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Abstract

This paper explores wildfire modeling based on meteorological variables for Tanjung

Puting National Park, located on the island of Borneo. Based on the point process

models developed in other papers to describe wildfires in Los Angeles County, a sep-

arable, or entirely multiplicative, model is developed and each individual component

is estimated using kernel smoothing and maximum likelihood methods. The data are

shown to be largely compatible with a separable model, suggesting that the impact on

wildfire burn area of a particular weather variable does not appear to vary significantly

depending on the values of other weather variables.

1 Introduction

The island of Borneo has suffered severe deforestation and forest degradation over the past

two decades, with fire acting as a significant factor (Langner et al. 2007). Located on the

southern coast of the island’s Indonesian territory known as Kalimantan, Tanjung Puting

National Park covers over 450,000 hectares and is susceptible to forest fires year round. The

park contains a variety of habitats, including lowland rainforest, seasonal swamp forest as

well as other agricultural areas, and is well known as the home of Camp Leakey, a world

renowned center for the study and rehabilitation of orangutans (Galdikas et al. 1994).

Accurate estimation of wildfire hazard is very important in aiding National Park officials

to prepare supplies and staff in preventing, combatting, and controlling large wildfires. One

way to increase the park’s estimates of wildfire hazard would be to produce a statistical model

that utilizes weather variables such as mean humidity, mean temperature, and precipitation

to predict their impact on wildfire incidence in the national park.
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Recently, separable point process models have been used to estimate wildfire hazard in

Southern California, as a function of weather variables (Schoenberg et al. 2007). Schoenberg

et al. (2007) explores the fit of such models to Tanjung Puting National Park. Using weather

variables as covariates, components of a purely multiplicative model can readily be estimated

individually if the assumption of separability is satisfied (Chang and Schoenberg 2008). In

such cases, one may use a non-parametric method such as kernel smoothing in order to

suggest a parametric form for each component in the model. While Schoenberg et al. (2007)

found separable models to fit rather well to wildfire data in Southern California, a question

posed was whether these types of models could fit adequately in other regions. Here, we

explore the use of kernel smoothing and semi-parametric approaches in estimating separable

point process models for fire incidence in Tanjung Puting National Park. The purpose of

fitting such a model is not only for the accurate estimation of wildfire hazard on a given

day, but also in order to simulate realistic wildfire behavior given conditions in the National

Park.

A description of the weather and fire data for Tanjung Puting National Park used in this

paper can be found in Section 2. Kernel smoothing techniques as well as several bandwidth

selection methods are explored in Section 3. The definition of separability is also reviewed

in Section 3, and the different distributions explored in order to simulate fires for testing

separability are described. Results of the methods chosen in Section 3 are then detailed and

explained in Section 4. A summary and conclusions are given in Section 5.
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2 Data

There are over 160 weather stations located among the islands of Indonesia. Situated in

Pangkalan Bun within the boundaries of Tanjung Puting National Park (−2 ◦7’, 111 ◦7’,

elevation 25 meters) weather station 966450 (WRBI) records a variety of daily meteorological

variables. We focus here on temperature, sea level pressure, humidity, precipitation, visibility,

and wind speed, collected from January 2001 to January 2007. The data are gathered from

the meteorological service of the United States, as presented on Tutiempo.net, which bases

its data summaries on data exchanged under the World Meteorological Organization (WMO)

World Weather Watch Program according to WMO Resolution 40 (Cg-XII) (Tutiemp.net

2007).

The MODIS Rapid Response System utilizes a contextual fire detection algorithm that

incorporates a combination of an absolute threshold test and a series of contextual tests that

look for the characteristic signature of an active fire using two 4µm wavelength bands and

an 11µm wavelength band (Giglio et al. 2003). The algorithm further uses cloud and water

masking, as well as several false alarm rejection tests such as sun glint rejection to verify the

existence of detected wildfires. On-board the satellites Terra and Aqua, the MODIS sensor

passes over Borneo four times a day, ensuring accurate and thorough coverage of fire activity

on the Island (Miettinen et al. 2007). The MODIS sensor is a well-established system used

to recognize fires at a spatial resolution of 1 km (Justice et al. 2002). All fires detected

within the region of Tanjung Puting National Park from January 2001 to January 2007 by

the MODIS sensor on both the Terra and Aqua satellites, whose total area exceeded 9600

km2, were used for this analysis.
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Data were missing for one or more weather variables on certain days over the time range

considered here. We restrict our attention to the 1533 days where temperature, visibility,

wind speed, sea level pressure, humidity, and precipitation were all recorded. On these days,

there were 329 days on which fires were recorded, with 793km2 being the largest amount of

area burned on any single day during this 6 year period.

3 Methods

Spatial-temporal marked point process models are used to represent observations of rare

events such as wildfires or earthquakes. For a thorough treatment of point processes and

related constructs, see Daley and Vere-Jones (2003). A few important details are summarized

here. A point process N is a random collection of points in some metric space χ. In

modeling the occurrence of wildfires, for example, one may identify with each event a point

(t,x, m) ∈ R5, where t represents the time of the event’s origin, x the corresponding three-

dimensional location, and m a real-valued measure of its size. The basic construct of a

point process model is the conditional intensity (CI), λ(t,x, m), which one can interpret as

the limiting expected rate at which points of mark m amass around any location (t,x) of

space-time, conditional on the history of the process prior to time t.

In order to model the incidence of wildfires in Tanjung Puting National Park one tech-

nique would be to create a model based on the point process models developed in other

papers to describe wildfires in Los Angeles County. As suggested by Schoenberg (2004), a

model that is purely multiplicative, or separable in the terminology of Cressie (1993), may

be appropriate. Typically, in such models, each component of the model may be estimated
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individually. Schoenberg et al. (2007) considered a model of the form

λ(t,x, m) = f1(P (t))f2(V (t))f3(H(t))f4(S(t))f5(T (t))f6(W (t))µ(x)g(m), (1)

where P (t), V (t), H(t), S(t), T (t), and W (t) represent precipitation, visibility, humidity, sea

level pressure, temperature, and wind speed, respectively, for day t, µ(x) represents the

spatial background rate, and g(m) represents the distribution of wildfire areas.

In estimating each of the individual component functions fi in (1), one approach is

to use a non-parametric method such as kernel smoothing Silverman (1986). That is, if y

represents the corresponding weather variable in equation (1), then the component fi(y) may

be estimated using kernel regression via f̂(y) =
∑
i

miK(x−xi); h)/
∑
i

K(x−xi; h), where mi

represents the area burned in wildfires on day i, and xi is the value of the weather variable

on day i. The function K is called the kernel density and typically obeys the constraint

∫
K(y; h)dy = 1. The parameter h represents the bandwidth, which controls the degree of

smoothing.

There are several different methods for automatically choosing a bandwidth for kernel

smoothing. Silverman’s ”rule of thumb” bandwidth selection technique is a common method

used for automatically choosing a bandwidth for kernel smoothing, where the bandwidth h

= 0.9min{s, IQR}n−1/5/1.34, with s the sample standard deviation, IQR the inter-quartile

range, and n the number of observations of the variable being smoothed (Silverman 1986).

The bandwidth chosen by Silverman’s rule, however, often is too small when the covariate

under consideration is not normally distributed (Silverman 1986; Schoenberg et al. 2009).

Another method commonly used in bandwidth selection is the likelihood cross validation

(LCV) technique (Silverman 1986). This approach temporarily removes each point xi in
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the dataset and then calculates the estimate of the kernel smoothed function at that point

using an initial bandwidth h. This value, f̂(xi; h), is then used to calculate the distance

d(xi; h) = |f̂(xi; h) − f(x)| from the observed quantity f(xi). The bandwidth h that mini-

mizes
∑

i

log(d(xi; h)) is then chosen as the optimal bandwidth. LCV bandwidth selection is

not optimal, however, when used to estimate the relationship between a particular weather

variable and observations of rare events such as fire incidence (Schoenberg et al. 2009). In

particular, when the covariate has many repetitions of identical values, bandwidths estimated

by LCV tend to be too small. This is the case for the observed weather variables studied,

where over 58% of mean temperature observations, for example, are exactly the same on ten

or more days.

In light of the shortcomings of likelihood cross validation, (Schoenberg et al. 2009) sug-

gests a modified version of LCV bandwidth selection that will result in a smoother estimate.

In modified likelihood cross validation, instead of only removing xi in the prediction of the

density at xi, all observations with the same value as xi are removed when predicting xi.

Thus, rather than removing one observation at a time, the modified LCV approach removes

one small portion of the x-axis at a time. As with LCV, the bandwidth h that minimizes

∑
i

log(d(xi; h)) is then chosen as the optimal bandwidth.

One may consider several choices for the size distribution g(m) in model (1). Cumming

(2001) and Schoenberg et al. (2003) have suggested that the overall wildfire size distribution

tends to be well-approximated by the Pareto or tapered Pareto distributions. However, the

size distribution may depend substantially on the weather variables, as noted in Schoenberg
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(2004). Hence one may consider replacing g(m) in the model (1) with the modification

gt(m) = j(m; P (t), V (t), H(t), S(t), T (t), W (t)), (2)

for some density function, j. We considered several different choices for the density j, in-

cluding not only the Pareto and tapered Pareto distributions but also the Poisson, truncated

normal, and exponential forms.

The model (1) is purely multiplicative, and one may wish to test whether such a model,

which is called separable in the terminology of Cressie (1993), may be appropriate. Several

statistics for testing separability in point process models were proposed in Schoenberg (2004),

and extended in Chang and Schoenberg (2008) to the case of multi-dimensional point pro-

cesses with covariates. The method described in Schoenberg (2004) involves selecting a pair

of covariates, and comparing a bivariate kernel smoothing λ̂, smoothed with respect to both

covariates, with the product λ̃ of two univariate kernel estimates, smoothed with respect

to each of the covariates individually. The statistics suggested by Schoenberg (2004) and

Chang and Schoenberg (2008) to be most powerful in detecting departures from separability

is the integrated squared difference between these two kernel estimates, i.e.

S3 =
∫ T

0

∫
Rd

∫
R
[λ̂(t,x, m) − λ̃(t,x, m)]2dm dx dt. (3)

In order to produce p-values for these test statistics, simulations of separable kernel estimates

each with CI equal to λ̃(t,x, m) may be used. In addition, one may assess the fit of the

resulting separable model by computing its mean squared error in predicting daily wildfire

area burned, and comparing with a simple alternative such as a homogeneous Poisson model.

8



4 Results

Wildfire incidence in Tanjung Puting National Park appears to depend critically on weather

variables such as precipitation, temperature, humidity, and atmospheric pressure. For in-

stance, the solid curve in Figure 1 shows a smoothed estimated of the relationship between

daily area burned and sea level pressure, obtained by kernel regression using a Gaussian ker-

nel function and bandwidth selected by modified LCV. While the scatter about the curve is

considerable, one can discern that as atmospheric pressure increases, so too does the average

daily burn area. (Note that in Fig. the y-axis has been truncated to highlight the smoothed

curve, but as a result not all points are shown in the Figure.)

Figure 2a shows the smoothed estimate of the relationship between daily burn area and

visibility. As visibility increases, the mean area burned in wildfires decreases rapidly. In fact,

on days where mean visibility exceeds 5 kilometers, the mean area burned becomes infinites-

imal. This kernel regression plot of mean visibility and number of fires per day suggests

an exponential form for the function f2 in the model (1). Similar kernel regression plots of

number of daily fires against each of the other four weather variables suggest exponential

forms for f3, f4, f5, and f6, whereas a linear model appears preferable for f8.

The assumption of separability in the model (1) should be tested to ensure that a separa-

ble model is in fact appropriate for the data. Figure 4 shows the nonseparable and separable

CI estimates λ̂ and λ̃ as a function of temperature and mean sea level pressure. Both CI

estimates show that when mean sea level pressure is high expected area burned is high,

though the two estimates have obvious discrepancies, especially when both temperatures

and atmospheric pressures are highest. Nevertheless, Figure 6a shows that the difference
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between the nonseparable and separable CI estimates shown in Figure 4 are not statistically

significant. The estimated p-value of S3 using 100 simulations is 0.22, suggesting that a

separable model for mean temperature and mean sea level pressure may be reasonable for

wildfire incidence in Tanjung Puting National Park.

Similar to Figure 4, Figure 5 shows the nonseparable and separable CI estimates λ̂ and

λ̃ as a function of humidity and precipitation. The two CI estimates in Figure 5 appear

to agree generally. Both the nonseparable and separable CI estimates in Figure 5 are high

when humidity is between 58% and 68%, and precipitation is low. The nonseparable CI

estimate predicts a high amount of area burned when precipitation is below 25 millimeters,

while the separable CI estimate expects a high amount of area burned when precipitation

is below 10 millimeters. Figure 6b shows that the difference between the nonseparable and

separable CI estimates shown in Figure 5 is not statistically significant. The estimated p-

value of S3 using 100 simulations is 0.35, suggesting that a separable model for mean humidity

and precipitation may be reasonable for wildfire incidence in Tanjung Puting National Park.

Similar tests of separability were conducted for all possible combinations of weather variables

and their p-values are presented in Table 1.

W (t) T (t) S(t) H(t) V (t)

P (t) 0.54 0.54 0.38 0.35 0.52

V (t) 0.37 0.43 0.65 0.79

H(t) 0.46 0.88 0.46

S(t) 0.26 0.22

T (t) 0.61

Table 1: Estimated p-values of S3 using 100 simulations for testing the separability of each
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of the weather covariates in the model (1). P (t), V (t), H(t), S(t), T (t), and W (t) represent

precipitation, mean visibility, mean humidity, mean sea level pressure, mean temperature,

and mean wind speed, respectively, for day t.

Table 1 shows that a separable, or purely multiplicative form for the model (1) may be

reasonable in light of the fact that the difference between the nonseparable and separable CI

estimates for any two covariates ci and cj are not statistically significant. The implication is

that the relationship between wildfire area burned and one covariate such as temperature,

for example, does not appear to change significantly depending on the values of the other

covariates.

One may wonder to what extent the weather variables recorded by the MODIS system

and used in model (1) result in improved predictions of daily wildfire burn area. Compared

to the best-fitting homogeneous Poisson model with constant intensity over all days, using

the separable CI estimate of mean temperature and mean visibility alone, the root mean

squared error decreases from 38.2 km2 to 29.2 km2.

5 Discussion

Accurate wildfire prediction based solely on daily weather variables such as those considered

in the model (1) is inherently limited. Weather is only one of several factors relating to

wildfire occurrence and spread in Tanjung Puting National Park. In addition to obvious

human interactions with wildfire activity such as arson, fire prevention policies, and fire

suppression activities, slash-and-burn techniques, the preferred method of land clearing in
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Indonesia where fire is used as a tool to clear land, can rapidly spread fire if conducted in

a negligent fashion or during periods of drought (Tomich et al. 1998). Nevertheless, the

use of weather variables for gaining a better knowledge of when Tanjung Puting National

Park is most susceptible to wildfire activity would be very valuable to park management

and officials. The weather variables are easily attainable for park officials, and thus the use

of current weather or immediate future weather information could be used in a model such

as that discussed in this paper to inform park officials when they should prepare supplies

and staff for containing or fighting particularly large fires. Further, models such as those

explored here may readily be used to simulate realistic wildfire patterns and to explore their

dependence on local weather conditions.

The separability of model (1) has not been shown to be significantly violated for the

dataset considered here. Were we to suggest this model for use by officials at Tanjung

Puting National Park we must also note the model (1) is quite simplistic and its fit could

no doubt be improved by using more complicated functional forms for each of the terms, as

well as considering different interactions between the variables. Furthermore, a homogeneous

Poisson model is not an ideal baseline with which to compare the mean squared prediction

error, and in future research, actual forward prediction should be used to assess the validity

of the model, using data obtained separately from that used in model fitting.

In addition to these shortcomings, many important variables are excluded from the model.

Only six weather variables are used, while other important factors such as vegetation, land

use, and other various human interaction variables are not included in the model. Neverthe-

less, the model (1-2) could potentially be used as a starting point for aiding in fire prediction

for Tanjung Puting National Park.
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Figure Captions

Figure 1: Estimate (solid line) of total area burned (km2) per day by mean sea level pressure,

smoothed using a Gaussian kernel smoother and bandwidth of 0.8 millibars, calculated by

modified likelihood cross-validation. 95% confidence limits (dotted lines) of the smoothed

estimate are also shown.

Figure 2: Estimate (solid line) of total area burned (km2) per day by mean visibility,

smoothed using a Gaussian kernel smoother and bandwidth of 0.9 kilometers, calculated

by modified likelihood cross-validation. (a) The 95% confidence limits (dotted lines) of the

smoothed estimate are shown; (b) the exponential fit (dashed line) is added to the plot.

Figure 3: (a) Total daily area burned ordered chronologically; (b) comparison of observed

area burned distribution with area burned distribution simulated from Poisson distribution;

(c) comparison of observed area burned distribution with area burned distribution simulated

from truncated normal distribution; (d) comparison of observed area burned distribution

with area burned distribution simulated from models (1) - (2).

Figure 4: CI estimates of mean temperature and mean sea level pressure: (top) non-separable

kernel CI estimate; (bottom) separable kernel CI estimate.

Figure 5: CI estimates of mean humidity and precipitation: (top) non-separable kernel

CI estimate; (bottom) separable kernel CI estimate.
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Figure 6: Histogram of 100 simulated values of S3 for testing the separability of (a) mean

temperature and mean sea level pressure and (b) mean humidity and precipitation. The

dashed vertical line represents the value of S3 calculated from the observed data.
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