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Estimation of Space–Time Branching Process Models
in Seismology Using an EM–Type Algorithm

Alejandro VEEN and Frederic P. SCHOENBERG

Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computa-
tionally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves
viewing the estimation of such branching processes as analogous to incomplete data problems. Using an application from seismology, we
show how the epidemic-type aftershock sequence (ETAS) model can, in fact, be estimated this way, and we propose a computationally
efficient procedure to maximize the expected complete data log-likelihood function. Using a space–time ETAS model, we demonstrate that
this method is extremely robust and accurate and use it to estimate declustered background seismicity rates of geologically distinct regions
in Southern California. All regions show similar declustered background intensity estimates except for the one covering the southern section
of the San Andreas fault system to the east of San Diego in which a substantially higher intensity is observed.

KEY WORDS: Branching process models; Earthquakes; Epidemic-type aftershock sequence model; Expectation-maximization algo-
rithm; Maximum likelihood; Space–time point process models.

1. INTRODUCTION

Point process models have long been used to describe earth-
quake occurrences (Vere-Jones 1970, 1975). See Ogata (1999)
for a nice review. Some of the early applications fitted Neyman–
Scott-type models in which main shocks are viewed as clus-
ter centers, each of which may trigger a random number of
aftershocks with magnitudes not larger than the main shock
(Vere-Jones 1970; Hawkes and Adamopoulos 1973). More re-
cent work has favored the use of branching process models in
which all earthquakes can trigger aftershocks, and among these,
the epidemic-type aftershock sequence (ETAS) model is con-
sidered to be one of the standard models in seismology (Ogata
1988, 1998).

ETAS and other branching process models are commonly
estimated using maximum likelihood (ML). However, closed-
form solutions are usually not available, and numerical maxi-
mization algorithms must be employed. In such situations, com-
putational difficulties can arise, especially if the models are
complex, multidimensional, and nonlinear, as this often leads
to multimodal or extremely flat log-likelihood functions.

The view of branching process models as incomplete data
problems suggests the use of the expectation-maximization
(EM) algorithm in order to attain maximum likelihood esti-
mates (MLEs) (Dempster, Laird, and Rubin 1977). In this con-
text, the information about which event “triggers” each other
event is unobservable and can be described probabilistically.
The EM algorithm involves maximizing the expected complete
data log-likelihood, which in the context of branching point
process models is based on the probabilistic incorporation of
the branching structure and is usually easier to maximize. Us-
ing an analogous expression, conventional ML maximizes the
incomplete data log-likelihood.

In this article, we show how an EM-type algorithm can be
combined with a partial information approach in certain steps.
This relates to partial likelihood maximization, which was in-
troduced by Cox (1975) and which was briefly discussed by
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Ogata and Akaike (1982) in the context of branching processes
in seismology. By coupling two well-established estimation
methods (EM and a partial information approach), we are able
to present a highly robust and accurate estimation procedure
that can be used to estimate even very complex branching
process models. To demonstrate the properties of our proposed
method, we use a space–time ETAS model to simulate earth-
quake catalogs and then compare the results of the EM-type
estimation algorithm to the conventional ML procedure using a
numerical optimization approach.

Following a description in Section 2 of self-exciting point
process models for earthquake occurrences, we describe some
of the problems with conventional ML estimation of such mod-
els in Section 3. Section 4 describes a proposed alternative es-
timation method, based on the EM algorithm, and shows its
robustness and accuracy using simulations. The EM-type algo-
rithm is then used in Section 5 to estimate background seismic-
ity rates for Southern California, and the article will conclude
with a discussion in Section 6.

2. SELF–EXCITING POINT PROCESSES AND
THE ETAS MODEL

Consider a simple, temporal point process N on [0,∞)

adapted to a filtration Ht . Assuming it exists, the conditional
intensity λ(t |Ht ) is defined as the unique, nondecreasing, H-
predictable process such that N([0, t)) − ∫

λ(t |Ht ) dt is an
H-martingale. In this representation, H must contain the history
of the process up to time t , denoted as Ht = {ti : ti < t} with ti
as the time event i occurs, but H may contain additional in-
formation as well. Because the finite-dimensional distributions
of such a point process are uniquely determined by its condi-
tional intensity (Daley and Vere-Jones 2003), one way to model
a point process is via its conditional intensity.

In self-exciting point processes, the conditional intensity
is given by λ(t |Ht ) = μ + ∑

i : ti<t g(t − ti ), where μ > 0,
g(v) ≥ 0 for nonnegative v and equals 0 otherwise, and∫ ∞

0 g(v) dv < 1 in order to ensure stationarity (Hawkes
1971a,b). Early applications of self-exciting point processes to
earthquake occurrence models can be found in Hawkes and
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Adamopoulos (1973), Lomnitz (1974, chap. 7), and Kagan and
Knopoff (1987).

A particularly important example of a self-exciting point
process is the ETAS model, which was first introduced by Ogata
(1988) and is widely used to describe earthquake occurrences.
Early forms of the ETAS model (Ogata 1988) only took magni-
tudes and earthquake occurrence times into account:

λ(t |Ht ) = μ +
∑

i:ti<t

g(t − ti ,mi),

where the history of the process Ht = {(ti ,mi) : ti < t} also in-
cludes earthquake magnitudes mi , μ is the (in this case con-
stant) background intensity of earthquake occurrences, and g(·)
is the so-called “triggering function,” because it describes how
earthquakes trigger aftershocks. One possible triggering func-
tion suggested in Ogata (1988) is

g(τi,mi) = K0

(τi + c)(1+ω)
ea(mi−M0),

where τi = t − ti is the time elapsed since earthquake i, K0 > 0
is a normalizing constant governing the expected number of
direct aftershocks triggered by earthquake i, the parameters
c, a,ω > 0, and M0 is the “cutoff magnitude,” that is, the lowest
earthquake magnitude in the dataset under consideration. The
term K0/(τi + c)(1+ω) describing the temporal distribution of
aftershocks is known as the modified Omori–Utsu law. While
the literature in seismology usually lets ω > −1, the interpre-
tation of the modified Omori–Utsu law as a probability density
function requires strictly positive values for ω.

The ETAS model has since been extended to describe the
space–time–magnitude distribution of earthquake occurrences
(Ogata 1993b, 1998). A version suggested in Ogata (1998) uses
circular aftershock regions where the squared distance between
an aftershock and its triggering event follows a Pareto distribu-
tion:

λ(t, x, y|Ht )

= μ(x, y) +
∑

i : ti<t

g(t − ti , x − xi, y − yi,mi), (1)

with triggering function

g(t − ti , x − xi, y − yi,mi)

= K0e
a(mi−M0)

(t − ti + c)(1+ω)((x − xi)2 + (y − yi)2 + d)(1+ρ)
, (2)

where (xi, yi) represents the epicenter of earthquake i, d > 0
and ρ > 0 are parameters describing the spatial distribution of
triggered seismicity, and the history of the process up to time t

is now defined as Ht = {(ti , xi, yi,mi) : ti < t}. One character-
istic of this model is that the aftershock zone does not scale
with the magnitude of the triggering event. It has been sug-
gested that aftershock zones increase with main shock mag-
nitudes, and some recent research seems to support this view
(Kagan 2002b). Examples of how this can be incorporated into
the ETAS model can be found in Kagan and Knopoff (1987)
and Ogata (1998).

Summing things up, the ETAS model can be described as a
branching process with immigration (spontaneous background

earthquakes). The aftershock activity is modeled through a trig-
gering function consisting of two terms, one of which models
the expected number of aftershocks for earthquake i while the
other models the temporal or space–time distribution of the trig-
gered aftershocks.

3. MAXIMUM LIKELIHOOD ESTIMATION OF
THE ETAS MODEL

Conventional ML estimation attempts to maximize

�(θ) =
∑

i

log
(
λ
(
ti , xi, yi |Hti

))

−
∫ T

0

∫ y1

y0

∫ x1

x0

λ(t, x, y|Ht ) dx dy dt, (3)

the incomplete data log-likelihood function of model (1), where
θ = (μ,K0, a, c,ω, d,ρ) is the parameter vector and [x0, x1]×
[y0, y1] × [0, T ] is the space–time window in which the dataset
(xi, yi, ti ,mi) is observed (Ogata 1998; Daley and Vere-Jones
2003, chap. 7). The term “incomplete data” signifies that �(θ)

does not incorporate any information about the branching struc-
ture, and it is used to distinguish it from the (in practice
unattainable) complete data log-likelihood function introduced
in Section 4. Typically, (3) is maximized by using a numerical
optimization routine, because no closed-form solution is gener-
ally available. Unfortunately, in cases where the log-likelihood
function is extremely flat in the vicinity of its maximum, such
optimization routines can have convergence problems and can
be substantially influenced by arbitrary choices of starting val-
ues. To distinguish the conventional MLE computed by numeri-
cal maximization from the one based on the EM-type algorithm
presented later, we will denote the former by θ̂num and the lat-
ter by θ̂EM. Similarly, the vector components will be denoted
by ω̂num, ω̂EM, and so on.

An illustration may be helpful to demonstrate some of the
difficulties encountered when directly maximizing (3) using nu-
merical methods. Figure 1 shows a simulated earthquake cata-
log of 638 events, using model (1). The space–time window
used for this simulation is similar to the Southern California
dataset described in Section 5. Background earthquakes are
simulated on an area of 8◦ of longitude by 5◦ of latitude over a
period of 7,500 days (approximately 20 years). Parameter val-
ues, as shown in Table 1, are chosen to approximate those used
in descriptions of earthquake catalogs, based on Ogata (1998)
as well as discussions with UCLA seismologists Yan Y. Kagan
and Ilya Zaliapin. For simplicity, a truncated exponential distri-
bution is used to model earthquake magnitudes in accordance
with the Gutenberg–Richter law (Gutenberg and Richter 1944):

fGR(m) = βe−β(m−M0)

1 − e−β(Mmax
GR −M0)

, (4)

where fGR(m) is the probability density function, β = log(10),
and M0 = 2 ≤ m ≤ Mmax

GR = 8, where the lower threshold is the
approximate current threshold (since 2001) above which cata-
logs of the Southern California Seismic Network (SCSN) are
believed to be complete (Kagan 2002a, 2003) and the upper
threshold is the approximate magnitude of the strongest Cali-
fornia earthquakes in historic times, the 1857 Fort Tejon earth-
quake and the “great” San Francisco earthquake of 1906.
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(a) (b)

Figure 1. Simulated earthquake process using a space–time–magnitude ETAS model. This figure shows a simulated earthquake catalog using
model (1) with a parameterization as described in Table 1. The simulated catalog consists of 638 earthquakes (241 background events and
397 aftershocks). The spatial distribution is presented in (a), although 32 (triggered) earthquakes are not shown because they are outside the
specified space–time window. The temporal distribution is shown in (b). The spike in activity starting on day 5,527 is caused by a magnitude
5.33 earthquake and its aftershocks and corresponds to the cluster on the lower right side of (a).

The use of numerical methods to maximize (3) can be prob-
lematic in cases where the log-likelihood is extremely flat, un-
less some supervision is imposed and intelligent starting values
are used. Figure 2, for instance, shows the incomplete data log-
likelihood for variations of each component of the parameter
vector by up to 50% around the MLE. The function is quite flat
around θ̂num, especially with regard to the parameters μ,K0, c,
and d ; as a result these parameters are difficult to estimate, and
they generally are associated with rather large standard errors as
well as numerical challenges during the estimation procedure.
The parameters a, ω, and ρ, on the other hand, show much more
peaked log-likelihood functions and can, hence, be estimated
more stably.

The issue of log-likelihood flatness can be aggravated in a
multidimensional context. In Figure 3, two parameters are var-
ied while the others remain constant at their MLEs. Again,
(3) can stay extremely flat along certain trajectories, even for
large deviations from the MLEs. The parameter c, for instance,

Table 1. Specification of the space–time–magnitude ETAS model (1)
used for simulation

Space–time window
Parameter Value for background events

μ(x, y) .0008
K0 .0000305
a 2.3026 [0◦,8◦] × [0◦,5◦] × [0,7,500 days]
c .01
ω .5 Parameters of the magnitude distribution

d .015 M0 2
ρ .8 Mmax

GR 8

NOTE: This specification uses a homogeneous background intensity (measured in events
per day per squared degree) that does not depend on the location. The time is measured in
days; spatial distances are measured in degrees. A truncated exponential distribution (4) is
used to simulate magnitudes.

can be increased to more than four times its MLE and ω in-
creased to double its MLE, yet the log-likelihood function is
reduced only very slightly. The problem of log-likelihood flat-
ness becomes increasingly severe as more and more parameters
are varied at once. In more realistic settings, where ETAS mod-
els are estimated for actual earthquake catalogs, none of the
parameters would be known in advance.

Note that flatness in the log-likelihood function does not nec-
essarily imply that accurate estimation of the parameters in the
ETAS model is unimportant. Some of the ETAS parameters
have physical interpretations that can be used by seismologists
to characterize earthquake catalogs (see Ogata 1998, and the
references therein). Further, the accurate estimation of ETAS
parameters is important for comparisons of certain parameters
for different catalogs as well as for studies of bias in ETAS pa-
rameter estimation.

In cases where the log-likelihood function is extremely flat,
the choice of starting values can influence the results. In Fig-
ure 4, conventional ML estimation is performed using eight
different starting values and a standard Newton–Raphson op-
timization routine. The true values of Table 1 are used as start-
ing values for all parameters except K0 and a, which are varied
as indicated in the figure. In two cases, the estimation results
are quite close to the true θ . In four cases, the algorithm finds
reasonable estimates for most parameters but fails to find an ac-
ceptable estimate for K0: In fact, the algorithm does not change
the starting value for K0 at all, even though it is roughly 33%
off its true value. In two of the cases, the algorithm fails to con-
verge.

As shown in Figure 4, even if the starting values are close
to the MLE, any departure from an optimal choice of tolerance
levels and stopping criteria for the numerical maximization pro-
cedure can lead to poor convergence results. In this example, the
Newton-type algorithm used to find the MLEs actually yields
better results if the starting values for K0 are not too close to
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(a) (b)

Figure 2. Flatness of the incomplete data log-likelihood function for varying one parameter at a time. This figure demonstrates the relative
flatness of the incomplete data log-likelihood function (3) with respect to the components of the parameter estimate θ̂num (two graphs are shown
to improve the legibility). The log-likelihood stays very flat when μ, K0, c, and d are varied around their MLEs. This indicates potentially
high standard errors and/or numerical challenges for the estimation of these parameters. The parameters a, ω, and ρ have much more peaked
log-likelihood functions and can, hence, be estimated more easily.

the true values, as the computation of gradients may actually be
more accurate in locations farther away from the true parameter
value.

Another problem often encountered in practice is that the
log-likelihood (3) can be multimodal (see, e.g., Ogata and
Akaike 1982). Whenever the numerical optimization routine
converges to a solution, it is quite difficult to determine whether
it has converged to a local maximum or to the global maximum.
Even if the log-likelihood is unimodal, in cases where the log-
likelihood is flat there can be numerical multimodality due to
rounding errors, the way these errors affect intermediate and fi-
nal results, and the way values are stored in memory. In cases
where the log-likelihood surface is extremely flat such as those

shown in Figures 3 and 4, such numerical problems can explain
why θ̂num can be very far from the true parameter value. This
makes it difficult to perform simulation studies of bias and as-
ymptotic properties for which an automatic procedure would be
desirable.

While the main focus of this article is to present how branch-
ing process models can be estimated using an EM-type algo-
rithm, a few remarks will be added here on how to improve
conventional ML estimation via a numerical maximization of
the incomplete data log-likelihood. One approach is to maxi-
mize (3) with respect to log(c) and log(d), in place of c and d .
This procedure is computationally more stable because c and
d can be quite ill constrained. Also, the simplex algorithm as

(a) (b)

Figure 3. Flatness of the incomplete data log-likelihood in multidimensional settings. The problem of flatness of the incomplete data
log-likelihood function (3) (shown in gray levels) can be aggravated in a multidimensional context. In this analysis, pairs of components of θ

[c, ω in (a) and a, ρ in (b)] are varied around the MLE θ̂num (small white circle), while all the other components remain fixed. Along certain
trajectories, even large deviations reduce the log-likelihood only marginally.
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Figure 4. Difficulties in estimating ETAS parameters using conven-
tional ML. Except for K0 and a, the starting values (black dots) for
the components of θ are set to the true values (Table 1). The white cir-
cles show the estimation results of conventional ML (θ̂num), and the
+ symbol depicts the location of the true K0 and a. The numerical
maximization routine converges to an estimate close to θ in only two
cases. It fails to converge in two cases and seems incapable of improv-
ing the K0 estimate for the four starting configurations in which K0
is modified by 33%. This could be due to the relative flatness of the
incomplete data log-likelihood function (shown in gray-levels) with
respect to variations of K0.

well as genetic algorithms have proved to be useful and effi-
cient alternatives to the Newton–Raphson procedure used in our
study. Finally, Ogata (1993a) presented a “fast” algorithm ap-
plicable to Markovian conditional intensities that replaces the
first term of (3) [which is effectively a double sum because
λ(ti, xi, yi |Hti ) is itself a sum; see (1)] with a single sum. This
procedure replaces the computation of the inner sum with a nu-
merical integration procedure.

4. ETAS ESTIMATION USING AN
EM–TYPE ALGORITHM

In their seminal article, Dempster et al. (1977) established
the EM algorithm as the estimation method of choice for in-
complete data problems. It has been extended in various ways
and adapted to a wide range of applications. A good overview
of this algorithm and its extensions is provided by McLachlan
and Krishnan (1996).

The estimation of the ETAS model can be viewed as an
incomplete data problem in which the unobservable quantity
ui identifies whether an earthquake is a background event
(ui = 0) or whether it was triggered by a preceding event, de-
noted as ui = j for the case that earthquake i was triggered
by earthquake j . The branching structure of the ETAS model
has previously been used as a computationally efficient simu-
lation procedure for earthquake catalogs (Felzer, Becker, Aber-
crombie, Ekström, and Rice 2002; Zhuang, Ogata, and Vere-
Jones 2004). It has also facilitated a probabilistic “declustering”

method using a “stochastic reconstruction” of earthquake cata-
logs (Zhuang et al. 2002, 2004). For an early version of prob-
abilistic declustering, see Kagan and Knopoff (1976). In the
works of Zhuang et al., probabilities of earthquakes being back-
ground events or otherwise triggered by preceding events are
used to improve spatial background intensity estimates. Here,
the branching structure of the model will help estimate all pa-
rameters of the ETAS model, not just the background intensity.

In the following, consider an ETAS model with an inho-
mogeneous background rate μ(x, y). While the EM method-
ology allows for quite general forms of μ(x, y), here we model
an inhomogeneous background rate by subdividing the (in
this case rectangular) spatial observation window [x0, x1] ×
[y0, y1] into κ cells each with constant intensity μk , k ∈
{1, . . . , κ}. The background intensities for the κ cells can then
be collected in the vector μ = (μ1, . . . ,μκ). To simplify some
of the upcoming expressions, it is helpful to define the ex-
pected number of background earthquakes in cell k, denoted
as νk :

νk = μk · (area of cell k) · (length of time window), (5)

where the length of the time window is T [see (3)]. Depending
on the situation, either μk or νk will be used in the formulas,
because one is simply a fixed multiple of the other. The ac-
tual number of background events in cell k will be denoted as
nk and is modeled as a Poisson random variable with expecta-
tion νk .

If the complete branching structure of an observed ETAS
process were known (including whether an event is a back-
ground event or a triggered event), that is, if the unobserved
quantities ui were known for all i, the complete data log-
likelihood �c(θ) would be written as

�c(θ) =
κ∑

k=1

{− log(nk!) − νk + nk log(νk)}

+
∑

i

{− log(li !) − Gi(θ) + li log(Gi(θ))
}

+
∑

i : ui �=0

{
log(ω) + ω log(c) + log(ρ) + ρ log(d)

− (1 + ρ) log
((

xi − xui

)2 + (
yi − yui

)2 + d
)

− (1 + ω) log
(
ti − tui

+ c
) − log(π)

}
, (6)

where the first sum relates to the actual number of back-
ground events in each of the κ cells. The second sum relates
to the number of direct aftershocks li (in this case triggered
by earthquake i), which also follows a Poisson distribution
and whose expectation will be denoted as Gi(θ). Using the
triggering function g(·) defined in (2), Gi(θ) can be derived
as

Gi(θ) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
g(t − ti , x − xi, y − yi) dx dy dt

= K0π
d−ρc−ω

ρω
ea(mi−M0). (7)

The third sum of (6) is due to the space–time distribution
of aftershocks (relative to their triggering events), and its
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density can be figured by dividing the triggering function
g(t − ti , x − xi, y − yi) in (2) by the expected number of after-
shocks Gi(θ) in (7).

Complete Data Maximum Likelihood Estimation. Gener-
ally, the complete data log-likelihood �c(θ) cannot be maxi-
mized in practice, because the branching structure is unobserv-
able. However, the use of the EM algorithm will allow a prob-
abilistic incorporation of the branching structure. To aid in the
exposition of the implementation of the EM algorithm, assume
for the moment that the quantities ui are indeed known for all i;
using them allows us to maximize �c(θ), that is, find the (in
practice unattainable) complete data MLE, denoted as θ̃ . Partial
derivatives of �c(θ) with respect to each component of θ will
be used, which are generally more compact than those of the
incomplete data log-likelihood �(θ) in (3).

Given the quantities ui for all i, the parameters for the back-

ground intensity can be estimated using 0
!= ∂�c(θ)/∂νk =

−1 + nk

νk
with k = 1,2, . . . , κ , where the notation

!= indicates
that the partial derivatives are set to 0 in order to maximize the
respective function, in this case �c(θ). The complete data MLE
is ν̃k = nk , and μ̃k can then be computed using (5).

The partial derivatives with respect to the parameters c and ω

describing the temporal aftershock distribution are

0
!= ∂�c(θ)

∂c

=
∑

i : ui �=0

(
ω

c
− 1 + ω

ti − tui
+ c

)

+ ω

c

∑

i

(Gi(θ) − li ), (8)

0
!= ∂�c(θ)

∂ω

=
∑

i : ui �=0

(
1

ω
+ log(c) − log

(
ti − tui

+ c
)
)

+
(

1

ω
+ log(c)

)∑

i

(Gi(θ) − li ). (9)

Note that (8) and (9) would only depend on c and ω if the
terms after the first sums in each of the equations could be

ignored. This is indeed possible, because 0
!= ∂�c(θ)/∂K0 =

−1/K0
∑

i (Gi(θ) − li ) will subsequently guarantee that∑
i (Gi(θ) − li ) equals 0. Setting only the first sums of (8)

and (9) to 0 can be interpreted as using only the time passed
between the triggering event and the aftershock for the estima-
tion of the temporal parameters while ignoring the contribution
of the number of aftershocks triggered by each earthquake to
the log-likelihood. In this sense, a partial information approach
is used to estimate c and ω in this step. This implies the follow-
ing:

ω̃

(1 + ω̃)c̃
= 1

L

∑

i : ui �=0

1

ti − tui
+ c̃

, (10)

1

ω̃
+ log(c̃) = 1

L

∑

i : ui �=0

log
(
ti − tui

+ c̃
)
, (11)

where L is the number of triggered earthquakes. This equation
system can be solved by choosing a strictly positive starting

value for c̃ and then iterating between (a) computing the right
sides of (10) and (11) and (b) updating the current values for
c̃ and ω̃ by solving the equation system using the quantities
computed in step (a) for the right sides.

The spatial parameters d and ρ can be estimated analogously,
because ∂�c(θ)/∂d and ∂�c(θ)/∂ρ are structurally identical to
(8) and (9), respectively, with the squared distance between af-
tershock and triggering event replacing the time elapsed be-
tween the two events.

Finally, once the parameters of the space–time distribution
of aftershocks are known, the remaining parameters θ , K0,
and a, which govern the number of triggered aftershocks, can
be estimated as parameters of a Poisson regression in which
the number of triggered earthquakes depends on the magni-
tude of the triggering event through Gi(θ) in (7). A similar
conditional likelihood approach was investigated by Ogata and
Akaike (1982) for a temporal self-exciting point process model
for earthquake occurrences. Ogata and Akaike presented a two-
step procedure, in which they held the equivalent of parameter a

constant in order to estimate the other parameters of their model
[step (a)]. They then updated the equivalent of a using Akaike’s
(1974, 1977) information criterion (AIC) [step (b)] and iterated
between (a) and (b). Our approach, as outlined in the follow-
ing section, applies the conditional likelihood methodology in
both steps of this procedure and does not require the use of any
information criteria to direct the algorithm.

In summary, an algorithm for complete data ML would es-
timate (a) μ, (b) c, ω, d , and ρ using partial information ML,
and (c) K0 and a by Poisson regression conditioning on the es-
timates obtained in (b).

Maximum Likelihood Estimation Using the EM Algorithm.
Because the quantities ui are unknown (and, in fact, unobserv-
able), complete data ML estimation as outlined previously can-
not be implemented in practice. However, the expected com-
plete data log-likelihood can be computed (E step) and then
maximized (M step). The E step of the EM algorithm requires
estimating the triggering probabilities prob(n+1)(ui = j) for all
i, j based on a current estimate θ̂

(n)
EM:

prob(n+1)(ui = j)

= (
g
(
ti − tj , xi − xj , yi − yj ,mj |θ̂ (n)

EM

))/
(

μ̂
(n)
k : i∈cell k

+
i−1∑

r=1

g
(
ti − tr , xi − xr, yi − yr,mr |θ̂ (n)

EM

)
)

. (12)

These probabilities allow finding expressions for the expected
number of background events in cell k, n̂(n+1)

k , and the expected
number of direct aftershocks triggered by each earthquake i,
l̂
(n+1)
i :

n̂
(n+1)
k =

∑

i∈cellk,i≥2

(

1 −
i−1∑

j=1

prob(n+1)(ui = j)

)

,

l̂
(n+1)
i =

∑

s≥i+1

prob(n+1)(us = i).
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The expected complete data log-likelihood can then be written
as

E
θ̂

(n)

EM
[�c(θ)]

=
∑

k

{− log
(
�

(
n̂

(n)
k + 1

)) − νk + n̂
(n)
k log(νk)

}

+
∑

i

{− log
(
�

(
l̂
(n)
i + 1

)) − Gi(θ) + l̂
(n)
i log(Gi(θ))

}

+
∑

i≥2

i−1∑

j=1

prob(n)(ui = j)

× {
log(ω) + ω log(c) + log(ρ) + ρ log(d)

− (1 + ρ) log
(
(xi − xj )

2 + (yi − yj )
2 + d

)

− (1 + ω) log(ti − tj + c) − log(π)
}
, (13)

where the gamma function with x! = �(x + 1) replaces the fac-
torials used in (6) allowing for noninteger arguments.

The M step of the EM algorithm maximizes (13). In princi-
ple, this can be done as outlined in the previous section for the
(hypothetical) complete data ML procedure. For this purpose,
the quantities nk and li have to be replaced with their counter-
parts in expectation, that is, n̂

(n)
k and l̂

(n)
i , and the expressions

for the partial derivatives have to reflect the estimated trigger-
ing probabilities (12), because it is unknown which earthquake
triggered which aftershock. The equations (10) and (11) used to
estimate the temporal parameters c and ω, for instance, take on
the following form:

ω̂(n)

(1 + ω̂(n))ĉ(n)
= 1

L̂(n)

∑

s≥2

s−1∑

r=1

prob(n)(us = r)

× 1

ts − tr + ĉ(n)
, (14)

1

ω̂(n)
+ log

(
ĉ(n)

) = 1

L̂(n)

∑

s≥2

s−1∑

r=1

prob(n)(us = r)

× log
(
ts − tr + ĉ(n)

)
, (15)

where L̂(n) = ∑
i l̂

(n)
i is the expected number of triggered earth-

quakes. The corresponding equations for d and ρ are analogous.
The following summarizes our proposed EM-type algorithm to
estimate the ETAS model:

Algorithm 1.

Step 0. n = 1; set each component of θ̂
(n)
EM to some strictly

positive value.
Step 1 (E Step). Based on θ̂

(n)
EM, estimate the triggering prob-

abilities prob(n+1)(ui = j) for all i, j as shown in (12).
Step 2 (M Step). Maximize (13), that is, find θ̂

(n+1)
EM =

arg maxθ E
θ̂

(n)

EM
[�c(θ)]:

(a) Find μ̂
(n+1)
EM using ν̂

(n+1)
kEM

= n̂
(n+1)
k and (5).

(b) Find ĉ
(n+1)
EM and ω̂

(n+1)
EM as outlined in the previ-

ous section but using (14) and (15). Compute d̂
(n+1)
EM and

ρ̂
(n+1)
EM analogously.

(c) Fix all components of θ , except for K0 and a,
at their current estimates; that is, let θ̌ (n+1) = (μ̂

(n+1)
EM ,

K0, a, ĉ
(n+1)
EM , ω̂

(n+1)
EM , d̂

(n+1)
EM , ρ̂

(n+1)
EM ). Find K̂

(n+1)
0EM

and

â
(n+1)
EM by solving for K0 and a numerically:

0
!= ∂E

θ̂
(n)

EM

[
�c

(
θ̌ (n+1)

)]
/∂K0

= −1/K0

∑

i

(
Gi

(
θ̌ (n+1)

) − l̂
(n+1)
i

)
,

0
!= ∂E

θ̂
(n)

EM

[
�c

(
θ̌ (n+1)

)]
/∂a

= −
∑

i

((
Gi

(
θ̌ (n+1)

) − l̂
(n+1)
i

)
(mi − M0)

)
.

Step 3. If θ̂
(n+1)
EM = θ̂

(n+1)
EM − θ̂

(n)

EM is smaller than some con-
vergence criterion, stop. Otherwise, increase n by 1 and
repeat Steps 1–3.

Dempster et al. (1977) showed that, under general conditions,
estimates obtained using the EM algorithm are consistent just
as conventional (i.e., incomplete data) MLEs are. In a way, the
EM estimates are “expected MLEs” because they maximize the
expected complete data log-likelihood. Like other optimization
routines, EM may converge to a local maximum or saddle point,
but the incorporation of the probabilistic branching structure of-
ten leads to unique maxima, sometimes with closed-form solu-
tions.

The robustness and accuracy of the algorithm introduced in
this work becomes evident when directly comparing it to con-
ventional ML estimation. Using the same starting values as
those in Figure 4, the EM-type algorithm converges to an es-
timate of θ very close to the true value in all eight situations. In
a more systematic approach, 100 synthetic earthquake catalogs
are simulated using model (1) and the parameters in Table 1 and
then estimated using the proposed EM-type algorithm as well
as using conventional ML with our EM-type estimates as start-
ing values. Table 2 shows that the EM-type algorithm generally
produces estimates that are less biased (the only exception be-
ing the parameter μ). Apart from the bias, the sampling distrib-
utions are quite similar for all components of θ ; Figure 5 serves
as an example and presents the sampling distributions of ω̂EM
and ω̂num.

A possible explanation for why the EM-type algorithm yields
superior estimates is that most theoretical results relating to
ML estimation only hold asymptotically (see, for instance, Fer-
guson 1996, for a general treatment of this matter, and Ogata
1978, who derived analogous results for point process mod-
els). While both θ̂num and θ̂EM are consistent, in practice, with
a sample consisting of a limited number of observations, EM
estimates and conventional MLEs may, in fact, be different as
�(θ̂num) ≥ �(θ̂EM) and E

θ̂EM
[�c(θ̂EM)] ≥ E

θ̂EM
[�c(θ̂num)] [see

(3) and (13)]. In our simulations, the number of simulated
earthquakes may not be large enough for reaching an asymp-
totic regime in the numerical maximization of the incomplete
data log-likelihood function. However, the number of simulated
earthquakes might be large enough for the EM procedure to
produce accurate results, because the expected complete data
log-likelihood incorporates additional structural information. In
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Table 2. Bias of the parameter estimates using the EM-type algorithm and conventional ML

μ̂ K̂0
(×10−4) (×10−5) â ĉ ω̂ d̂ ρ̂

True values 8.000 3.050 2.303 .01000 .500 .01500 .800

Conventional MLEs 8.011 2.993 2.275 .01086 .519 .01625 .841
Standard errors (.527) (.708) (.113) (.00283) (.058) (.00409) (.103)

Bias in % of true value +.14% −1.86% −1.22% +8.56% +3.80% +8.35% +5.13%

EM-type estimates 7.925 2.993 2.296 .01019 .501 .01564 .824
Standard errors (.516) (.708) (.109) (.00265) (.056) (.00423) (.112)

Bias in % of true value −.94% −1.85% −.27% +1.91% +.20% +4.30% +3.00%

NOTE: The bias of the proposed EM-type algorithm and conventional ML is compared by applying both procedures to 100 simulated processes. For most parameters, the EM-type
algorithm yields results that are closer to the true parameter values described in Table 1.

fact, for the numerical maximization routine, the theoretical
standard errors based on the Hessian matrix are substantially
larger than the ones derived by simulation, which also suggests
that the asymptotic regime assumed in the theoretical frame-
work has not been attained.

To demonstrate the robustness of the proposed EM-type al-
gorithm with respect to starting values, 10 earthquake catalogs
are simulated with the same parameterization as before and then
estimated using 100 different starting values for θ . The starting
values are sampled from a uniform distribution whose range
is one-fifth of the parameter value to five times the parame-
ter value. The results indicate that the parameter estimates are
affected only minimally by even substantial offsets in starting
values. The largest observed difference between the smallest
and the largest parameter estimate for a component of θ is less
than .5% of the true parameter value, the average being less
than .1%. It may be relevant to note that the small variability
associated with different starting values can be controlled by

the convergence criterion used. In this implementation, our pro-
posed algorithm was halted as soon as each component of θ had
converged to four significant digits.

5. APPLICATION TO EARTHQUAKE OCCURRENCES
IN SOUTHERN CALIFORNIA

The methodology introduced in the previous section will now
be used to estimate the ETAS model (1) using seismological
data compiled by the Southern California Earthquake Center
(SCEC). The data include occurrence times, magnitudes, and
locations based on measurements taken by a network of al-
most 400 seismographic stations throughout Southern Califor-
nia. The catalog is maintained by the Southern California Seis-
mic Network (SCSN), a cooperative project of the California
Institute of Technology and the United States Geological Sur-
vey, and is publicly available at http://www.data.scec.org. The
data consist of 6,796 earthquakes occurring in a rectangular
area around Los Angeles between longitudes −122◦ and −114◦

(a) (b)

Figure 5. Sampling distributions of parameter estimates. The sampling distributions for the different components of θ are quite similar for
EM-type (a) and conventional ML (b) estimation, though the former is less biased. Shown here are the sampling distributions of ω̂EM and ω̂num.
Using the parameter values of Table 1, 100 earthquake catalogs were simulated and the model then estimated using the two procedures. The
vertical lines on each histogram indicate the true parameter value. The location of the mean based on the 100 estimates is shown as the large
triangle on the bottom of each histogram. One and two standard error intervals are represented by the mid-sized and small triangles, respectively.
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and latitudes 32◦ and 37◦ (733 km × 556 km) between Janu-
ary 1, 1984, and June 17, 2004, and are considered complete
above M0 = 3 (Kagan 2002a, 2003).

One problem of interest is to estimate spatial background in-
tensities, which represent the occurrence rate of spontaneous,
untriggered earthquakes. One way to approach this problem is
to use the stochastic declustering method introduced by Zhuang
et al. (2002, 2004, 2005), who used a spatial kernel density
smoother as an estimate of μ(x, y) in (1). As an alternative, one
may instead incorporate known geological features of South-
ern California and estimate background intensities in the ETAS
model for geologically distinct regions within the study area.
We use a regionalization proposed by Zaliapin, Keilis-Borok,
and Axen (2002), who identified seven distinct regions based
on fault orientation, historical slip, and tectonic setting. The re-
sulting regions are in agreement with the main geological and
fault activity maps for California (Jennings 1977, 1994).

The space–time ETAS model (1) with μ(x, y) varying across
seismic regions is estimated using the EM-type algorithm in-
troduced in the previous section. A conventional maximization
of the log-likelihood could be challenging, because the para-
meter estimates can be heavily influenced by a poor choice of
starting values as shown in Section 3. Moreover, judging from
the simulations described in Section 4, the conventional ML ap-
proach may have an increased bias compared to the EM-type al-
gorithm, because it seems to require a substantially larger sam-
ple size in order to attain the asymptotic regime guaranteeing
consistent estimation.

Table 3. Estimation results of space–time ETAS model (1) for
Southern California, 1984–2004, M0 = 3

μ̂k Number of Area
(events per day earthquakes of region

k per degree2) in region (degree2) Description of region

1 3.500 × 10−3 501 6.37 SW; coastal and offshore
region

2 16.945 × 10−3 1,357 3.26 SE; southern section of San
Andreas fault system

3 3.921 × 10−3 476 6.14 NW; creeping section of
San Andreas fault system

4 5.216 × 10−3 817 3.85 Western transverse ranges
5 6.970 × 10−3 148 1.68 Garlock fault system
6 5.294 × 10−3 2,822 3.43 Mojave block, eastern

transverse ranges
7 6.130 × 10−3 637 2.75 Western Great Basin
0 .019 × 10−3 38 12.52 Rest

K̂0 â ĉ ω̂ d̂ ρ̂

4.823 × 10−5 1.034 .01922 .222 4.906 × 10−5 .497

NOTE: The estimated background intensities are between 3.5 × 10−3 and 6.97 × 10−3 in
six of the seven regions, including the two in which major earthquakes occurred. Region 2,
however, has a substantially higher declustered background intensity of 16.945 × 10−3

(see Fig. 6).

The estimation results are presented in Table 3 and Figure 6.
The declustered background intensities for six of the seven re-

Figure 6. Declustered background intensity estimates for Southern California. Background intensities are estimated for geologically distinct
regions in Southern California using the space–time ETAS model (1). The declustered background intensities are quite similar for six of the
seven regions including the ones in which the largest earthquakes and aftershock clusters were observed. The only region with a substantially
larger background rate is the southern section of the San Andreas fault system to the east of San Diego (region 2).
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gions are quite similar and range between 3.500 × 10−3 and
6.970 × 10−3 events per day per squared degree. This is a re-
markable result, because strong earthquakes with large after-
shock clusters were observed in the western transverse ranges
(region 4) and the Mojave block (region 6) with 817 and
2,822 earthquakes, respectively, while the Garlock fault sys-
tem (region 5) had very few (148) observed seismic events.
Nevertheless, our declustered background seismicity estimates
suggest that the occurrence rate of spontaneous, untriggered
earthquakes is similar in six of the seven regions. Only re-
gion 2, the area covering the southern section of the San An-
dreas fault system, has a substantially higher background inten-
sity of 16.945 × 10−3 events per day per squared degree.

Some parameter estimates are not in line with geophysical
theory. The model parameter â = 1.034, for instance, is com-
monly thought to be closer to log(10) ≈ 2.3 (Felzer, Abercrom-
bie, and Ekström 2004; Helmstetter, Kagan, and Jackson 2005,
2006). However, several empirical studies estimate this para-
meter to a value closer to unity (see, for instance, Ogata 1998;
Helmstetter et al. 2006). Helmstetter et al. (2006) attributed this
downward bias to data errors in earthquake catalogs (incom-
pleteness and measurement errors concerning earthquake loca-
tions and magnitudes) as well as model misspecifications. Also,
many seismologists consider the parameter estimate ĉ = .01922
to be too large (or even an artifact) due to catalog incomplete-
ness of small earthquakes after strong events (Kagan 2004;
Helmstetter et al. 2005).

The fact that the southern section of the San Andreas fault
system is highly active is well established in the literature. For
example, Fialko (2006) found a high level of seismic strain ac-
cumulation in this region. Given that the last two major Cali-
fornia earthquakes in 1857 and 1906 ruptured the middle and
northern sections of the San Andreas fault, it is believed that
faults in the southern section of the fault system currently pose
the highest seismic risk in California (see Fialko 2006, and the
references therein). This is supported by paleoseismological ev-
idence estimating the average recurrence time of large earth-
quakes in that area to be between 200 and 300 years together
with the fact that no such large event (magnitude 7 or larger)
has been observed in the last 250 years. Fialko concluded that
the southern San Andreas fault system may be in the late phase
of its interseismic recurrence.

The ETAS model usually assumes that the earthquake mag-
nitude distribution is separable from the space–time features
of the model. Therefore, in this framework, an increased back-
ground seismicity rate in a particular area does not directly im-
ply an increased risk for a large-magnitude event. However, an
increased incidence of strong earthquakes can be anticipated
simply because more earthquakes are expected in general. In
this sense an elevated seismic hazard may exist in the southern
section of the San Andreas fault system compared to all other
regions in Southern California.

6. DISCUSSION AND CONCLUDING REMARKS

We presented an EM-type algorithm that maximizes the ex-
pected complete data log-likelihood function. The advantages
of this algorithm compared to conventional ML estimation were
substantial for the case of estimating the space–time ETAS

model, in terms of convergence, bias, and robustness to choice
of starting values.

This methodology should also work well for other specifi-
cations of ETAS models. In fact, it is applicable to all kinds
of branching process models where the information of which
event “triggers” which other event is not observable but can be
described probabilistically, because this allows the incorpora-
tion of the branching structure in expectation.

As the simulations in Section 3 illustrate, if the number of ob-
servations is limited, our proposed estimation procedure may, in
fact, yield more accurate results, because the asymptotic regime
under which the desirable properties of conventional ML are
well known may not be reached. In addition, even in cases
where a direct numerical maximization of the incomplete data
log-likelihood may be preferred, the EM-type algorithm pro-
posed here may be a useful way of obtaining starting values
for the optimization routine. Further, the reliability with which
the EM-type procedure converges to a reasonable estimate may
be especially attractive for simulation studies in which one is
interested in repeatedly simulating and estimating a model, for
example, in order to estimate the bias or variance of certain pa-
rameter estimates. Such repetitions are very difficult using con-
ventional ML procedures due to the required oversight involved
and occasional lack of convergence.

Our seismological application involved the use of geologi-
cally distinct regions within Southern California, incorporating
the known morphological and tectonic conditions present in this
region. However, it should be noted that the EM-type algorithm
could just as well be combined with a spatial kernel smoothing
method as used by Zhuang et al. (2002, 2004, 2005) in order to
estimate continuous background intensities.

Our results suggest that the declustered background inten-
sity in the area covering the southern section of the San An-
dreas fault system is substantially higher than in other regions
of Southern California. In this sense, an elevated seismic risk
exists in this area.

While Southern California appears to be rather naturally di-
vided into distinct seismic regions, a subjective element in out-
lining the regions remains. Changes to the borders of the re-
gions could, in fact, change the background intensity estimates,
as could misspecification of the ETAS model. For instance, the
space–time model employed in this work uses circular after-
shock regions, whereas aftershocks usually occur on faults with
fault orientation varying over different regions. Moreover, as
pointed out at the end of Section 2, there is evidence that after-
shock regions scale with the magnitude of the main shock. The
investigation and application to California seismicity of ETAS
models with noncircular and magnitude-scaling aftershock dis-
tributions are important directions for further research.

[Received July 2006. Revised April 2007.]
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