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Abstract

Reported gang-related violent crimes in Los Angeles, California, from 1/1/14 to
12/31/17 are modeled using spatial-temporal marked Hawkes point processes with
covariates. We propose an algorithm to estimate the spatial-temporally varying back-
ground rate non-parametrically as a function of demographic covariates. Kernel smooth-
ing and generalized additive models are used in an attempt to model the background
rate as closely as possible in an effort to differentiate inhomogeneity in the background
rate from causal clustering or triggering of events. The models are fit to data from 2014-
2016 and evaluated using data from 2017, based on log-likelihood and superthinned
residuals. The impact of non-randomized violence interruption performed by The City
of Los Angeles Mayor’s Office of Gang Reduction Youth Development (GRYD) Inci-
dent Response (IR) Program is assessed by comparing the triggering associated with
GRYD IR Program events to the triggering associated with sub-sampled non-GRYD
events selected to have a similar spatial-temporal distribution. The results suggest that
GRYD IR Program violence interruption yields a reduction of approximately 18.3% in
the retaliation rate in locations more than 130 meters from the original reported crimes,
and a reduction of 14.2% in retaliations within 130 meters.
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1 Introduction

Crime occurrences are highly localized in space and time. The observed clustering in the

data has been theorized to be driven by two main effects: (1) spatial heterogeneity of local

risk factors for crime and (2) the dependence on recent crimes which may incite retaliations

and repeat offenses (Heckman 1991). This is in particular true of gang violence, though these

two effects are difficult to distinguish in the observed data and often confounded (Johnson

2008).

Gang crimes are often retaliatory in nature (Decker 1996, Klein and Maxon 2006). In-

teractions between gangs that threaten geographic territory or gang reputation can easily

escalate to a shooting, while a shooting or homicide often demands retribution in kind

(Hughes and Short 2005, Jacobs and Wright 2006), ultimately driving a sequence of tit-for-

tat reciprocal attacks (Bjerregaard and Lizotte 1995, Rosenfeld et al. 1999, Howell 2011).

Such a process of self-excitation or contagion that triggers retaliation may be linked to a

deep-seated drive for retaliatory aggression (Daly and Wilson 1998), street codes that de-

mand quick and decisive retribution (Anderson 1999, Jacobs and Wright 2006), commitment

to delinquent peers (Esbensen et al. 1993), the central role of reputation in gang life (Decker

1996), and social networks that promote the rapid spread of rumors (Hughes and Short 2005,

Green, Horel, Papachristos 2017).

On the other hand, such crimes are more apt to occur and be reported in some portions

of space-time simply due to heterogeneity of the physical and social environment. The

rate of crime reporting and police surveillance may vary across space, and features such

as housing density and economic disadvantage influence the number of gang-related crimes

(Papachristos and Kirk 2006, Woodworth et al. 2014). Other known influences on space-

time gang-related crime rates include street network structure (Beavon et al. 1994, Smith

et al. 2012) and gang territorial footprints that have remained nearly constant for decades
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(Patillo-McCoy 1999, Tita and Ridgeway 2007).

On the basis that reported crimes are driven by both spatial heterogeneity and retalia-

tion, it has recently been argued that crime data can be modeled using Hawkes processes

(Mohler 2011, Mohler 2014, Reinhart & Greenhouse 2018), suggesting that clustering in the

data is causal: an event happening to occur in a particular location increases the likelihood

that other events will occur in its vicinity in the near future, while some events occur exoge-

nously due to a chronic, spatially inhomogeneous background component. Causal clustering

may create the opportunity to prevent crime by disrupting the underlying, local dynamical

processes (Mohler et al. 2011, Mohler et al. 2015, Green, Horel and Papachristos 2017).

One such program with this goal has been implemented in Los Angeles since 2009.

The City of Los Angeles Mayor’s Office of Gang Reduction and Youth Development’s

(GRYD) Incident Response (IR) Program engages in violence interruption activities in an

effort to decrease retaliatory gang-related violent crime (Tremblay, Herz and Kraus in prep,

Cespedes & Herz 2011, Cespedes 2012, Skogan et al. 2009). Due to resource limitations,

these activities occur following only a subset of reported gang-related violent crimes, and a

question of interest is whether the GRYD IR Program is effective and how much, if at all, it

reduces retaliatory crime.

Central to our study of the effect of violence interruption on gang-related violent crime

is the discrimination between causal clustering and inhomogeneity in the data. Discrimi-

nating causal clustering and inhomogeneity is a difficult problem arising frequently in the

study of spatial-temporal point processes (see chapter 9.6 of Diggle 2014). Indeed, in fitting

spatial-temporal Hawkes processes, it is often inadvisable to use identical data to estimate

parameters governing the background rate (inhomogeneity) and the triggering density (causal

clustering), as these parameters may not be jointly identifiable. For this reason, Ogata (1998,

section 4.2) suggests modeling the background rate for earthquakes using only the largest

events in the catalog, for instance. For crimes, there is no such natural partitioning of events
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based on magnitude to guide the estimation of the background rate.

Therefore, in the case of reported gang-related crimes in South Los Angeles, we attempt

to model the inhomogeneity non-parametrically using generalized additive modeling. Specif-

ically, we model spatially-varying crime rates given observable covariates linked to social and

economic variations in the urban environment. With these factors accounted for, additional

clustering observed in the data may be more reasonably attributed to retaliatory criminal

behavior.

Spatially varying covariates have previously been used to model the background spatial

inhomogeneity in Hawkes processes by Reinhart and Greenhouse (2018). However, simple

parametric forms of the background rate were required for tractable analytic maximization

steps in the EM-algorithm. We propose an iterative procedure that allows for use of any

supervised learning method using covariates. For the first time, we compare the fit and

predictive performance between using covariates for estimating the background rate of crime

and the more common method of kernel smoothing over all crimes as in Mohler (2011,

2014). Methodological choices in bandwidth selection for kernel smoothing are examined.

We demonstrate through our results that kernel smoothing over all reported crimes in the

dataset can lead to confounded estimates of background inhomogeneity and causal clus-

tering/retaliation. We assess how this affects the estimated amount of retaliation and its

space-time decay rates.

One challenge in evaluating the efficacy of the GRYD IR Program is that its response

to violent events are not randomized due to practical and ethical considerations. GRYD

Community Intervention Workers (CIWs) use highly specialized knowledge of the local gang

dynamics and intervene in areas believed to be more prone to retaliations (Tremblay, Herz

and Kraus in prep). As a result, excitation/retaliation rates of crimes that have been exposed

to the GRYD IR Program are naturally biased upward compared to untreated crimes, even

after controlling for spatial inhomogeneity of the background rate of reported crimes. We
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propose a simple method inspired by point process thinning (Lewis & Shedler, 1979) to

sample untreated crimes so that they are distributed similarly in space and time to the crimes

exposed to GRYD IR Program efforts. This allows an approximate treatment vs. control

comparison of the GRYD IR Program. The results reveal that the GRYD IR Program is

effective, reducing rates of reported retaliations by an estimated 18.3% over two different

spatial scales and reducing such retaliation rates within a spatial scale by an estimated 14.2%

according to the fitted model.

The rest of this paper is organized as follows. A brief description of the data is provided

in Section 2. Our proposed iterative method to incorporate non-parametric regression for the

background rate of a Hawkes process while simultaneously estimating the triggering compo-

nent is explained in Section 3 along with a description of methods for covariate selection,

out-of-sample prediction log likelihoods, residual analysis, and sampling controls to compare

with the GRYD IR Program. The results and a discussion are given in Sections 4 and 5

respectively.

2 Data

Reports of gang-related violent crimes from 2014-2017 were collected by the Los Angeles

Police Department (LAPD) and the City of Los Angeles Mayor’s Office of Gang Reduction

Youth Development (GRYD). GRYD operates in 23 zones throughout Los Angeles (GRYD

2017 Evaluation Report). We focus on ten GRYD Zones in South Los Angeles that represent

7% of the total land of Los Angeles ( 1,302 km2) and approximately 15.5% of the total

population (3.9 million). This region accounted for 44.7% of all officially reported gang-

related violent crimes in Los Angeles between the beginning of 2014 to the end of 2017. Of

the 3627 reported crimes in our study, 1100 were exposed to GRYD IR Program efforts.

Multiple records, representing multiple victims of an identical crime, are collapsed to one
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report. LAPD officers record the locations of crimes at the level of street addresses or

intersections. For privacy reasons, latitudes and longitudes are uniformly randomized over

a 15 meter interval centered at each reported crime.

Demographic and socio-economic covariates are compiled at the census tract block level,

which is currently the highest resolution published by the U.S. Census. These data are

obtained from the American Community Survey (ACS, 2017), publicly available at https:

//factfinder.census.gov. We use the same eight variables used in Kyriacou et al. (1999),

who previously studied the relationship between socioeconomic factors and gang violence in

the city of Los Angeles: per capita income, unemployment, percentage with high school

degree, percentage of single-parent families, percentage of males, percentage under 20 years

of age, percentage black, and percentage Hispanic. We also include population density as

a potential covariate since in point process modeling our outcome variable is essentially

reported crime rate per unit of time and space while Kyriacou et al. (1999) studied reported

crimes per 100,000 people.

Latitudes and longitudes are geocoded to census block identifiers using https://geocoding.

geo.census.gov. Data on the land mass of each census block uses the latest publicly avail-

able source, the 2010 Census of Population and Housing (U.S. Census, 2012). Our study

region consists of 410 census blocks. The average size of each block is approximately 0.22

km2, and the median number of reported crimes in each census block over the 4 years of

observation is 7.

3 Methods

We note at the outset that most of our inferences are based on the particular formulation of

the Hawkes model in equation (10) below, with background rate estimated using (9). We will

later refer to this as model (IV). For comparison and to motivate this model and estimation
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procedure, we also consider various alternatives described in what follows.

3.1 Overview of Hawkes models

We consider crime data as a marked space-time point process {(ti, xi, yi,mi) : i = 1 . . . .N},

representing the times, locations, and mark information associated with gang-related violent

crimes. In our study, the marks recorded are indicators of whether crimes were exposed

to GRYD IR Program efforts or not. The rate of occurrences of points with any mark is

characterized via the conditional intensity,

λ(t, x, y|Ht) = lim
∆t,∆x,∆y↓0

E[N
(
(t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)

)
|Ht]

∆t∆x∆y
.

Daley & Vere-Jones (2003) showed that all finite dimensional distributions of a simple point

process (i.e. a process with almost surely no coincident points) are uniquely determined by

its conditional intensity. In the study region S, where (x, y) ∈ S ⊂ R2 and t ∈ [0, T ), N(A)

counts the random number of occurrences over the set A ⊂ S × [0, T ) given the history Ht

of all points occurring prior to time t. The conditional intensity λ can be interpreted as the

instantaneous expected rate of a reported crime per volume of space-time.

When the data features clustering over space and time, it is common to model λ using

self-exciting point process models, where each event triggers further events by temporarily

and locally boosting the conditional intensity λ. A Hawkes model is a particular formulation

for a self-exciting process that has been successfully used to model the spread of invasive

species (Balderama et al. 2012), epidemic disease spread (Meyer et al. 2012), earthquakes

(Ogata, 1998), financial transactions (Bauwens & Hautsch, 2009), neuron activity (Johnson,

1996), reported burglaries (Mohler et al. 2011), email networks (Fox et al. 2016) and terrorist
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attacks (Porter & White, 2012). The Hawkes model can be specified as

λ(x, y, t) = µ(x, y, t) +
∑
i:ti<t

κ(i)g(x− xi, y − yi, t− ti), (1)

where the triggering density g governs the spatial-temporal distance of triggered events

from their antecedent events and is usually modeled to decay with distance from the origin

over time and space. Previous authors have typically modeled the background rate µ as

spatially varying but constant in time. The spatial-temporal distribution of triggered events

is commonly assumed to be separable, meaning g(x, y, t) = g1(x, y)g2(t). We scale g1 and g2

to be densities as suggested in Schoenberg (2013), which implies the productivity κ(i) > 0

represents the expected number of events triggered directly by event i, and we let κ(i) = κ1

if crime i is exposed to GRYD IR Program efforts and κ2 otherwise, where κ1 and κ2 are

scalar parameters to be estimated. In the absence of the GRYD IR Program, any particular

crime is expected to be an ancestor to κ2 + κ2
2 + κ3

2 + ... = 1
1−κ2 − 1 total retaliatory crimes.

Productivities must be nonnegative and are constrained to be less than 1 in order for the

process to be stable.

Our parametric specification of g follows Mohler (2014) and Reinhart and Greenhouse

(2018). Consider g2(t−ti) = ωe−ω(t−ti) where ω controls the decay rate of triggering and 1/ω

is the average response time. The spatial distribution of triggered crimes, g1, is assumed to

be isotropic, that is g1(x, y) = h(r) in polar coordinates where r =
√
x2 + y2 and h(r, θ) =

h(r). Given
∫ ∫

A
g1(x, y)dA =

∫∞
0

∫ 2π

0
g1(r cos θ, r sin θ)rdrdθ =

∫∞
0

∫ 2π

0
h(r)rdrdθ = 1, set

g1(x, y) = h(r)/2πr so that h(r) is the probability density function for the distance r between

a reported crime and any reported retaliation it triggers. The function h of distance may be

any density on the real half-line, such as the truncated Gaussian centered at zero,

h(r) =

√
2√
πσ2

exp(
r2

2σ2
). (2)
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Given a parametrized model for λ(t, x, y), the log-likelihood of an observed sequence of

reported crimes over an interval [0, T ] in region A is (Daley & Vere-Jones 2003)

l(Θ) =
n∑
i=1

log(λ(ti, xi, yi|Ht))−
∫ T

0

∫ ∫
A

λ(t, x, y|Ht)dxdydt. (3)

Ogata (1978) showed that under general conditions the maximum likelihood estimate (MLE)

is consistent, asymptotically unbiased and efficient, with standard errors estimated using the

square root of the diagonal elements of the inverse Hessian of the loglikelihood.

3.2 Background Rate Estimation

Accurate estimation of the background rate µ is critical for accurately estimating the pa-

rameters in (1), and is especially important for the discrimination between spatial-temporal

inhomogeneity and causal clustering. The key idea is that after properly accounting for

background inhomogeneity, the remaining clustering can be reliably attributed to retalia-

tion. Background rate estimation is thus the subject of careful study here, and we consider

two different estimates for the background rate µ(x, y, t) in (1).

3.2.1 Kernel Smoothing with Stochastic Declustering

The background process µ(x, y, t) represents the expected rate of reported crimes in the

absence of retaliation. In applying such Hawkes models to reported crimes, Mohler et al.

(2014) propose estimating µ using a time-invariant smoother over all events, using mark

dependent weights, for example:

µ̂(x, y, t) = µ(x, y) =
N∑
i=1

β(i)

2πη2T
exp

(
− (x− xi)2 + (y − yi)2

2η2

)
. (4)
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The smoothing bandwidth η is typically constrained to be identical to the triggering band-

width σ in (2) in order to achieve numerical stability in optimization and identifiability of

the parameters (Mohler et al. 2014). In our study, we choose not to impose these constraints

on the smoothing nor triggering bandwidths and instead estimate them separately in what

follows below.

Estimating the background rate by smoothing over all points with equal weights, regard-

less of whether each point is more likely to be a background point or a retaliation, may lead

to mis-attribution of triggering as background and vice versa. In addition, in the presence of

intense spatial clustering, a fixed bandwidth may yield noisy estimates in sparse areas and

over-smoothed estimates between dense and sparse areas (Zhuang et al., 2002). Thus, as

an alternative to (4), we obtain a weighted, variable-bandwidth, stochastically de-clustered

background rate estimate:

µ̂(x, y, t) =
N∑

i:(xi,yi)6=(x,y)

wi
2πd2

iT
exp

(
− (x− xi)2 + (y − yi)2

2d2
i

)
. (5)

In (5), the variable bandwidth di is the radius of the smallest disk centered at point (xi, yi, ti)

that includes at least np other events; each di is constrained to be at least some minimal

value ε representing the approximate size of errors in location estimates. The weight wi is

the estimated probability, according to the fitted model (1), that crime i is a background

event, and is computed as

wi =
µ̂(ti, xi, yi)

λ̂(ti, xi, yi)
. (6)

The algorithm, originally proposed in Zhuang et al. (2002), works by iteratively estimating

the parameters of h and updating estimates of {wi}Ni=1.
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3.2.2 Temporal Variation in Background Rate

According to (5), the temporal density of background events is stationary (1/T ), and the

spatial distribution does not change over time. However, given the pronounced temporal

fluctuations in reported gang-related violent crimes shown in Figure 1, a constant temporal

background rate is unrealistic and may lead to inflated estimates of productivity (i.e. mis-

attribution of background crimes as triggered events). Therefore, as in Fox et al. (2016), we

allow the temporal distribution of background crimes to be non-stationary:

µ̂(x, y, t) = v(t) ·
N∑

i:(xi,yi)6=(x,y)

wi
2πd2

i

exp
(
− (x− xi)2 + (y − yi)2

2d2
i

)
. (7)

To estimate the temporally varying component v(t) in the background rate (7), we

follow the componentwise procedure of Fox et al. (2016), obtaining the estimate v̂(t) =

cf̂1(h)f̂2(d)f̂3(y) where h ∈ [0, 24), d ∈ {0, . . . , 6} and y ∈ {0, 1, 2, 3} represent hours, days

and years respectively. We estimate the daily cycle f̂1(h) via kernel smoothing the times of

the days of the reported events; the repeating weekly cycle f̂2, and year-to-year variations f̂3

are simply estimated via histogram estimators representing the proportion of crimes occur-

ring on certain days d and years y, i.e. f̂2 =
∑N

i=1 I(di = d)/N and f̂3 =
∑N

i=1 I(yi = y)/N .

The estimated daily, weekly, and multi-year components of v(t) are shown in Figure 1. No

substantial annual cycle was observed for reported gang-related violent crimes in this study

period. The constant c is chosen to ensure that
∫ T

0
v̂(t)dt = 1 and is accurately approximated

by a Riemann sum.

3.2.3 Generalized additive modeling of covariates

Rather than estimating the background rate µ by smoothing over observed events, an alter-

native way to estimate the background rate is to use information on the spatial heterogeneity

in demographic and socio-economic covariates. Reinhart and Greenhouse (2018) used covari-

11



ates to model the background rate of a Hawkes process for reported burglaries in Pittsburgh

with the parametric form

µ(x, y) = exp
(
v(x, y)′γ

)
, (8)

where γ is a vector of coefficients to estimate and v(x, y) is a vector of covariates measured at

location (x, y). In our application, following covariate selection using gam, v(x, y) represents

the covariates per capita income, population density, male percentage, single parent rate and

unemployment rate for the census block containing the location (x, y).

Instead of requiring the background rate to follow an exponential or some other particular

functional form, we propose allowing µ̂(x, y) = f̂(v(x, y)), where f̂ is estimated nonparamet-

rically, e.g. by generalized additive modeling (GAM). A simplistic approach would be to

first estimate f by nonparametric regression of the observed crimes on the covariates v(x, y).

The problem with such an approach, however, is that both background and triggered crimes

would be used in estimating f , though in principle only background crimes should be used.

We propose the following iterative solution. Suppose the study region is divided into 410

census blocks {Bk}410
k=1, where Bk is a set of indices of crimes belonging to the kth census

block. Given a fitted model, we estimate the background crime rate of census block k as∑
i∈Bk

wi/ak where wi is defined in (6) and ak is the area in km2. We propose to estimate f

via nonparametric regression of
∑

i∈Bk
wi/ak on covariates in the following algorithm:

Algorithm 1

1. Initialize l← 0, w
(0)
i ← null and µ(0)(x, y)← 10.

2. Using maximum likelihood estimation, fit

λ(x, y, t) = c · v(t) · µ(l)(x, y) +
∑
i:ti<t

κ(i)g1(x− xi, y − yi)g2(t− ti)

where v(t), κ, g1, g2 are as defined previously and c is an estimated parameter
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governing the proportion of events attributed to the background rate.

3. Calculate wi from (6) and update w
(l+1)
i ← wi for i = 1 . . . N .

4. Fit

µ̂(x, y) = f̂(v(x, y)), (9)

where f is estimated by nonparametric regression of
∑

i∈Bk
wi/ak on census block

level covariates and update µ(l+1)(x, y)← f̂(v(x, y)).

5. If maxi |w(l+1)
i −w(l)

i | > ε, where ε is a small positive number, then update l← l+1

and go to step (2). Otherwise stop.

The function f can be estimated using any nonparametric regression method in step (4),

and we estimate f via GAM in the application here for maximal flexibility.

3.3 Near and far-field triggering

The smoothness of the estimated background rate using spatial covariates depends not only

on the variability of the covariates across different spatial units, but also on the resolution

of the spatial units themselves. In practice, the observed spatial covariates are piecewise

constant. Even when using the highest available spatial resolution kept by the U.S. Census

where the average size of a census block is equivalent to an area of a 470 by 470 meter square

containing only a median of 7 crimes over 4 years, clustering in the reported crimes is still

evident within the scale of a census block, especially in census blocks with high 4 year crime

counts.

Therefore, when estimating models with background rates using covariates, we allow

different parameters for the near and far-field triggering, using the following modification to
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the total triggering rate:

λ(x, y, t) = v(t)µ(x, y) +
∑
i:ti<t

κnear(i)
h1(r)

2πr
ω1e

−ω1(t−ti) +
∑
i:ti<t,
r≥d

κfar(i)
h2(r)

2πr
ω2e

−ω2(t−ti), (10)

where h1 is a half-normal density over the positive real line with triggering bandwidth σ1

and h2 is a half-normal density centered at d (d km’s away from the originating reported

crime) with support [d,∞) and with triggering bandwidth σ2. We estimate d using the

median distance from the observed crimes to their nearest neighbors in different census

blocks (130m). We use the notation κnear(i) = κ1 and κfar(i) = κ3 if crime i is associated

with the GRYD IR Program, and otherwise κnear(i) = κ2 and κfar(i) = κ4, where κ1, κ2, κ3

and κ4 are scalar parameters to be estimated by maximum likelihood.

3.4 Integral Approximation

The first term of the log-likelihood in (3) is straightforward to compute while the integral

term must be numerically approximated, which can be a substantial computational chal-

lenge (Harte 2014). In all models investigated in this paper, we use the analytic integral

approximation in Schoenberg (2013), and find parameter estimates by MLE using the quasi-

Newton method developed by Broyden, Fletcher, Goldfarb and Shanno (1970). The integral

approximation is based on interchanging the order of the integral in (3) and the sum in (1);

this approximation is perfect if all triggering is confined to the spatial-temporal region being

observed (Schoenberg 2013).

For example, the approximate log-likehood for the model with background rate (7) is:

l(κ1, κ2, β1, β2, ω, σ, η) =
N∑
i=1

log[λ(xi, yi, ti)]−
N∑
i=1

[
wi + κ(i)

]
. (11)

As a baseline for comparison, we also consider a model with a spatially constant background
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rate

µ(x, y, t) = c · v(t), (12)

whose log-likelihood is

l(κ1, κ2, c, ω, σ) =
N∑
i=1

log[λ(xi, yi, ti)]− c · |S| −
N∑
i=1

κ(i), (13)

where |S| is the area of the observation region being studied.

3.5 Sampling non-GRYD crimes as controls for GRYD IR Pro-

gram crimes

After attempting as carefully as possible to distinguish inhomogeneity from causal clustering,

we seek to evaluate whether the GRYD IR Program effectively reduces retaliations by com-

paring the estimated productivity for reported crimes with exposure to violence interruption

with the productivity of reported crimes without such exposure. If the GRYD IR Program

violence interruption efforts were randomly assigned over space and time, this comparison

would be straightforward. However, it is well known that the decision by the GRYD IR

Program when and whether to intervene is made based on attempts to maximize the effect

of violence interruption with limited resources, using specialized knowledge of local gang

dynamics in an attempt to intervene following crimes believed most likely to spark retali-

ation (Skogan et al. 2009; Tremblay, Herz and Kraus in prep). Thus, the reported crimes

associated with the GRYD IR Program are more likely to occur in areas of high reported

gang-related activity, for instance, and thus to occur in areas of higher subsequent reported

crime incidence despite the possible effectiveness of the violence interruption.

Instead of using just two marks for the GRYD IR Program and non-GRYD, we intro-

duce a third mark which is sampled from non-GRYD crimes that are spatially-temporally
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distributed similarly to GRYD IR Program crimes. Our aim is to obtain a sample of non-

GRYD crimes with similar spatial-temporal characteristics as the GRYD IR Program crimes

to isolate the effect of the GRYD IR Program.

We suppose that reported crimes exposed to GRYD IR Program efforts occur with an

intensity varying over space, hour of the day and day of the week, given by P (x, y, h, d) =

P1(x, y)P2(h)P3(d), and that non-GRYD crimes follow Q(x, y, h, d) = Q1(x, y)Q2(h)Q3(d).

Spatial distributions P1 and Q1 are estimated using kernel density estimation with Gaussian

kernels and default bandwidths along each dimension given by Sheather & Jones (1991).

The 24 hour cycles P2, Q2 and day-to-day weekly cycles P3, Q3 are estimated in the same

manner as the components of v(t) in (7) and displayed in Figures 3 and 4. We then sample the

same number of non-GRYD crimes as there are reported crimes for the GRYD IR Program,

without replacement, using sampling weights wi given by

νi =
P̂1(x, y)P̂2(h)P̂3(d)

Q̂1(x, y)Q̂2(h)Q̂3(d)
. (14)

This results in a sample of non-GRYD crimes whose spatial-temporal distribution is similar

to that of GRYD IR Program crimes, and this sampling can be performed repeatedly. The

results of one such sampling are shown in Figure 2. This sampling is repeated 50 times,

and the associated productivities are estimated by maximum likelihood each time. We then

compare the average estimated productivity of GRYD IR Program crimes with the average

estimated productivity of the sampled control crimes to evaluate the efficacy of the violence

interruption efforts.

3.6 Evaluation Methods

Four types of models and background rate estimation methods are investigated: (I) constant

background model in (12), (II) kernel smoothed background model in (5), (III) covariate
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background model in (9), all with triggering as in (2), and (IV) covariate background model

(9) with near and far-field triggering as in (10). To assess the efficacy of the GRYD IR

Program, we also evaluate the fit of the model (IV) with sampled non-GRYD control marks

as detailed in Section 3.5. Log-likelihood scores are used to compare the goodness of fit on

training data from 1/1/14 to 12/31/16, the same data used in the fitting. To investigate

possible over-fitting, out-of-sample log-likelihood scores for each model are also computed,

using data from 1/1/14 to 12/31/16 in the fitting and data from 1/1/17 to 12/31/17 for

evaluation. Superthinned point process residuals, described below, are used to examine the

model forecasts from 1/1/17 to 12/31/17.

Superthinning involves both thinning the original data points and superposing a new set

of points, and is an effective way to evaluate the fit of a point process model (Clements et al.

2013, Bray and Schoenberg 2013). The observations are first thinned, i.e. each observation

is randomly kept with probability min
{
b/λ̂(t), 1

}
, where b is a tuning parameter chosen

by the user. Next, a Poisson process with constant rate b is generated over the space-time

observation region, each point of this Poisson process is independently kept with probability

max
{

(b− λ̂(t))/b, 0
}

, and these remaining points are superposed, i.e. added to the collection

of thinned observations. The resulting residual process should be a homogeneous Poisson

process with rate b if and only if the modeled conditional rate is correct (Clements et al.

2013), and thus departures from homogeneity in the residuals can be detected as evidence of

lack of fit of the model. Sparsity of points in the superthinned residuals corresponds to areas

where the model over-predicted, whereas clustering in the residual points indicates areas

where the model under-predicted the number of observed events. For all models considered

here, we use identical candidate points to be superposed, so that our comparisons are not

impacted by random fluctuations in the superposition step, and we use the mean number of

observed points per unit of space-time as the default estimate of b, as suggested by Clements

et al. (2013).
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4 Results

4.1 Spatial-temporal and covariate effects

The spatial distribution of the GRYD IR Program events, non-GRYD events sampled ac-

cording to (14), and other non-GRYD events are shown in Figure 2, and the temporal dis-

tributions of the three classes of events are shown in Figures 3 and 4. If GRYD IR Program

events were assigned purely at random, then the point patterns shown in the three panels

of Figures 2, 3 and 4 would be distributed identically. As expected, however, the GRYD

IR Program events are substantially more clustered than the non-GRYD events depicted

in the rightmost panel of Figure 2. The temporal distributions of GRYD IR Program and

non-GRYD events in Figures 3 and 4 show modest deviations.

The following five variables are selected by the stepwise selection procedure in the R

package gam (Hastie, 2018): income per capita, unemployment, population density, percent

male and percent single parent families. These same variables were selected even when dif-

ferent initial models were used for the stepwise procedure. The estimated additive predictors

for the GAM regression background rate are shown in Figure 5. Estimated background rates

of reported gang-related violent crimes are higher in areas with high population density and

in areas with low income per capita and high unemployment rates. A slight increase in the

estimated background rate of reported crimes is associated with areas where the proportion

of males is lower and the percentage of single parent families is higher, though these effects

appear to be rather minimal.

The estimated spatial background rates (excluding the global non-stationary component

v(t)) for models (II) and (IV) are depicted in Figure 6. With all three models, the estimated

background rates indicate substantial inhomogeneity. Certain hot spots are noticeable, such

as near Hyde Park (-118.335o, 33.98o) and Crenshaw (-118.35o, 34.02o) as well as along Nor-

mandie Avenue (longitude -118.3o). The eastern half of the study region generally appears
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to have a higher background rate.

4.2 Model Fit and Estimates

Parameter estimates and log-likelihood scores for models fit using data from 2014-2016 are

reported in Table 1. Comparison of the fit of models (I), (II), and (III) reveals that all

three have serious inadequacies in untangling causal clustering from inhomogeneity. Model

(I) fits worse than the others as indicated by its much lower log-likelihood in-sample (for

2014-2016). Model (I) also fits the worst on the out-of-sample testing data from 2017. Model

(IV) has considerably higher log-likelihood than the other models, indicating superior fit to

the in-sample, 2014-2016 data. In contrast to model (II), models (III) and (IV) have a

higher log-likelihood while their estimated background rates attribute more reported crimes

to triggering (18% and 22% respectively). Between models (III) and (IV), the more complex

model (IV) with independent triggering for near and far-field retaliations has higher in-

sample log-likelihood.

The variable bandwidth estimate (5) used in model (II) appears less smooth than model

(IV) in Figure 6, and as a result attributes only 16% of reported crimes to triggering. The

background rate in model (II) uses np = 15, which is the minimum recommended number

by Fox et al. (2016). The 25th, 50th and 75th percentile of the varying bandwidths are

respectively 275, 351 and 437 meters, and is comparable to the bandwidth selected using

Sheather & Jones (1991).

In Table 2, the estimated spatial triggering bandwidth σ in models (I), (II), and (III) are

all very local, between 12 to 15 meters, and the respective estimates of the temporal decay

ω, are consistently small with a median time to response of almost 180 days. This would

suggest that triggered crimes are near-repeat and chronic, and there are few swift retalia-

tions across gang territories. Model (IV) investigates whether there exists any additional
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triggering beyond the scale of census tract blocks. The estimated percentage of crimes at-

tributed to background, non-triggered crimes (78.2%) in model (IV) is smaller than models

(I), (II) and (III). According to the fitted model (IV), an estimated 18.1% of crimes in this

dataset are triggered within the scale of a census block and 3.7% are triggered by preceding

crimes occurring at least 130 meters away. These estimates are found by a weighted aver-

age of (κ1, κ2) and (κ3, κ4), respectively. The estimated spatial bandwidth for the far-field

triggering is 200 meters and the estimated median time to retaliation is 13 days. Thus, the

fitted parameters in model (IV) suggest that there exists a small but non-trivial amount of

triggering which occurs across distances of several hundred meters within short inter-event

times.

4.3 Out-of-Sample Evaluation

The log-likelihood evaluated on the testing data using models with parameters estimated

using only data from 2014-2016 and assessed on data from 2017 are listed in the bottom row

of Table 1. Not surprisingly, the constant background model (I) offers a poor fit compared

to all models. Between models (III) and (IV), the more complex model (IV) has slightly

higher out-of-sample log-likelihood while both out-performed model (II). The results suggest

that the superior in-sample fit of models (III) and (IV) relative to (II) is not a result of

over-fitting.

Superthinned residuals are shown in Figure 7. Model (I) shows clustering of residual

points east of Normandie Avenue and sparsity in the North Western quarter of the observa-

tion region. There is identifiable clustering (underprediction) in northern census tracts for

kernel smoothed background model (II) while the covariate model (IV) does not exhibit this

feature.
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4.4 Efficacy of the GRYD Program

Table 3 shows the average of 50 estimates of model (IV) using all 4 years of data with sampled

non-GRYD control marks detailed in Section 3.5. The estimated productivities show that

the GRYD IR Program appears to have an effect on reducing triggered reported gang-related

violent crimes. For distances less than 130m within census blocks, the GRYD IR Program

appears to reduce retaliation rates from 0.240 to 0.206 retaliations per crime, for a decrease

of 14.2%, compared with events in similar locations but without the GRYD IR Program.

Over distances greater than 130m, the GRYD IR Program appears to reduce retaliatory

triggering rates from 0.197 to 0.161 retaliations per crime, for a decrease of 18.3%. Note

that the estimated productivities for GRYD IR Program and non-GRYD crimes in Table 1

offer a biased estimate of the impact of GRYD IR Program violence interruptions because

they are not a random assignment over space and time, as seen in Figures 2,3 and 4. The

parameter estimates in Table 3 are preferable for this purpose.

5 Discussion

This paper proposes an algorithm to non-parametrically estimate the background rate of a

marked spatial-temporal point process model using spatial covariates. After fitting a vari-

ety of models designed to describe the inhomogeneity in the background rate as accurately

as possible, we find evidence of chronic, near-repeat clustering within the scale of a census

tract. For models (I), (II) and (III), this sub-census tract clustering dominated the estimated

triggering parameters, which suggested that almost no retaliations occur swiftly across gang

territories. Model (IV) performed better both within and out-of-sample, and its fitted pa-

rameters suggest that an estimated 18.1% of reported crimes in this dataset occur in a slow

and chronic response to preceding crimes occurring within the scale of a census block and

3.7% are swift retaliations to preceding crimes occurring at least 130 meters away.
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To evaluate the efficacy of the GRYD IR Program, we propose a sampling method to find

a subset of un-intervened crimes to serve as controls. This revealed that, after accounting

for the fact that GRYD IR Program violence interruption efforts occurred in locations of

generally high rates of gang-related violent crimes, the GRYD IR Program appears to reduce

reported retaliations occurring 130 meters away or more by approximately 18.3%, and appear

to decrease reported retaliations within 130 meters of the original reported crime by 14.2%.

Future research will explore spatially varying retaliation rates.

Methods for bandwidth selection are critical when using kernel smoothing methods for

background rate estimates, which can in turn have a large impact on estimates of triggering,

as any observations not attributed by the model to the background rate are necessarily

attributed to retaliation. To allow for more accurate estimation, we use variable bandwidth

kernel smoothing , allowing the bandwidths used in the estimation of the background rate to

be different from those governing the triggering kernel. Over-fitting is also a serious concern,

and we find no evidence here of over-fitting for model (III) and (IV), which offer superior fit

to the data from 2014-2016 used in the model fitting, as well as high log-likelihoods evaluated

on external data from 2017 used for testing compared to models (I) and (II). Therefore using

covariates to estimate the background rate, rather than simply smoothing over the observed

points, appears to be preferable.
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Figure 1: Temporal distribution of all gang crimes

(Left to right): Daily cycle, weekly cycle, and year-to-year variations in crime used for components of v̂(t).

Figure 2: Spatial distribution of marks

(Left to Right): Locations of GRYD IR Program crime events, one sample of non-GRYD crimes and remain-
ing unsampled non-GRYD crimes. The union of crimes in these three panels are used to estimate models in
Table 1.
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Figure 3: Temporal distribution of marks (hourly)

(Left to Right): Kernel density of GRYD IR Program crime events, average kernel density of 50 samples of
non-GRYD crimes and remaining unsampled non-GRYD. Dotted: 5th and 95th percentile of 50 estimated
kernel densities.

Figure 4: Temporal distribution of marks (weekly)

Proportion of occurences each day. (Left to Right): GRYD IR Program crime events, average of 50 samples
of non-GRYD crimes and remaining unsampled non-GRYD. Whiskers: 5th and 95th percentile proportion
of 50 samples.
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Figure 5: Estimated additive predictors of GAM background

Dotted=95% confidence intervals. The y-axes are the individual additive contributions of each covariate
towards the output which is in units of background crimes per square km. All covariates are estimated with
2 degrees of freedom.
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Figure 6: Estimated spatial background rates

(Left, Right): Kernel smoothed background rate with variable bandwidth and weights of model (II), gener-
alized additive model (GAM) background rate of model (IV).

Table 1: Productivity and background rate parameter estimates, log-likelihood

(Model Number): Background Type

(I): Constant
(II): Variable

Bandwidth/Weights
(III): Covariate (IV): Covariate

GRYD IR Program, κ1 0.184 0.144 0.172 0.170
(0.018) (0.017) (0.018) (0.014)

non-GRYD, κ2 0.197 0.170 0.187 0.186
(0.012) (0.011) (0.012) (0.011)

Constant background, c 24.644
(0.560)

GRYD IR Program, κ3 (far-field) 0.102
(0.027)

non-GRYD, κ4 (far-field) 0.00893
(0.0014)

Percent Background 0.807 0.838 0.818 0.782
Log-likelihood 0 143.17 177.64 187.22
Out-of-sample log-likelihood 0 59.8 73.3 75.9

The standard errors of the parameter estimates are in parentheses. Spatial units are in kilometers and
temporal units are in days. Log-likelihoods are the difference with respect to model (I), where the log-
likelihood was -11148.84 and the out-of-sample log-likelihood was -3964.9.
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Table 2: Triggering shape parameter estimates

(Model Number): Background Type

(I): Constant
(II): Variable

Bandwidth/Weights
(III): Covariate (IV): Covariate

Temporal decay ω1 0.00391 0.00389 0.00391 0.00391
(0.00019) (0.00021) (0.00020) (0.00021)

Temporal decay ω2 (far-field) 0.0519
(0.0099)

Spatial triggering bandwidth σ1 0.0151 0.0121 0.0139 0.0138
(0.001) (0.0009) (0.0010) (0.001)

Spatial triggering bandwidth σ2 (far-field) 0.200
(0.012)

The standard errors of the parameter estimates are in parentheses. Spatial units are in kilometers and
temporal units are in days.

Figure 7: Superthinned Residuals

(Top, left to right): Constant background model (I), variable bandwidth - variable weighted kernel smoothed
background model (II). GAM background model (IV). Dots: Kept original points. Crosses: superposed
points.
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Table 3: Estimated productivity and smoothing weights for sampled controls

Model (IV) with sub-sampled control marks
GRYD IR Program, κ1 0.206

(0.017)

Sampled non-GRYD controls, κ2 0.240
(0.018)

Remaining non-GRYD, κ3 0.196
(0.014)

GRYD IR Program, κ4 (far-field) 0.161
(0.033)

Sampled non-GRYD controls, κ5 (far-field) 0.197
(0.033)

Remaining non-GRYD, κ6 (far-field) 0.0002
(0.0028)

Log-likelihood -14610.16

The standard errors of the parameter estimates are in parentheses. Data from 1/1/2014 to 12/31/2017 are
used.
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