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Abstract

Highly clustered event sequences are observed in certain types of crime data, such as

burglary and gang violence, due to crime specific patterns of criminal behavior. Similar

clustering patterns are observed by seismologists, as earthquakes are well known to

increase the risk of subsequent earthquakes, or aftershocks, near the location of an

initial event. Space-time clustering is modeled in seismology by self-exciting point

processes and the focus of this paper is to show that these methods are well suited for

criminological applications. We first review self-exciting point processes in the context

of seismology. Next, using residential burglary data provided by the Los Angeles Police

Department, we illustrate the implementation of self-exciting point process models in

the context of urban crime. For this purpose we use a fully non-parametric estimation

methodology to gain insight into the form of the space-time triggering function and

temporal trends in the background rate of burglary.

1 Introduction

Criminological research has shown that crime can spread through local environments via a

contagion-like process (Johnson 2008). For example, burglars will repeatedly attack clusters
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of nearby targets because local vulnerabilities are well known to the offenders (Bernasco and

Nieuwbeerta, 2005). A gang shooting may incite waves of retaliatory violence in the local set

space (territory) of the rival gang (Tita and Ridgeway, 2007; Cohen and Tita, 1999). The

local, contagious spread of crime leads to the formation of crime clusters in space and time.

Similarly, the occurrence of an earthquake is well known to increase the likelihood of

another earthquake nearby in space and time. For example, we plot in Figure 1 a histogram

of the times between “nearby earthquakes”, pairs of earthquake events separated in space by

110 kilometers or less, for all recorded earthquakes of magnitude 3.0 or greater in Southern

California during 2004-2005. The histogram shows a spike at short times, indicating an

increased likelihood of another event in the days following each earthquake. For a stationary

Poisson process the distribution of times between pairs of events would be approximately

uniform when the length of the time window is much larger than the longest time bin of the

histogram.

In the case of residential burglary, evidence indicates that an elevated risk exists for both

a house that has been recently burgled and its neighboring houses (Farrell and Pease, 2001;

Short et al., 2009; Johnson et al., 2007). To illustrate this point further, we plot in Figure

1 a histogram of the times between “nearby burglaries”, residential burglaries separated in

space by 200 meters or less, for all recorded residential burglaries within an 18km by 18km

region of the San Fernando Valley in Los Angeles during 2004-2005. Again we observe a

spike at short times, indicating an increased likelihood of victimization within a few hundred

meters and several days of each burglary.

Self-excitation is also found in gang violence data, as an event involving rival gangs can

lead to retaliatory acts of violence. In Figure 2, we plot the times of all recorded violent

crimes between the gang known as “Locke Street” and the rival gang known as “Lowell

Street” occurring between 2000 and 2002 in the Los Angeles police district of Hollenbeck.

Here we observe clear clustering patterns suggestive of self-excitation in the rate at which
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Figure 1: On the left, histogram of times (less than 300 days) between Southern California earth-
quake events of magnitude 3.0 or greater separated by 110 kilometers or less. On the right, his-
togram of times (less than 50 days) between burglary events separated by 200 meters or less.

the two rival gangs attack each other.

Figure 2: Times of violent crimes between two rivalry gangs in Los Angeles.

We propose that self-exciting point processes can be adapted for the purpose of crime

modeling and are well suited to capture the spatial-temporal clustering patterns observed

in crime data. More specifically, spatial heterogeneity in crime rates can be treated using

background intensity estimation and the self-exciting effects detected in crime data can be

modeled with a variety of kernels developed for seismological applications or using non-
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parametric methods. In Section 2, we review self-exciting point processes in the context of

seismological modeling. In Section 3, we present a model for residential burglary based upon

non-parametric methods for Epidemic Type Aftershock-Sequences models of earthquakes.

Our methodology combines the idea of stochastic declustering with Kernel Density Estima-

tion in a novel way. In Section 4, we compare the predictive accuracy of our methodology

with prospective crime hotspot maps. The results illustrate how crime hotspot maps can

be improved using the self-exciting point process framework. We validate the methodology

with a simulated point process in the Appendix.

2 Self-exciting point process models in seismology

A space-time point process N(t, x, y) is typically characterized via its conditional intensity

λ(t, x, y), which may be defined as the limiting expected rate of the accumulation of points

around a particular spatial-temporal location, given the history Ht of all points up to time

t (Daley and Vere-Jones, 2003):

λ(t, x, y) = lim
∆t,∆x,∆y↓0

E
[
N{(t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)}|Ht

]
∆t∆x∆y

. (1)

In Seismology a mark Mk, the magnitude of the earthquake, is associated with each event

(tk, xk, yk) and the conditional intensity often takes the form,

λ(t, x, y,M) = j(M)λ(t, x, y), (2)

λ(t, x, y) = µ(x, y) +
∑

{k: tk<t}

g(t− tk, x− xk, y − yk;Mk). (3)

Models of this type, referred to as Epidemic Type Aftershock-Sequences (ETAS) models,

work by dividing earthquakes into two categories, background events and aftershock events.
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Background events occur independently according to a stationary Poisson process µ(x, y),

with magnitudes distributed independently of µ according to j(M). Each of these earth-

quakes then elevates the risk of aftershocks and the elevated risk spreads in space and time

according to the kernel g(t, x, y,M).

Many forms for g have been proposed in the literature, though in general the kernel is

chosen such that the elevated risk increases with earthquake magnitude and decreases in

space and time away from each event. For example, the isotropic kernel,

g(t, x, y;M) =
K0

(t+ c)p
· eα(M−M0)

(x2 + y2 + d)q
, (4)

is one of a variety of kernels reviewed in (Ogata, 1998). Here K0, M0, and α are parameters

that control the number of aftershocks, c and d are parameters that control the behavior of

the kernel at the origin, and p and q are parameters that give the (power law) rate of decay

of g.

Standard models for the background intensity µ(x, y) include spline, kernel smoothing,

and Voronoi estimation (Ogata and Katsura, 1988; Silverman, 1986; Okabe et al., 2000). In

the case of fixed bandwidth kernel smoothing, the background intensity is estimated by,

µ(x, y) = µ ·
∑
k

u(x− xk, y − yk;σ), (5)

where µ is a parameter controlling the overall background rate. The events (tk, xk, yk,Mk)

are assumed to be background events and in practice can be obtained through a declustering

algorithm (Zhuang, Ogata, and Vere-Jones, 2002).

The appropriate selection of parameter values is as critical to the modeling process as

specifying accurate forms for µ, g, and j. The distance in space and time over which the

risk spreads, the percentage of background events vs. aftershocks, the dependence of the
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increased risk on magnitude size, etc. all can have a great impact on the predictive power of

a point process model. Parameter selection for ETAS models is most commonly accomplished

through maximum likelihood estimation, where the log-likelihood function (Daley and Vere-

Jones, 2003),

l(θ) =
∑
k

log

{
λ(tk, xk, yk; θ)

}
−
∫ T

0

∫∫
S

λ(t, x, y; θ)dydxdt, (6)

is maximized over all parameter sets θ. Here S× [0, T ] is the space-time window of observa-

tion.

More recently, non-parametric methods have been introduced for self-exciting point pro-

cess estimation (Zhuang, 2006; Marsan and Lenglin, 2008). Consider space-time point data

{(tk, xk, yk)}Nk=1 and a general self-exciting point process model of the form,

λ(t, x, y) = µ(t, x, y) +
∑

{k: tk<t}

g(t− tk, x− xk, y − yk). (7)

Assuming model correctness, the probability that event i is a background event, pii, is given

by,

pii =
µ(ti, xi, yi)

λ(ti, xi, yi)
, (8)

and the probability that event j triggered event i, pji, is given by,

pji =
g(ti − tj, xi − xj, yi − yj)

λ(ti, xi, yi)
, (9)

(Zhuang, Ogata, and Vere-Jones, 2002). Let P denote the matrix with entries pji (note that

the columns sum to one). Then stochastic declustering can be used in the following way.

Given an initial guess P0 of the matrix P , we then have N(N+1)/2 probabilistic data points

{(tk, xk, yk, pkk)}Nk=1 and {(ti− tj, xi− xj, yi− yj, pji)}i>j. Given this data, a non-parametric
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density estimation procedure can be used to estimate µ from {(tk, xk, yk, pkk)}Nk=1 and g

from {(ti − tj, xi − xj, yi − yj, pji)}i>j, providing estimates µ0 and g0. We can then proceed

iteratively as follows until convergence is achieved,

Step 1) Estimate µn and gn from Pn−1.

Step 2) Update Pn from µn and gn using (8) and (9).

For example, a simple histogram estimator is used in (Marsan and Lenglin, 2008) in step 1.

3 A self-exciting point process model of burglary

For the purpose of modeling burglary we consider an unmarked self-exciting model for the

conditional intensity of the form,

λ(t, x, y) = ν(t)µ(x, y) +
∑

{k: tk<t}

g(t− tk, x− xk, y − yk). (10)

Here we neglect spatially-localized temporal fluctuations in the background rate and assume

that the fluctuations occur globally (for example due to weather, seasonality, time of day,

etc.) In the case of seismology, research over a number of decades was needed to refine the

(parametric) form of the triggering function g. For this reason, non-parametric methods are

appealing in the context of crime in order to quickly gain insight into the forms of ν, µ and g.

For this purpose we use the iterative procedure outlined in the previous section to estimate

the model, with several modifications.

Because the probabilistic data {(tk, xk, yk, pkk)}Nk=1 and {(ti− tj, xi−xj, yi−yj, pji)}i>j is

both 3-dimensional and the number of data points is O(N2) (where N is typically O(1000)

for earthquake and crime data sets), the estimation step for µ and g is computationally
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expensive. The dimensionality prevents straight forward use of binning methods such as the

Average Shifted Histogram (Marsan and Lenglin use a logarithmically scaled histogram on

a coarse grid), as many bins may have extremely small, but non-zero, values (since the data

is probabilistic, the count in each bin can be less than 1). Alternatively, the large size of the

data set prevents efficient use of off-grid methods such as Kernel Density Estimation. To get

around these issues we use the following Monte-Carlo based iterative procedure,

Step 1) Sample background events {(tbi , xbi , ybi )}
Nb
i=1 and offspring/parent inter-point dis-

tances {(toi , xoi , yoi )}No
i=1 from Pn−1.

Step 2) Estimate νn, µn and gn from the sampled data using variable bandwidth Kernel

Density Estimation.

Step 3) Update Pn from νn, µn and gn using (8) and (9).

Because Nb + No = N , the size of the sampled data at each iteration allows for the use

of Kernel Density Estimation. Another issue is that the number of background and off-

spring events, Nb and No, is changing at each iteration. Thus a fixed bandwidth for any

density estimation technique (kernel smoothing, histogram, etc.) will over smooth at some

iterations and under smooth at others. Therefore we employ variable bandwidth KDE (al-

ternatively Cross Validation could be used). We give further details of our approach and

provide validation using a simulated point process in the Appendix.

Results

We fit the model given by Equation (10) to a dataset collected by the Los Angeles Police

Department of 5376 reported residential burglaries in an 18km by 18km region of the San

Fernando Valley in Los Angeles occurring during the years 2004 and 2005. Each burglary is

8



associated with a reported time window over which it could have occurred, often a few hour

span (for instance, the time span over which a victim was at work), and we define the time

of burglary to be the midpoint of each burglary window.

In Figure 3, we plot the sampled inter-point distances {(toi , xoi , yoi )}No
i=1 on the 75th iter-

ation of the stochastic declustering algorithm (see Appendix for convergence verification).

The number of sampled (offspring) events is 706 (13.1% of all events) and of these events

approximately 63% are exact-repeats (occurring at the same house). On the left, the spatial

inter-point distances are plotted showing that elevated crime risk travels around 50m−100m

from the house of an initial burglary to the location of direct offspring events. As discussed

in (Marsan and Lenglin, 2008), the overall distance near-repeat risk travels is several times

further due to the cascading property of self-exciting point processes. Note also that the

risk travels vertically and horizontally (along streets), more so than it does in other direc-

tions. On the right, we plot the spatial (x-coordinate) inter-point distances against the time

inter-point distances. Here exact-repeat burglaries, those occurring at the same house, are

apparent along the x-axis.

Figure 3: Spatial (left) and space-time (right) offspring/parent inter-point distances
{(toi , xoi , yoi )}

No
i=1 sampled from P75.
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In Figure 4, we plot (on a logarithmic scale) the estimated marginals

g75(t) =

∫
x

∫
y

g75(t, x, y)dxdy

and

g75(x) =

∫
t

∫
y

g75(t, x, y)dydt

computed from the KDE estimate of g at the 75th iteration. Here the presence of exact-

repeat events can again be seen, as g75(x) appears to approximate a delta distribution at the

origin. The spike around 1-2 days in the plot of g75(t) is due to the presence of fast “crime

sprees,” where most likely the same burglar visited several neighboring houses within a time

span of a few minutes to several days. There are also several bumps in the elevated risk of

burglary, for example around 7 days. Here one possible explanation is that the routine of the

burglar and/or the victim is such that a particular day of the week is a preferable time to

commit the burglary. After 7-10 days, the elevated risk of repeat/near-repeat victimization

drops to an intermediate level and stays relatively flat for a time span on the order of several

hundred days before decaying back to baseline rates. These results are consistent with

previous quantitative studies of exact-repeat burglaries (Short et al, 2009).

Figure 4: Marginal g75(t) (left) and marginal g75(x) (right) estimated using KDE based upon
offspring/parent inter-point distances sampled from P75.
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In (Johnson et al, 2008), the authors discuss the need to model risk heterogeneity and

in general it is a difficult task to separate clustering due to background heterogeneity and

clustering due to self-excitation. One benefit of using the non-parametric approach outlined

above is that temporal and spatial changes in the rate of crime are automatically separated

into those stemming from exogenous effects and those due to self-excitation. In Figure 5, we

plot the estimated marginals ν75(t) and µ75(x, y) estimated using KDE from {(toi , xoi , yoi )}No
i=1

at the 75th iteration. Here the estimated background rate exhibits temporal fluctuations on

a time scale of months/days, separate from the fluctuations due to self-excitation. These

fluctuations are likely caused by a number of factors such as seasonal, economic, and demo-

graphic changes, as well as temporal variations in burglar routine activities (Felson, 1998).

For example, residential burglary tends to have a higher weekday rate (when victims are at

work) compared to weekends.

Similarly, the background rate is also spatially variable, which is consistent with fixed en-

vironmental heterogeneity in crime opportunities, as well as variability in population density

through space (Bernasco et al, 2005). In seismology, declustered catalogs are of great interest

as they can be used in estimating the background rate of major earthquakes. Declustered

crime catalogs could potentially be used by police to distinguish between areas of a city with

intrinsically high crime rates and areas with temporarily high crime rates (due to near-repeat

effects). As the former arises due to structural properties of a given neighborhood and the

latter from behavioral characteristics of individual burglars, police and community responses

would likely need to be different in each case.

4 Crime forecasting: point processes vs. hotspot maps

Crime hotspot maps are a well established tool for visualization of space-time crime patterns

and can be used as a method for prediction of near-repeat crimes. Given space-time crime
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Figure 5: Background rate time marginal ν75(t) (left) and space marginal µ75(x, y) (right) esti-
mated using KDE from the background events sampled from P75.

observations (tk, xk, yk), crime hotspot maps are generated for a time interval [t − T, t] by

overlaying a density plot of the function,

λ(t, x, y) =
∑

t−T<tk<t

g(t− tk, x− xk, y − yk), (11)

onto a city map, where g(t, x, y) is a space-time kernel. By flagging the areas of the city

where λ takes on its highest values, crime hotspot maps can be used to indicate which areas

in the city are likely to contain future crimes (Bowers et al., 2004; Chainey et al., 2008).

For example, in (Bowers et al., 2004) a coarse grained kernel is used that decays inversely

proportional to spatial and temporal distance. In particular, with spatial distance d in units

of 1/2 cell widths and time t in units of weeks, the kernel in (11) is specified as

g(t, d) =
1

(1 + t)(1 + d)
(12)

on the domain (t, d) ∈ [0, 2 months]× [0, 400 meters] and 0 otherwise. Such a crime hotspot

map is referred to as “prospective”, as it uses past crimes, coupled with the contagious spread

of crime (modeled by g), to estimate future relative crime risk across the city. It should be
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noted that the risk is relative because (11) is not a point process intensity.

Here we compare the predictive accuracy of the self-exciting point process model devel-

oped in Section 3 to the prospective crime hotspot map given by (11)-(12). Because crime

is localized in small regions of the city (a commercial zone with no residential burglary may

be located 100 meters from a neighborhood), we find that for predictive purposes variable

bandwidth KDE is less accurate than fixed bandwidth KDE. We therefore estimate µ(x, y)

in Equation (10) using fixed bandwidth Gaussian KDE, with 20-fold cross validation used

to select the bandwidth (Silverman, 1986).

For every day k of 2005, each model assesses the risk of burglary within each of M2 cells

partitioning an 18km by 18km region of the San Fernando Valley in Los Angeles. Based on

the data from the beginning of 2004 up through day k, the N cells with the highest risk

(value of λ) are flagged yielding a prediction for day k + 1. The percentage of crimes falling

within the flagged cells on day k + 1 is then recorded and used to measure the accuracy of

each model.

In Figure 6, on the left we plot the percentage of crimes predicted averaged over the

forecasting year against the percentage of flagged cells for the self-exciting point process

and the prospective hotspot strategy. For example, with 10% of the city flagged the point

process and prospective hotspot correctly predict 660 and 547 crimes (respectively) out of

2627. The difference in accuracy between the two methodologies can be attributed to the

crime hotspot maps failure to account for the background rate of crime. While prospective

crime hotspot maps used for crime prediction attempt to quantify the contagious spread of

crime following past events, they fail to assess the likelihood of future “background” events,

the initial events that trigger crime clusters.

In order to disentangle the dependence of model accuracy on parameter selection, in

Figure 6 on the right we repeat the same prediction exercise but with parameters of each

model selected to yield the highest number of crimes predicted (L1 norm over 1 through 15
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% of cells flagged). The optimal cutoff parameters for the prospective hotspot map are 200

meters and 39 weeks. With these parameter values, in particular the slow decay of g in time,

Equation (11) is closer to Poisson estimation. For the point process model we only optimize

the bandwidth used for µ(x, y) as the computational cost of the stochastic declustering algo-

rithm is relatively high. Whereas the bandwidth is estimated to be approximately 300 meters

using cross validation, a smaller bandwidth, 130 meters, provides a higher level of predictive

accuracy. This can be attributed to the spatially localized features of neighborhoods, and

hence burglary.

For all percentages of cells flagged the prospective hotspot map underperforms the point

process, though for certain percentages the relative underperformance is less. On the left

in Figure 6, the prospective hotspot map performs better (relative to the point process) for

smaller percentages of cells flagged, as the parameters are selected to account for near-repeat

effects. On the right, the prospective hotspot map performs better for larger percentages of

flagged cells, since for these parameter values the model is more accurately estimating fixed

environmental heterogeneity. For crime types such as robbery and auto theft, where near-

repeat effects play less of a role, prospective hotspot maps tailored for near-repeat effects

are likely to be outperformed by simple Poisson estimation. The advantage of models of

the form (10) is that the balance between exogenous and endogenous contributions to crime

rates is inferred from the data as opposed to being imposed apriori.

5 Discussion

We showed how self-exciting point processes from seismology can be used for the purpose of

crime modeling. In the future it may be desirable to tailor point process models specifically

for crime, taking into account the crime type and the local geography of the city. Based upon

the insights provided by nonparametric estimates, parametric models can be constructed that
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Figure 6: Forecasting strategy comparison. Average daily percentage of crimes predicted plotted
against percentage of cells flagged for 2005 burglary using 200m by 200m cells. Error bars corre-
spond to the standard error. Prospective hotspot cutoff parameters are 400 meters and 8 weeks
(left) and optimal parameters (right) are 200 meters and 39 weeks. Spatial background intensity
µ(x, y) smoothing bandwidth for the point process is 300 meters (left) selected by cross validation
and 130 meters (right) selected to optimize the number of crimes predicted.

have advantages with respect to model fitting and simulation. Background rates can also be

improved by incorporating other data types (in Johnson et al, 2008 housing density is used

to improve models of repeat victimization). In the case of gang violence, a hybrid network-

point process approach may be useful for capturing the self-exciting effects stemming from

gang retaliations. Here increased risk may not diffuse in geographic space, but instead may

travel through the network space of gang rivalry relations.

The methodology used in this study can be implemented for other applications as well,

for example refining point process models of earthquakes. It could potentially be adapted,

more generally, to other second order models of point processes. The stochastic declustering

algorithm opens up the door to a plethora of density estimation techniques (Silverman, 1986;

Scott, 1992; Eggermont and LaRiccia, 2001) that could be used to explore point processes

in a way parametric methods do not allow.

In (Marsan and Lenglin, 2010) it is shown that the method is an Expectation-Maximization

(EM) type algorithm. At the maximization step the complete data log-likelihood function
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decouples in terms of the background and triggering functions, which is why at each iteration

the problem reduces to several decoupled density estimation problems. Several issues could

potentially arise here, one being that the method could converge to a local (but not global)

minimum of the observed data log-likelihood function. Another, as pointed out in (Sornette

and Utkin, 2009), is that the sample size and domain size (relative to the support of the

triggering kernel) play a key role in the accuracy of stochastic declustering. In numerical

tests we have found that at least O(1000) data points are needed in 3 dimensions for the

iterates to converge to the right densities and the domain needs to be several times larger

than the support of the triggering kernel. Similar to analytical results for standard density

estimation, it would be useful to have convergence results relating sample size, branching

ratio, domain size, and the bandwidth of the density estimators to the solution of the fixed

point iteration.

6 Appendix

Given point data (tk, xk, yk)
N
k=1 and a self-exciting point process model of the form,

λ(t, x, y) = ν(t)µ(x, y) +
∑

{k: tk<t}

g(t− tk, x− xk, y − yk), (13)

we iterate the following until convergence:

Step 1) Sample background events {(tbi , xbi , ybi )}
Nb
i=1 and offspring/parent inter-point dis-

tances {(toi , xoi , yoi )}No
i=1 from Pn−1.

Step 2) Estimate νn, µn and gn from the sampled data.

Step 3) Update Pn from νn, µn and gn using (8) and (9).

In order to estimate νn, µn and gn from the sampled data, we use variable bandwidth
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Kernel Density Estimation. To estimate gn, we first scale the data {(toi , xoi , yoi )}No
i=1 to have

unit variance in each coordinate and based upon the rescaled data compute Di, the kth

nearest neighbor distance (3-dimensional Euclidean distance) to data point i. We then

transform the data back to its original scale and, letting σx, σy, and σt be the sample

standard deviation of each coordinate, estimate the triggering function as,

gn(t, x, y) =
1

N

No∑
i=1

1

σxσyσt(2π)(3/2)D3
i

exp

(
− (x− xoi )2

2σ2
xD

2
i

− (y − yoi )2

2σ2
yD

2
i

− (t− toi )2

2σ2
tD

2
i

)
.

The background rate is estimated similarly, where 1-dimensional and 2-dimenional Gaussian

kernels are used to estimate νn and µn respectively. In (Zhuang, Ogata, and Vere-Jones,

2002), the authors recommending using the 10th-100th nearest neighbor distance for Di.

Throughout we compute Di corresponding to ν using the 100th nearest neighbor distance

and in higher dimensions we use the 15th nearest neighbor distance for Di corresponding to

µ and g.

We validate the method by simulating (13) with

ν(t)µ(x, y) =
µ

(2π)(4.5)2
exp

(
− x2

2(4.5)2

)
exp

(
− y2

2(4.5)2

)

and

g(t, x, y) = θω exp

(
− ωt

)
exp

(
− x2

2σ2
x

)
exp

(
− y2

2σ2
y

)
and comparing the estimates supplied by the method with the known distribution. The

simulation was carried out by first simulating all background events according to the Poisson

process νµ. The rest of the simulation was carried out iteratively, where each point of each

generation generates its own offspring according to the Poisson process g centered at the

parent point. The process terminates at the nth generation when all events of the nth

generation lie outside of the time window under consideration. In order to have a realization
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of the point process at steady state, the first and last 2000 points were disregarded in each

simulation.

In Figure (7), we plot the L2 error ‖Pn − Pn−1‖2 at the nth iteration and the number

of sampled background events Nb at the nth iteration against the true number of back-

ground events for one realization of the known point process. Here we observe that the

error converges quickly for the first 10 iterations and then stabilizes as the error introduced

by estimating the point process through sampling P cannot be reduced further (unless a

deterministic iterative procedure is employed). We also verify that the method applied to

the 5376 burglary events in Section 3 reached convergence in Figure (7). Here we observe a

similar rate of convergence for the crime data as with the simulated point process.

In Table 1, we list the exact parameter values used for the simulated point process and

the estimates averaged over the final 10 iterations of the stochastic declustering algorithm

for each of 5 simulations of the point process. The parameter values were selected to yield

point patterns with scales similar to those observed in crime data. The parameter estimates

are computed using the sample variances of the coordinates of {(toi , xoi , yoi )}No
i=1 and the values

of Nb, No. As some error is due to sample variation, we plot in the last two columns the

estimated number of background events vs. the actual number of background events in

each of the 5 simulations to assess the ability of the method to reconstruct the realized

branching structure. In Figure (8), we plot the estimated marginals of g(t, x, y) against

the actual distributions on the 75th iteration of the stochastic declustering algorithm. The

estimated time marginal density deviates from the true density at the origin due to the jump

discontinuity of the exponential distribution. However, the estimate of the parameter ω is

still close to the true value (see Table 1).
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Figure 7: L2 error ‖Pn − Pn−1‖2 (top left) and Nb, the number of sampled background events,
(top right) at the nth iteration for known point process model. L2 error ‖Pn − Pn−1‖2 (bottom
left) and Nb, the number of sampled background events, (bottom right) at the nth iteration for the
method applied to the 5376 burglary events in Section 3.
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