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Abstract

We consider conditions under which parametric estimates of the intensity of a

spatial-temporal point process are consistent. Although the actual point process being

estimated may not be Poisson, an estimate involving maximizing a function that corre-

sponds exactly to the log-likelihood if the process is Poisson is consistent under certain

simple conditions. A second estimate based on weighted least squares is also shown

to be consistent under quite similar assumptions. The conditions for consistency are

simple and easily verified, and examples are provided to illustrate the extent to which

consistent estimation may be achieved. An important special case is when the point

processes being estimated are in fact Poisson, though other important examples are

explored as well.

Key words: maximum likelihood estimation, intensity function, weighted least squares esti-

mation, consistency, Poisson process, conditional intensity.

1 Introduction.

Maximum likelihood estimates (MLEs) have been extensively used in point process inference

for decades, at least partly because of their known asymptotic properties. The consistency

and asymptotic normality of the maximum likelihood estimate of the intensity of a stationary

point process on the line are elementary (see e.g. Cox and Lewis 1966), and for the parameters

governing the conditional intensity of an arbitrary stationary point process on the line, the

consistency, asymptotic normality and efficiency of the MLE were proven by Ogata (1978).

There have since been a host of similar proofs, generalizing the important results in
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Ogata (1978) to more general point processes under various conditions, of which we name a

few. The case of non-stationary Poisson processes on the line was investigated by Kutoyants

(1984) and more recently by Helmers and Zitikis (1999), and nice summaries of results for

general non-stationary point processes on the line were given by Karr (1986) and Andersen

et al. (1993). Regarding higher-dimensional point processes, conditions for the consistency

and asymptotic normality of the MLE were derived by Brillinger (1975) for stationary mul-

tivariate Poisson processes, by Rathbun and Cressie (1994) for the case of non-stationary

Poisson processes in Rd, by Krickeberg (1982) for such processes in locally compact Haus-

dorff spaces, by Nishayama (1995) for a class of sequential marked point processes, and by

Rathbun (1996a) for non-stationary spatial-temporal point processes. Jensen (1993) derived

the asymptotic normality of the MLE for spatial Gibbs point processes under conditions

similar to those in Rathbun (1996a), and Rathbun (1996b) established conditions for con-

sistent estimation in the case of a spatial modulated Poisson process with partially observed

covariates. Using simulations, Huang and Ogata (1999) assessed the relative efficiency of the

MLE, the maximum pseudo-likelihood estimator and an approximate maximum likelihood

estimator for spatial processes with strong interactions.

The results above are very important since point processes are commonly modeled via

their conditional intensities, with parameters estimated by maximum likelihood. However,

in some cases one may wish to estimate the unconditional intensity or mean measure, i.e.

the expected value of the conditional intensity, assuming it exists. (Hereafter we refer to the

unconditional intensity simply as the intensity). The present paper explores the problem of

parametric estimation of the intensity of an arbitrary simple spatial-temporal point process,
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keeping assumptions about the point process and its conditional intensity to a minimum.

Estimating point process intensities may be important in applications, for at least three

reasons. First, fewer assumptions about the higher-order properties of the point process are

required. The assumptions required for the proofs listed above of the consistency of the MLE

for the conditional intensity of a point process are unfortunately quite stringent, involving

multiple restrictions on the derivatives of the conditional intensity. These conditions can

be extremely difficult to verify in applications, and, as we show in the succeeding Sections,

are not required for the purpose of estimating the intensity consistently. Second, whereas

the conditional intensity uniquely characterizes the finite-dimensional distributions of any

simple point process (see e.g. Daley and Vere-Jones, 1988), the intensity uniquely deter-

mines the mean number of points such a process has in any measurable subset of its domain.

Hence accurate estimation of the intensity is critical in cases where the mean behavior of

a point process is of interest. In research on wildfires and earthquakes, for example, the

estimation of background rates is overwhelmingly important in hazard estimation (see e.g.

Ogata 1998, Peng 2003), and while the second-order properties (clustering, inhibition) are

important especially for short-term hazard forecasts, it is often of interest to obtain back-

ground rate estimates that do not depend on the assumption of a particular model for the

full conditional intensity. Third, in some cases the parametric form of the intensity may be

more readily suggested than that of the conditional intensity. Often a functional form for

the intensity may be inferred by examining nonparametric intensity estimates, such as those

produced by smoothing the point process using kernels, splines, or wavelets (see e.g. Vere-

Jones 1992, Brillinger 1998). With regard to point process models for wildfires, for instance,
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while second-order properties remain a subject of considerable debate, the estimation of the

background rate is typically performed by simply smoothing over previous events; similar

methods are used in seismology (Ogata 1998, Ogata et al. 2001, Peng 2003, Schoenberg

2003). Little formal justification has been given for these methods of background rate es-

timation, which seem sensible only if the process is approximately Poisson. Clarification

of what is meant by “approximately Poisson”, i.e. identification of conditions under which

parametric estimates of background rates made under the assumption that processes are

Poisson are in fact consistent, even when the processes studied are not Poisson, is a concern

of the present paper.

The current paper explores two simple estimates of the intensity. The consistency of the

Poisson maximum likelihood estimate (PMLE), defined as the MLE of the intensity if the

process was Poisson, is demonstrated under more general and much simpler assumptions than

those pertaining to the consistency of the MLE. Only a slight variant of these conditions is

needed to establish the consistency of the weighted least squares estimator (WLSE) as well.

The simplicity of these assumptions, which can readily be verified in applications, may greatly

facilitate an analysis of when the PMLE and WLSE are consistent, and equally importantly,

when they are not. Note that in the case where the point process being estimated is Poisson,

the intensity and conditional intensity are the same, as are the PMLE and MLE; hence for

this situation our results represent a proof of the consistency of the MLE under conditions

that are easily verifiable, without restrictions on the derivatives of the intensity function.

The structure of this paper is as follows. After formally introducing the PMLE in Section

2, Section 3 summarizes previous results on the MLE and then gives simpler conditions and
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a simple proof of the consistency of the PMLE. Section 4 provides similar conditions for the

consistency of the WLSE. Several examples and counterexamples are given in Section 5 to

demonstrate the need for the conditions in the previous Sections and to clarify under what

conditions consistent estimation of the intensity is achievable, and Section 6 summarizes the

results and lists some directions for future research.

2 Preliminaries

Following Brémaud (1981), we consider a spatial-temporal point process to be a measurable

mapping from a filtered probability space (Ω,F , P ) onto Φ, the collection of all boundedly

finite counting measures on the spatial-temporal domain S × [0,∞). The filtration F =

{Ft}t≥0 is assumed to be increasing and right continuous, and the spatial domain S any

measurable space equipped with measure µS defined on the Borel subsets of S. Let B denote

the Borel subsets of space-time S × [0,∞). For any spatial-temporal subset B ∈ B the

random variable N(B) represents the number of points in B.

Let µR denote Lebesgue measure on the real (time-) line, and let µB denote the product

measure µS ×µR on space-time. Assuming it exists, an F -conditional intensity of N may be

defined as an integrable, non-negative, real-valued, F -predictable process λ∗ such that, for

any other non-negative F -predictable process Y (s, t),

E
∫
B

Y (s, t)λ∗(s, t)dµB = E
∫
B

Y (s, t)dN,

for B ∈ B. Let the intensity λ(s, t) denote the expectation with respect to P of λ∗(s, t),

provided it exists.

In what follows we consider sequences of point processes, {NT}, T = 1, 2, . . ., where only
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the points of NT occurring from time 0 to time T , over all of S, may be observed. We assume

throughout that each process NT has a conditional intensity λ∗T whose expectation λT exists

and is known up to a fixed parameter vector θ, within a complete separable metric space Θ

of possibilities.

The (partial) log-likelihood function for NT is conventionally expressed in terms of the

conditional intensity λ∗T as:

∫
S

T∫
0

log λ∗T (s, t)dNT (s, t)−
∫
S

T∫
0

λ∗T (s, t)dµB(s, t).

When a functional form for λ∗T is known, the parameters governing λ∗T are typically estimated

using the MLE, i.e. the value of the parameters maximizing the log-likelihood function above.

If NT is a Poisson process, then λ∗T and λT are identical, so in this case the log-likelihood

LT (θ) may be written

∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)−
∫
S

T∫
0

λT (s, t, θ)dµB(s, t). (1)

Hence the estimator θ̂ maximizing (1) may be called the Poisson maximum likelihood esti-

mator (PMLE) of θ. In the next section we examine the case where θ̂ is used to estimate θ

even though N may not be Poisson.

3 Asymptotic Properties of the PMLE

As mentioned in the introduction, several authors have proven the consistency and asymp-

totic normality of the MLE for the parameters governing the conditional intensity of a point

process. These proofs typically proceed in standard fashion by writing a Taylor expansion

of dLT (θ)/dθj, where LT (θ) is the log-likelihood function (1), yielding the approximation
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∂LT (θ̂)/∂θj ≈ ∂LT (θ∗)/∂θj +
K∑

k=1

(θ∗k − θ̂k)I
jk
T (θ∗),

where θj is the jth coordinate of θ, θ∗ is the true parameter vector being estimated, and

Ijk
T (θ) = ∂2LT (θ)/∂θj∂θk is the jk element of the Fisher information matrix. The asymptotic

results then follow by observing that ∂LT (θ∗)/∂θj are local square integrable martingales

and invoking the martingale central limit theorem. For details see e.g. Theorems VI.1.1 and

VI.1.2 of Andersen et al., 1993.

Conditions are required, however, to ensure that the remainder terms in the Taylor ap-

proximation are negligible and that the assumptions for the martingale central limit theorem

are met. For instance, Rathbun (1996a) considers conditions on the first and second partial

derivatives of the conditional intensity and invokes a result of Sweeting (1980) to prove the

consistency and asymptotic normality of the MLE. Andersen et al. (1993) consider conditions

slightly stronger than those of Rathbun (1996a), including conditions on the third partial

derivatives of the conditional intensity. However, even Rathbun’s conditions can be difficult

to check in applications, as noted on page 62 of Rathbun (1996a).

The proofs of Rathbun (1996a) and Andersen et al. (1993) for the consistency and asymp-

totic normality of the MLE for the parameters governing λ∗ extend readily to the use of the

PMLE as an estimate of the parameters governing λ. For estimating the parameters govern-

ing the conditional intensity λ∗, the MLE is generally substantially more efficient than the

PMLE, which essentially discards information on the second and higher-order properties of

the point process. Indeed, in many cases certain parameters governing λ∗ are not even iden-

tifiable from the intensity, λ. However, for the simpler case of estimating only the parameters
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governing λ, fewer conditions are needed and much simpler machinery is required. Below

we present assumptions for the consistency of the PMLE which we believe are considerably

simpler and easier to verify than those referred to above.

Let θ∗ denote the true value of the parameter vector being estimated, and let θ̂T denote

the PMLE of θ∗. Given any value of θ∗, we assume that there exists a function φ(T ) such

that the following conditions hold for sufficiently large T :

(A1) The parameter space Θ admits a finite partition of compact subsets Θ1
T , ...,Θ

J
T such

that λT (s, t; θ) is continuous as a function of θ within each subset Θj
T .

(A2) For all θ ∈ Θ, V

[∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)

]
= o (φ(T )2).

(A3) Given any neighborhood U of θ∗, there exists γ1 > 0 so that for all sufficiently

large T , there is a subset of S × [0, T ] of µB-measure at least γ1φ(T ) on which λT (s, t; θ∗)

and | log λT (s, t; θ∗) − log λT (s, t; θ)| are uniformly bounded away from zero on Θ ∩ U c, the

complement of U .

Note that condition (A1) implies that the parameter space Θ is compact; this and the

continuity property in (A1) ensure that a maximum of the Poisson likelihood (1) exists

within Θ (see e.g. 4.16 of Rudin, 1976). We also note in passing that assumption (A1) allows

λT to contain a finite number of discontinuities as a function of θ and that for the case

where the parameter space Θ contains only finitely many elements, the continuity condition

in (A1) is not required for Theorem 3.1 below. Assumption (A2) controls the variance of

the process N . Assumption (A3) ensures that, on a sufficiently large portion of space-time,

λT (s, t; θ∗) is positive and sufficiently distinct from λT (s, t; θ) for θ outside a neighborhood

of θ∗. (A3) precludes the case, for example, where λ(s, t; θ) does not depend on θ at all,
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or where λ(s, t; θ∗) = 0 everywhere. Section 5 provides examples to illustrate why these

assumptions are needed to establish the consistency of the PMLE.

Theorem 3.1. Under assumptions A1-A3, the PMLE θ̂ is consistent.

Proof.

Consider the value θ∗ fixed. We seek to show that ∀ε > 0, for any neighborhood U of θ∗,

for all sufficiently large T ,

P
(
θ̂T /∈ U

)
< ε. (2)

Fix ε > 0 and U . We first show that there exists δ > 0 such that for sufficiently large T ,

ELT (θ∗)/φ(T )− sup
θ∈Uc

ELT (θ)/φ(T ) ≥ δ, (3)

where now LT (θ) is defined by (1).

Observe that

ELT (θ∗) − sup
θ∈Uc

ELT (θ)

= E
∫
S

T∫
0

log λT (s, t; θ∗)dNT (s, t)−
∫
S

T∫
0

λT (s, t; θ∗)dµS(s)dt

− sup
θ∈Uc

E
∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)−
∫
S

T∫
0

λT (s, t; θ)dµS(s)dt


=

∫
S

T∫
0

log λT (s, t; θ∗)λT (s, t; θ∗)dµS(s)dt−
∫
S

T∫
0

λT (s, t; θ∗)dµS(s)dt

− sup
θ∈Uc


∫
S

T∫
0

log λT (s, t; θ)λT (s, t; θ∗)dµS(s)dt−
∫
S

T∫
0

λT (s, t; θ)dµS(s)dt


= inf

θ∈Uc


∫
S

T∫
0

λT (s, t; θ∗)

[
log λT (s, t; θ∗)− log λT (s, t; θ)− 1 +

λT (s, t; θ)

λT (s, t; θ∗)

]
dµS(s)dt


= inf

θ∈Uc


∫
S

T∫
0

λT (s, t; θ∗) [exp(ψ(s, t, θ))− ψ(s, t, θ)− 1] dµS(s)dt

 ,
10



where ψ(s, t, θ) = log λT (s, t; θ)− log λT (s, t; θ∗).

Assumption (A3) ensures that there exist some positive constants γ1, γ2, γ3 such that

for sufficiently large T , for all s, t in a subset of S × [0, T ] with measure at least γ1φ(T ),

λT (s, t; θ∗) > γ2 and |ψ(s, t, θ)| > γ3. Let γ4 = min{exp(γ3) − γ3 − 1, exp(γ3) + γ3 − 1}.

Recalling that γ3 > 0 and that the inequality exp(x) ≥ x+1 has equality iff. x = 0, (see e.g.

Abramowitz 1964), it follows that γ4 > 0.

Hence, for sufficiently large T , ELT (θ∗) − sup
θ∈Uc

ELT (θ) ≥ γ1γ2γ4φ(T ), which establishes

(3) for δ = γ1γ2γ4.

With Θ1
T , ...,Θ

J
T defined as in assumption (A1), fix J elements θ1 ∈ Θ1

T , ..., θ
J ∈ ΘJ

T . By

assumption (A2), for each such value θj,

V

[
LT (θj)

φ(T )

]
= V

 1

φ(T )

∫
S

T∫
0

log λT (s, t; θj)dNT

→ 0.

Thus for each j, [LT (θj) − ELT (θj)]/φ(T ) has mean zero and variance converging to zero,

so from Chebyshev’s inequality

LT (θj)− ELT (θj)

φ(T )

p→
T→∞

0. (4)

(5)

Since by assumption (A1) the function λT (s, t; θ) is continuous with respect to θ on Θj
T ,

so is the function

LT (θ)− ELT (θ)

φ(T )
=

∫
S

T∫
0

log λT (s, t; θ)dNT −
∫
S

T∫
0

log λT (s, t; θ)λT (s, t; θ∗)dµS(s)dt

φ(T )
.

Thus the compactness of Θj
T implies that [LT (θ) − ELT (θ)]/φ(T )

p→
T→∞

0 uniformly on Θj
T .

Since Θ =
J
∪

j=1
Θj

T , [LT (θ)− ELT (θ)]/φ(T )
p→

T→∞
0 uniformly on all of Θ.
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Hence there is a δ > 0 such that for sufficiently large T ,

P

(
sup

θ
[LT (θ)− ELT (θ)]/φ(T ) ≥ δ/2

)
< ε/2. (6)

Let θ̌T denote a (possibly non-unique) value of θ maximizing LT (θ) among θ ∈ U c, i.e.

LT (θ̌T ) ≥ LT (θ),∀θ /∈ U . Putting together (3) and (6) yields, for sufficiently large T ,

P
(
θ̂T /∈ U

)
= P

(
LT (θ̌T ) ≥ sup

θ∈U
LT (θ)

)

≤ P
(
LT (θ̌T ) ≥ LT (θ∗)

)
≤ P

(
LT (θ̌T )− ELT (θ̌T ) ≥ δφ(T )/2

)
+ P

(
ELT (θ̌T )− ELT (θ∗) > −δφ(T )

)
+ P (ELT (θ∗)− LT (θ∗) ≥ δφ(T )/2)

< ε/2 + 0 + ε/2,

establishing (2).

Assumptions (A1-A4) are by no means minimal, but they are quite straightforward to

verify, in contrast to the conditions in previous results regarding maximum likelihood esti-

mation. In particular, no conditions on the derivatives of λ are required. We remark below

in particular about two of the three assumptions for Theorem 3.1.

Remark 3.2. Like previous authors (e.g. Ogata 1978, Andersen et al. 1993, Rathbun

and Cressie 1994, Rathbun 1996a), we assume that the parameter space Θ is compact; this

assumption is implicit in (A1). Note however that in certain cases the proof of consistency

in Theorem 3.1 remains valid even when the parameter space is not compact. In particular,

assumption (A1) may be discarded for the purposes of Theorem 3.1 if it may be shown

directly that the parameter space Θ contains compact subsets ΘT with P (θ̂T /∈ ΘT ) →
T→∞

0,
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with λT continuous as a function of θ on ΘT ; in such cases one may further replace Θ with

ΘT in conditions (A2) and (A3). This feature may be relevant in applications where often

it is quite natural to consider the domain for each estimated parameter to be the whole real

line R or in some cases the half-line R+, rather than some compact subset thereof.

Remark 3.3. Note that assumption (A3) is quite a bit stronger than what is minimally

necessary for Theorem 3.1. (A3) is only used in the proof of relation (3) and hence may be

discarded for processes where this inequality can be proven directly.

4 Weighted Least Squares Estimates

The parameters θ∗ governing the intensity of a spatial-temporal point process can alterna-

tively be estimated by weighted least squares (WLS). Here the estimator θ̃T is chosen to

minimize the quadratic variation:

QT (θ) =
IT∑
i=1

wT
i

[
NT (BT

i )− E{NT (BT
i ); θ}

]2
, (7)

where for given T , the sets {BT
1 , . . . , B

T
IT
} form a partition of the product space S×[0, T ], and

the weights wT
i are non-negative constants. Often in practice the weights are chosen so that

wT
i is inversely proportional to an estimate of the variance of NT (BT

i ). Here E{NT (BT
i ); θ} =

∫
BT

i

λ(s, t; θ)dµS(s)dt; with this notation, ENT (BT
i ) = E{NT (BT

i ); θ∗}. For simplicity, assume

that for each T , the number of bins IT in the partition is finite.

We consider the following replacements for assumptions (A2-A3):

(B2) For all θ in Θ, max
i
V

 ∫
BT

i

dNT

 = o (φ(T )2).

(B3) Given any neighborhood U of θ∗, there exist constants ν1, ν2, ν3 > 0 so that for

sufficiently large T , a fraction of at least ν1φ(T ) of the bins BT
i have product measure µB(B

T
i )
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at least ν2/
√
wT

i and the property that either λT (s, t; θ) − λT (s, t; θ∗) > ν3 or λT (s, t; θ) −

λT (s, t; θ∗) < −ν3 for all s, t ∈ BT
i and all θ ∈ U c.

Assumption (B2) guarantees that the processN is not too volatile. Like (A3), assumption

(B3) ensures that outside neighborhoods U of θ∗, λT is uniformly bounded away from its

value at θ∗ within a sufficient fraction of adequately-sized (and adequately-weighted) bins.

As with assumptions (A2-A3), these assumptions are relatively easy to verify.

Theorem 4.1. Assuming (A1) and (B2-B3), the WLSE θ̃T is consistent.

Proof.

QT (θ) =
∑

i

wT
i

[
NT (BT

i )− E{NT (BT
i ); θ}

]2
=

∑
i

wT
i

[
NT (BT

i )2 − 2NT (BT
i )E{NT (BT

i ); θ}+ (E{NT (BT
i ); θ})2

]
.

Taking expectations yields

EQT (θ) =
∑

i

wT
i

[
ENT (BT

i )2 − 2ENT (BT
i )E{NT (BT

i ); θ}+ (E{NT (BT
i ); θ})2

]
. (8)

Fix θ∗ and a neighborhood U around it. Letting δ = ν1ν
2
2ν

2
3 > 0, from (8) and (B4) one

obtains, for sufficiently large T ,

inf
θ

1

ITφ(T )
[EQT (θ)− EQT (θ∗)]

= inf
θ∈Uc

1

ITφ(T )

∑
i

wT
i

[
(E{NT (BT

i ); θ})2 − 2ENT (BT
i )E{NT (BT

i ); θ}+ (ENT (BT
i ))2

]
= inf

θ∈Uc

1

ITφ(T )

∑
i

wT
i

[
E{NT (BT

i ); θ} − ENT (BT
i )
]2

= inf
θ∈Uc

1

ITφ(T )

∑
i

wT
i

 ∫
t∈Bi

(λT (s, t; θ)− λT (s, t; θ∗)) dµS(s)dt


2

≥ 1

ITφ(T )
ν1φ(T )IT [ν2ν3]

2

= δ. (9)
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Note that assumption (B2) implies that V [QT (θ)] = o (I2
Tφ(T )2) by the Cauchy-Schwarz

inequality. Thus [QT (θ)−EQT (θ)]/ITφ(T )
p→

T→∞
0 for all θ in Θ, and assumption (A1) ensures

that this convergence is uniform over all θ in Θ, just as in Theorem 3.1.

Hence if θ̀T denotes the WLSE of θ among θ̀T ∈ U c, then for sufficiently large T ,

P
(
θ̃T /∈ U

)
≤ P

(
QT (θ̀T ) ≥ QT (θ∗)

)
≤ P

(
QT (θ̀T )− EQT (θ̀T ) ≤ −δITφ(T )/2

)
+ P

(
EQT (θ̀T )− EQT (θ∗) < δITφ(T )

)
+P (EQT (θ∗)−QT (θ∗) ≤ −δITφ(T )/2)

< ε/2 + 0 + ε/2,

which completes the proof.

5 Examples and Counterexamples

Some examples may help to clarify when the conditions for consistent estimation are satisfied.

Our first two examples consider the Poisson case, where λ = λ∗ and the PMLE and MLE

are equivalent.

Example 5.1. SupposeNT is a sequence of spatial-temporal versions of the cyclic Poisson

process, studied for example by Helmers and Zitikis (1999) and Helmers et al. (2003). That

is, suppose NT is Poisson with separable intensity function

λT (s, t; θ) = f(s; θ)g(t; θ), (10)

where f, g > 0, Θ a compact subset of RK for some positive integerK, and g is any integrable

cyclic function with (possibly unknown) period τ , i.e. g(t; θ) = g(t+ jτ ; θ), for all t and any

integer j. Let f and g be continuous in θ with | log fg| bounded for each θ by some constant
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Bθ, and suppose α :=
∫
S
f(s; θ∗)dµS(s) <∞ and β :=

τ∫
0
g(t; θ∗)dt <∞. Finally, suppose that

condition (A3) holds with φ(T ) = T ; note for example that one only needs f(s; θ∗) > c1 > 0

for s in some non-null subset of S, and g(t; θ∗) > c2 > 0 for t in some non-null subset of

[0, τ), in order to ensure that λT (s, t; θ∗) is uniformly bounded away from zero on a subset

of µB-measure at least γ1T . Note also that most parameterizations in which λT (s, t; θ) is

monotonic in θ (e.g. an exponentially parameterized intensity, or a linearly parameterized

intensity, as in Ex. 6.2 of Rathbun and Cressie) satisfy the condition in (A3) regarding a

lower bound on | log λT (s, t; θ∗)− log λT (s, t; θ)| for θ ∈ U c.

Assumption (A1) is obviously satisfied since f and g are continuous in θ over all of Θ,

and since NT is Poisson,

VT (θ) := V ar

∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)

 (11)

= E

∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)

2

−

E ∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)

2

=
∫
S

T∫
0

[log λT (s, t; θ)]2λT (s, t; θ∗)dµS(s)dt+

∫
S

T∫
0

log λT (s, t; θ)λT (s, t; θ∗)dµS(s)dt

2

−

∫
S

T∫
0

log λT (s, t; θ)λT (s, t; θ∗)dµS(s)dt

2

=
∫
S

T∫
0

[log λT (s, t; θ)]2λT (s, t; θ∗)dµS(s)dt

≤ B2
θαβ(1 + T/τ)

= o(T 2),

so condition (A2) is satisfied with φ(T ) = T .

Example 5.2. Let NT be a sequence of spatial-temporal Poisson processes, but not
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necessarily cyclical or separable. Suppose Θ is a compact subset of RK , that log λT (s, t; θ)

is continuous in θ and bounded in absolute value by some constant Bθ < ∞, and that the

space S has finite, positive measure µS(S). Finally, suppose that λT is parameterized such

that for θ outside any neighborhood U of θ∗, | log λT (s, t; θ∗) − log λT (s, t; θ)| is uniformly

bounded away from zero.

Then

VT (θ) ≤ B2
θV

∫
S

T∫
0

dNT (s, t)


= B2

θENT (S × [0, T ])

≤ B2
θ exp(Bθ)TµS(S),

so requirement (A2) is fulfilled with φ(T ) = T . (A1) is satisfied by assumption, and (A3) is

satisfied since λT (s, t; θ∗) > exp(−B∗
θ ) > 0 on S × [0, T ] which has measure TµS(S).

Example 5.3. Suppose that NT are spatial-temporal versions of the Isham and Westcott

(1979) self-correcting point process, as described by Rathbun (1996a). Such processes have

conditional intensity

λ∗T (s, t; θ) = exp [f(s, t; θ)− cNT {b(s, r)× [0, t)}] , (12)

where b(s, r) is a ball of radius r around location s, and c > 0. As in the previous exam-

ple, suppose that Θ is compact and 0 < µS(S) < ∞, and that f is continuous in θ with

|f(s, t; θ)| ≤ Bθ∗ < ∞ and |f(s, t; θ∗) − f(s, t; θ)| ≥ BU > 0 outside any neighborhood U of

θ∗. Processes obeying (12) are called self-correcting since the more (fewer) points N hap-

pens to place near location s, the more the conditional intensity λ∗T adjusts by decreasing
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(resp., increasing) the rate at which points accumulate near s thereafter. Hence the variance

of NT {b(s, r)× [0, t)} is actually smaller than that of the Poisson process with equivalent

intensity (see Isham and Westcott 1979 or Vere-Jones and Ogata 1984), and (A2) and (A3)

are easily satisfied with φ(T ) = T as in Example 5.2.

Note that not all the parameters in the conditional intensity are in general identifiable by

the intensity λ(s, t) = exp{f(s, t)}E[exp(−cNT {b(s, r)× [0, t)})], which is typically difficult

to formulate analytically for these types of processes. The case where f(s, t) = α + βt is

discussed e.g. by Ogata and Vere-Jones (1984). Even this simple case is non-stationary with

λ non-convergent (see p. 337 of Isham and Westcott, 1979) and difficult to formulate ana-

lytically; λ is the derivative with respect to t of the mean function µ(t) := EN(S, t), which

is governed by equation (15) of Isham and Westcott (1979). We certainly do not suggest the

PMLE in favor of the MLE for the case where the form of the self-correcting model given

above is known. The purpose of this example is merely to show that, for the purpose of

estimating the parameters θ governing the intensity λ, the process need not be Poisson in

order for the PMLE to be consistent.

Example 5.4. As mentioned in Remark 3.2, in certain circumstances one may apply

Theorem 3.1 even though the parameter space is not compact. A simple case is where

Θ = R and N is a stationary Poisson process with λ(s, t; θ) = exp(θ). For any T , there

is positive probability that no points have yet been observed up to time T , in which case

no maximum of the Poisson likelihood over R exists, i.e. the PMLE θ̂T is not defined.

However, if N(S × [0, T ]) ≥ 1 then θ̂ = log{N(S × [0, T ])} − log T ≥ − log T . Thus, letting
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ΘT = [− log T, log T ], one sees that

P (θ̂T /∈ ΘT ) = P{N(S × [0, T ]) = 0}+ P{N(S × [0, T ]) > T 2}

≤ P{N(S × [0, T ]) = 0}+ E{N(S × [0, T ])}/T 2

= exp {− exp(θ∗)µS(S)T}+ exp(θ∗)µS(S)/T

→
T→∞

0.

Since λ is continuous in θ one may appeal to Remark 3.2, and (A2) and (A3) are read-

ily satisfied on ΘT with φ(T ) = T since VT (θ) = (θ∗)2 exp(θ∗)µS(S)T and since λT and

| log λT (s, t; θ∗)− log λT (s, t; θ)| are obviously uniformly bounded below on ΘT ∩ U c for any

neighborhood U of θ∗.

Example 5.5. For point processes with rapidly increasing intensities, assumption (A3)

will typically not be satisfied, but in such cases one may appeal to Remark 3.3. For example,

if N is Poisson and λT increases exponentially, i.e. if λT is separable as in (10) with g(t) ∝

exp(θKt), and with θ∗K > 0, f any continuous function of θ such that 0 <
∫
S
f(s)dµS(s) <

∞, and Θ compact, then (A1), (A2) and (3) are satisfied with φ(T ) = exp(θ∗KT ). In-

deed, as in Example 5.1, VT (θ) =
∫
S

T∫
0
[log λT (s, t; θ)]2λT (s, t; θ∗)dµS(s)dt, which now equals

∫
S

T∫
0
[log f(s) + θKt]

2f(s) exp(θ∗Kt)dµS(s)dt = o({exp(θ∗KT )}2), establishing (A2). From the

equations following (3) in Theorem 3.1, for any neighborhood U of θ∗, and with γ4 > 0 as

in Theorem 3.1,

ELT (θ∗)− sup
Uc

ELT (θ) ≥ inf
θ∈Uc


∫
S

T∫
0

λT (s, t; θ∗)[γ4]dµS(s)dt


=

∫
S

T∫
0

f(s; θ∗) exp(θ∗Kt)γ4dµS(s)dt
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= γ4

∫
S

f(s)dµS(s){φ(T )− 1},

which immediately yields (3).

The next two examples illustrate limitations on the possibilities for consistent estimation

of the intensity.

Example 5.6. Suppose NT are observations on S × [0, T ] of a finite point process,

N , i.e. a process that, with positive probability, may contain only finitely many points on

S × [0,∞). In this case consistent estimation of θ is unachievable, as is well known (see for

instance Example 6.3 of Rathbun and Cressie 1994). An example is when N is a spatial-

temporal Poisson process with separable intensity as in (10), with g(t; θ) ∝ exp(θit), where

θi < 0. One may inquire which of the conditions (A1-A3) are not met in this case. Since the

integral lim
T→∞

∫
S

T∫
0
λT (s, t; θ∗) <∞, the set on which λT is uniformly bounded away from zero

must have finite product measure; hence φ(T ) = O(1) in condition (A3). However, since

N is a Poisson process VT (θ) is non-decreasing as a function of T , so assumption (A2) is

violated: VT (θ)/φ(T )2 6→ 0 as T →∞.

Example 5.7. If λT has a change-point governed by a parameter in θ, then consistent

estimation of θ is typically unachievable. For a simple example let NT be Poisson with

λT (s, t; θ) = θ11{t≤θ2} + θ31{t>θ2},

and where 0 < µS(S) < ∞. Assumption (A3) is violated, since for any ε with 0 < ε < θ∗2,

λT (s, t; (θ∗1, θ
∗
2, θ

∗
3)) = λT (s, t; (θ∗1, θ

∗
2 − ε, θ∗3)) for t > θ∗2. Thus for any small neighborhood U
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of θ∗, the set of (s, t) on which | log λT (s, t; θ∗) − log λT (s, t; θ)| is uniformly bounded away

from zero for θ ∈ U c has µB-measure less than θ∗2µS(S) = O(1), which violates (A3) since

VT (θ) = O(T ). In general if λT is governed by a parameter θi that does not affect λT (s, t; θ)

on a set of (s, t) with infinite measure, then consistent estimation of θi is unachievable, so

assumption (A3) is needed to ensure that such cases are excluded.

6 Discussion

Although maximum likelihood estimation for point processes is very common, examples of

applications where the assumptions necessary to establish the consistency of the MLE are

verified are rather elusive. The general impression among applied researchers appears to be

that asymptotic properties of the MLE such as consistency and asymptotic normality apply

quite generally, and that verification of these properties for particular point process models

is difficult and unnecessary.

The aim of the current paper is to show that, by contast, the PMLE and NLSE may

be used to estimate the intensity consistently in situations where one is unwilling to make

restrictive assumptions on the higher-order properties of the process. We show conditions

under which the estimates of the intensity parameters constructed by assuming the observed

point process is Poisson are consistent, even when the process in fact not Poisson. Further,

the assumptions required for consistency of the PMLE and NLSE may readily be verified in

practice.

Our results involve conditions on the rate of increase of the variance of the point process.

Since variances are rather easy to check and are easily interpretable, it is possible that these
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conditions may be checked in applications without explicit assumption of a parametric form

for the conditional intensity of the point process, but rather by examining sample variances

directly, or by appealing to subject matter information or knowledge of the mechanism

driving the point process. By contrast, it is difficult to see how the applied researcher

could justify assumptions involving the second (and higher-order) partial derivatives of the

conditional intensity of the point process without specifying the conditional intensity in

detail.

Although our assumptions may be easily verifiable, they are by no means minimal, nor

are our results optimally strong. In particular, only consistent estimation is investigated

here. Similar conditions under which estimates may be shown to be asymptotically normal

and/or efficient are important subjects for further research; such conditions likely will require

assumptions pertaining at least to the first derivatives of the condtional intensity.
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