do not require such assumptions.

However, according to the fitted Hawkes model, simulated infections near the beginning of

the recording period are assumed to result exclusively from the background process rather

than contagion, which may lead to under-predictions in week 1. Since both models are

impractical for estimating cases in week 1, only estimates from week 2 and beyond are used

for comparison. The susceptible population was set based on the most recently published

census data from Guinea (National Institute of Statistics, 2015), Sierra Leone (Sierra Leone

Statistics, 2016), and Liberia (LISGIS, 2009), under the assumption that approximately the

entire living population is susceptible. The infectious populations were set based on the

observed data from the WHO.

In a separate analysis to account for the possibility of over-fitting in a retrospective

analysis such as this, and to assess the ability of the models to forecast spread during an

actual outbreak, parameter estimates were fitted using only the infections occurring in the

first 75% of the observation window, and the resulting fitted models were then used to project

cumulative infections for the remaining period. This analysis also involved 1,000 simulations

per country for both SEIR and Hawkes.

Because the Hawkes and the SEIR model with tau-leaping rely on different underlying

probabilistic processes, the likelihood of a given model is difficult to interpret substantively,

but the relative fit of two distinct models can readily be compared using log-likelihoods.

For nested point process models, the difference in log-likelihood is approximately chi-square
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distributed with 2q degrees of freedom, where q is the difference in the number of parameters

between the two models (Ogata, 1978). For non-nested models, a common alternative in

maximum likelihood estimation is to calculate the Akaike Information Criterion (AIC), which

is calculated as −2·log-likelihood + 2p where p is the number of estimated parameters in the

model (Ogata, 1988). Lower AIC indicates better fit.

The competing SEIR and Hawkes models were also evaluated using superthinning (Clements

et al. 2013). In superthinning, the existing data points are first thinned where each point is

randomly kept independently of the others with probability min{b/(λ̂(t)), 1}, and then new

points are superposed according to a Poisson process over the observed time window [0, T ],

with rate (b−λ̂(t))+. Superthinning requires an initial choice of the tuning parameter, b, and

as suggested in Clements et al. (2013), we used the simple default value of the total number

of cases divided by the length, in days, of the observation period. For the SEIR model,

the value of β̂(t) multiplied by the size of the infectious population at time t was used as

the estimated rate function λ̂(t) to calculate thinning and superposing probabilities. After

superthinning, the resulting residual process is a homogeneous Poisson process with rate b

if and only if the estimate of the conditional intensity, λ̂, is correct (Clements et al. 2013),

and thus one may examine the superthinned residuals for uniformity. Sparsity of points in

the superthinned residuals corresponds to areas where the model over-predicted, whereas

clustering in the superthinned residuals indicates areas where the model under-predicted the

number of observed cases.
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4 Results

4.1 Model Fitting and Weekly Estimates

Figure 2 displays non-parametric estimates of the Hawkes triggering density in (1) for each

country. According to the fitted model, in Guinea and Liberia, an infected individual directly

triggered new infections on the scale of up to 3 days. In Sierra Leone, this density appeared to

decay somewhat faster, with most triggering occurring within 1 day, according to the fitted

Hawkes model. Note that the estimated triggering times in Figure 2 are times between

recorded diagnoses of cases of Ebola; such recordings may be substantially more clustered

than actual transmissions of the disease.

Table 1 shows the estimated parameters of the Hawkes model (1) for each country. More

intense clustering was observed in Liberia and a significantly smaller percentage of the points

are attributed to the background rate according to the fitted Hawkes model. According to the

fitted Hawkes model (1), 89% of cases in Guinea were attributable to contagion from other

observed cases in Guinea, whereas in Sierra Leone an estimated 93% of cases were attributed

to contagion from other observed cases, and in Liberia the corresponding estimate was 99%.

The log-likelihood scores for all models are shown in Table 2. The AIC for the Hawkes

model is lower than that of the SEIR model for all three countries, indicating that the

Hawkes models provided a better fit to the infection outbreak data in all three countries.

Hawkes models also had correspondingly lower RMSE in weekly predictions compared to

SEIR models, for all three countries. The total RMSE across all countries combined was 59.8

cases/week using SEIR and 37.1 cases/week using the Hawkes model (1), which represents

a 38% decrease in the RMSE.

Weekly estimates of total infections per week based on the mean of 1000 simulations of

the Hawkes and SEIR models are displayed along with the observed number of infections in
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Figure 3. The weekly simulation means for the fitted SEIR model resemble a lagged version

of the observed weekly counts with a lag of two weeks.

Hawkes models show a similar dependence on past fluctuations in cases due to the cas-

cading nature of Hawkes processes; a large number of cases in the previous week will be

expected to trigger more simulated infections into the following week. However, the week to

week dependence is weaker and more complex than in the fitted SEIR model. For example,

in weeks 18 through 20 in Guinea SE, the Hawkes weekly projection behaves like a one week

lag of the actual data. At other times, however, the Hawkes estimate appears to be more

adaptive than a mere one week lag, such as in forecasting the sudden decrease in infections

from week 11 to 12 in Guinea SE, or the rise in infections from week 5 to 7 in Sierra Leone

East. Across all three countries the Hawkes models tend to produce more accurate weekly

estimates with less extreme errors.

The errors in weekly projections for the Hawkes and SEIR models are displayed in Figure

4. The errors for SEIR tend to be slightly more variable than those for the Hawkes model.

One sees in Figure 4 that the Hawkes model tends to have smaller prediction errors than

the SEIR model for weekly projections of numbers of new infections, and this improved

performance seems to persist in all three West African countries and throughout the duration

of the outbreak.

4.2 Prospective Out-of-Sample Prediction

Figure 5 shows simulations of SEIR and Hawkes models fitted using only the first 75%

of data for each outbreak and simulated for the remaining 25% of the time. For Sierra

Leone, the SEIR model simulations forecast the trajectory of the number of new infections

quite accurately, especially during the first 16 days of the simulations. The SEIR model

significantly underestimated the number of new infections in Guinea throughout the course
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of the simulation. For Liberia, the simulations of the fitted SEIR model initially tended

to overestimate the number of observed infections, due to the approximately exponential

predicted acceleration characteristic of the SEIR model.

Simulated Hawkes processes for Guinea were remarkably accurate for the first 20 days of

the simulations, and tended on average to underpredict the number of new infections after

30 days. The simulations of the Hawkes model in Sierra Leone and Liberia also tended to

slightly underpredict the number of infections. In all three countries, the variation in the

Hawkes simulations was much greater than that of the SEIR model. Using the average of

the simulations as a forecast, the total RMSE of the forecasts in the first two weeks for SEIR

was 208.5 cases/day, compared to 60.5 cases/day for the Hawkes model, representing a 71%

reduction in error. The results suggest that overfitting is not responsible for the improved

performance of the Hawkes model for describing the spread of Ebola in these 3 countries,

since in these comparisons the models were assessed using data not used in the parameter

estimation.

4.3 Superthinning Analysis

Superthinning results are displayed in Figure 6 for all three regions. The superthinned residu-

als corresponding to the SEIR model for Guinea have obvious clustering during the first week

and around 2014-06-01 and 2014-08-20, indicating times when the model underestimated the

number of new infections. This likely occurs because the estimated conditional intensity is

heavily dependent on the current infectious population which can be highly variable. Im-

mediately after an unexpected surge in observed infections, the modeled rate according to

the SEIR model tends to remain relatively low for approximately 2 weeks, and as a result,

most of the observed points are retained after superthinning, resulting in intense clustering

in the residuals. The SEIR superthinned residuals for Guinea also have noticeable gaps
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and regions of sparsity of points, particularly around 2014-07-01, corresponding to the SEIR

model overestimating the number of new cases. The superthinned residuals corresponding

to Sierra Leone indicate poor fit in many places as well and most notably underestimation

of the number of new infections around 2014-05-21, as well as overestimation around 2014-

07-01. The superthinned residuals for Liberia corresponding to the SEIR model show few

noticeable departures from uniformity despite some sparsity of points around 2014-08-05.

The superthinned residuals corresponding to the fitted Hawkes models, shown in Figure

6, show no substantial departures from homogeneity for all three countries. The Hawkes

model does not have any gross inaccuracies in Guinea, Sierra Leone, or Liberia and appears

to more closely describe the spread of new infections in these three countries.

5 Discussion

The application of non-parametric Hawkes point process models to predict the spread of

Ebola virus in West Africa indicates that these novel methods have the potential to be a

useful addition to the pallet of available methods for disease forecasting. In all aspects of

fitting and evaluation of Ebola spread that we performed, Hawkes models performed as well

as, or better than, SEIR models. Our results do not suggest traditional SEIR models should

be discounted; rather, they highlight the utility of Hawkes processes as an alternative and

novel framework with which to predict disease spread to reveal new insights to how outbreaks

may evolve. SEIR and Hawkes models provide two very different descriptions of an outbreak

and focus on different aspects of the disease spread. Therefore, we suggest that ensemble

forecasts may provide maximum insights to inform public health decision making.

For instance, in weekly forecasts, Hawkes models appeared to provide more accurate

predictions than SEIR. This is possibly because a Hawkes model, unlike SEIR, works by
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estimating the temporal distribution of times between individual reported infections via the

triggering kernel. This provides new information about the dynamics of an outbreak that is

highly localized in time.

One might object that, in a retrospective analysis such as this, the improvement in fit

might be due to fitting a more complex model with more free parameters, in which case

overfitting might be a problem and the improvement would be unlikely to be replicated in

further applications, particularly if the model were used in forecasting. However, we found

that even when models were fit using one portion of the data and assessed on a different

portion of the data, simulating performance during an outbreak, Hawkes models were more

accurate than SEIR by a 71% reduction in RMSE for the first two weeks of forecasting.

This suggests that Hawkes models may in the future be used for more accurately forecasting

the spread of epidemic diseases, which could help facilitate and inform surveillance and

mitigation efforts to help curb outbreak spread as it occurs.

One limitation of our Hawkes models is their reliance on a constant supply of exogenous

infections from the background rate for the continued propagation of the disease. According

to the fitted model, subsequent triggered infections eventually die out since each infection

only directly triggers a Poisson(K) number of new infections where K < 1. Such a Hawkes

model would fit poorly to data exhibiting intense clustering of observed cases. This may

also lead to difficulty in properly modeling the first few weeks of a contagious outbreak when

the total cumulative number of cases is low or the latter parts of an outbreak where disease

spread is nearly saturated and slowing down due to human containment or intervention.

Some modifications to Hawkes models have been proposed to account for this issue and

show promising results (Schoenberg et al., 2019). Nonetheless, the results in this paper

demonstrate that basic Hawkes modeling can be effective in modeling caseloads up to a few

weeks after an outbreak has emerged.
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It should be noted, however, that the WHO data considered here consist of periodically

updating counts of cases (on average 4 days between updates). A higher temporal resolu-

tion will be particularly desirable for future research in order to improve the accuracy and

assessment of point process models. The data are likely not comprehensive in accounting

for every case of Ebola at the correct time due to limits on human resources in managing

the large area and population of the three study regions. Because SEIR modeling is heavily

dependent on the current population of infected and susceptible individuals, it may be hy-

pothesized to be more sensitive to missing data and errors in reporting, though this should

be studied and quantified in future research. While the spread of Ebola in West Africa in

2014 is one case study that demonstrates the effectiveness of Hawkes modeling, SEIR and

Hawkes models may perform differently for other diseases, regions, and time periods. It is

recommended that future investigations compare the fit of Hawkes and SEIR models to data

on other diseases and in other regions, and to perform prospective analyses to evaluate the

forecasting performance of the two types of models. Such work could help determine whether

Hawkes modeling will provide a generalizable framework for prediction across a variety of

infectious diseases, with highly disparate outbreak periods.

Another important area for future study is to use spatial-temporal triggering densities

in Hawkes models, to describe the detailed spatial-temporal distribution of infections when

sufficient spatial precision is available. Whether classic exponential and power law kernels

work just as well as the non-parametric approach can be checked as well. In this paper,

we limited the Hawkes model to purely temporal triggering in each spatial region, in order

for the Hawkes and SEIR models to be comparable and so both models could be estimated

using the data of Althaus (2014). However, one advantage of Hawkes models is their natural

generalization to the case of further spatial precision. By contrast, compartmental modeling

is generally limited due to its assumption of spatial homogeneity of each compartment’s pop-
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ulation. Some attempts have been made in this regard through meta-population modeling

and spatial compartmental modeling by Keeling & Rohani (2007) and Guofo et al. (2014),

respectively. The latter, for example, propose a fractional SEIR model using separate S,

E, I, and R compartments for each neighboring major metropolitan region in New Zealand

with additional terms for the spread between these regions, such models still spatially ag-

gregate the observations resulting in the loss of some information and resolution compared

with spatial-temporal point process models such as Hawkes models. These considerations

should provide impetus for future model refinement and improvements for each model class

that are likely to further improve our understanding of the evolutionary nuances of disease

outbreaks.
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Figure 1: Point process vs. WHO cumulative case counts

(Left to right): Guinea SE, Sierra Leone East, Liberia NW. Solid = cumulative number of cases reported

by WHO, dashed = cumulative number of cases reported by WHO with times uniformly spread within

WHO report dates. The start dates of outbreak from left to right are 2014-03-23, 2014-05-27 and 2014-04-05

respectively.
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Figure 2: Estimated Hawkes triggering density

(Left to Right): Guinea SE, Sierra Leone East, Liberia NW.

Table 1: Hawkes parameter estimates and standard errors

Guinea Sierra Leone Liberia

Background rate µ̂ 0.544 0.91 0.037

(0.053) (0.089) (0.015)

Productivity constant K̂ 0.893 0.931 0.997

(0.011) (0.0067) (0.0012)

Standard errors in parentheses are calculated following Fox et al. (2016).

Table 2: Log-likelihood, AIC and weekly RMSE for SEIR and Hawkes

Guinea (861 cases) Sierra Leone (1424 cases) Liberia (2081 cases)

SEIR Hawkes SEIR Hawkes SEIR Hawkes

Log-Likelihood -606.5 919.0 -239.3 2892.6 -330.0 5265.5

AIC 1207.0 -1234.0 472.6 -5181.3 654.0 -9933.0

RMSE of weekly forecasts (cases) 33.25 17.85 91.84 49.91 55.03 42.31
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Figure 3: Weekly forecasts of new infections from SEIR and Hawkes models.

(Top to bottom): Guinea SE, Sierra Leone East, Liberia NW. Solid curve = observed new case incidence per

week as reported in WHO data, dashed curve = SEIR forecast, dotted curve = Hawkes forecast. The start

dates of outbreak from top to bottom are 2014-03-23, 2014-05-27 and 2014-04-05 respectively. Each weekly

forecast is the mean of 1000 simulations. For each week, simulations of new cases were conducted using

model parameters fitted over each country’s entire data set. Each week’s simulations began with the same

number of initial infected cases based on the history of reported infections preceding each week’s simulation

start date.
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Figure 4: Errors in mean of weekly forecasts from SEIR and Hawkes models.

(Top to bottom): Guinea SE, Sierra Leone East, Liberia NW. Dashed curve = weekly error of SEIR model

forecasts, and dotted curve = weekly error of Hawkes model forecasts. The start dates of outbreak from

top to bottom are 2014-03-23, 2014-05-27 and 2014-04-05 respectively. Each weekly forecast is the mean of

1000 simulations. For each week, simulations of new cases were conducted using model parameters fitted

over each country’s entire data set. Each week’s simulations began with the same number of initial infected

cases based on the history of reported infections preceding each week’s simulation start date.
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Figure 5: SEIR and Hawkes projections using first 75% of data for fitting

(Left to right): Guinea SE, Sierra Leone East, Liberia NW. Starts dates of simulations from left to right

are 2014-07-28, 2014-08-13 and 2014-08-19 respectively. Thin curves in top panels show 1,000 simulations

of Hawkes model (2) with parameters fit using first 75% of the data for the corresponding country and

simulated forward for the last 25% of the observed time period. Thin curves in bottom panels show 1,000

simulations of SEIR model with parameters fit using first 75% of the data for the corresponding country and

simulated forward on the last 25%. Dashed curve = mean of simulations. Solid curve = actual cumulative

total number of observed cases as reported by WHO.
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Figure 6: Superthinning using Hawkes and SEIR infection rate parameters

(Left to right): Guinea SE, Sierra Leone East, Liberia NW. Top = Hawkes, bottom = SEIR. Thinned original

points are marked with plus signs, and superposed points are marked with circles. X-axis indicates days

from 2014-03-23, the beginning of the West African Ebola outbreak. The y-coordinates are uniform(0,1)

random variables.
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