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Abstract

In this paper a new method is described for estimating the fire interval dis-

tribution of a region using spatial-temporal fire history data. In Los Angeles

County, California, detailed information on fires has been available through the

use of geographic information systems (GIS) technology. The proposed estima-

tor is applied to GIS data covering the years 1878–1996 and it is shown that

fuel age appears to have a nonlinear threshold-type relationship with burn area.

The estimator is shown to be more stable than previous estimators and to have

good finite and large sample properties.

Keywords: Spatial-temporal modeling; Time-since-fire; Fire risk; Threshold re-

lationship; Maximum quasi-likelihood.

1 Introduction

The history of wildfire in Los Angeles County and other parts of Southern California is

well documented (Hanes, 1971; Minnich, 1983; Pyne et al., 1996). Fires are responsible

for significant amounts of property damage in Los Angeles County and are a subject

of research for fire managers, fire scientists, and ecologists. Because of the enormous

destructive capabilities of fires there is significant interest in developing methods for

estimating risk.

Fire incidence is known to depend critically on numerous covariates. These covari-

ates include factors such as wind, precipitation, fuel moisture, temperature, topog-

raphy, and many others. Much work has already been done examining the marginal
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relationships between burn area and wind, precipitation, fuel moisture, and tempera-

ture (see e.g. Flannigan and Harrington, 1988; Renkin and Despain, 1992; Viegas and

Viegas, 1994). One particularly important component of fire risk assessment is the

fire interval distribution, defined as the distribution of the time until a given location

reburns. Estimation of the fire interval distribution involves examining the relation-

ship between burn area and fuel age (also called time-since-fire), which is specified

for each location as the time since that location last burned.

There is some disagreement over the relationship between fuel age and burn area

in Southern California. Minnich (1983) suggested that the largest fires in recent

Southern California history are linked to the increased availability of older fuels. Using

Landsat imagery from Southern California and Northern Baja California, Minnich

claimed that the policy of total fire suppression created extensive stands of very old

age classes. These older stands, he argued, had accumulated fuels over the years

and were therefore ripe for burning. Minnich also claimed that fuel age is the most

important variable affecting the spatial properties of fires, in that fires tend to burn

up to the boundary of another (recent) fire and then stop for lack of fuel. Minnich’s

paper was highly influential and its conclusions were used as support for modern

prescribed burning policies.

Minnich’s paper contradicted some previous thinking concerning fuel age and fire

risk. Van Wagner (1978) and Johnson and Larsen (1991) suggested that fuel age has

little or no effect on risk and that it may be reasonable to assume uniform flammability

of forest stands with age. Van Wagner also noted that since large fires typically burn

through stands of many different ages, fuel age is irrelevant when looking at the larger

and more destructive fires.
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More recently, Keeley et al. (1999), using data from the California Statewide Fire

History Database, provided evidence showing that the mean fire size in Southern Cal-

ifornia has not increased over time and that large fires are not necessarily dependent

on old age classes of fuels. They went further to suggest that age class manipulation

(i.e. prescribed burning) is unlikely to prevent catastrophic fires in Southern Califor-

nia. The authors examined some of the largest fires in the database and showed that

for those fires there was no apparent relationship between the proportions of fuels

burned and the age classes of the fuels (e.g. see their Figure 4).

The lack of full agreement over the precise role of fuel age in contributing to fire

risk is not surprising. In general, it is difficult to make precise quantitative statements

about fuel age. For decades researchers have been using time-since-fire maps, which

show the time of the most recent fire for every location in the study area. Johnson

and Gutsell (1994) described a useful method for summarizing and quantifying the

information stored in these maps, and for producing numerical estimates of quantities

such as the fire cycle and average fire interval. They used survivor curves to estimate

the probability of an area surviving without fire beyond a certain age, given that it

has already survived to the current day. Similar work can also be found in Johnson

and Larsen (1991) and Johnson and Van Wagner (1985).

Often, time-since-fire maps are the only information available to researchers. How-

ever, when more detailed information on the fire history is available, one can hope to

obtain a more accurate picture of reburn activity in the area. In this situation the

survivor curve method is not optimal for several reasons. First, the time-since-fire

maps only show the most recent fires and do not contain information on the pattern

of overburning that occurs over time. This makes estimates of average reburn time
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more dependent on recent observations. Second, the survivor curves, which depend

critically on the particular year of observation, tend to be statistically unstable. Fi-

nally, the parametric models suggested by Johnson and Gutsell (1994) place some

restrictions on the nature of the relationship between fuel age and risk.

In Section 2 we begin with an introductory exploration of the data used for the

current analysis. Section 3 outlines our method for estimating the fire interval distri-

bution and discusses its statistical properties. Section 4 shows the results of applying

our method to data on fire history in Los Angeles County and shows that our es-

timator tends to be more stable than the estimator corresponding to Johnson and

Gutsell (1994). Section 5 summarizes our results and outlines some subjects for future

research.

2 Los Angeles County Fire Data

Maps of Los Angeles County wildfires have been recorded by the Los Angeles County

Department of Public Works (DPW) and the Los Angeles County Fire Department.

Fire information is recorded with the geographic information systems software package

ArcInfo and stored in coverage files. In those files each fire is stored as a polygon

outlining the fire boundary and the date on which the fire originated.

The data from DPW consist of approximately 2000 fires occurring between the

years 1878 and 1996. Figure 1 shows the frequency with which different parts of Los

Angeles County have burned in the years 1878–1996. One can see that much of the

fire activity in Los Angeles County occurs in a band stretching from the northwest to
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the eastern part of the county. The major exception is in the Malibu area (the region

protruding from the western part of the county) where there are some of the highest

levels of fire activity in the whole county. Additional information on topography and

precipitation were obtained from the U.S. Geological Survey and the UCLA Institute

of the Environment, respectively. In Figure 2 we see that the topography of the

County closely matches the areas of fire activity. Much of the burning occurs in

the higher elevations and around the mountains. Figure 3 shows the average yearly

precipitation in different areas of Los Angeles County. One can see that the county

is somewhat spatially homogeneous with respect to levels of precipitation.

Figure 4 shows the fire boundaries for 1980, a typical year in the dataset. The

measurement of the fire boundaries is very precise. Fire department officials estimate

that the polygon boundaries are accurate to within about 16 meters. For the purpose

of measuring burn area we regard the errors in the polygon boundaries as negligible.

Figure 5 shows the total area burned in each year of the dataset. Although there

appears to be an increase in total area burned over the years, that is at least partly

due to inaccuracies in the earlier years. For example, in the early part of the century

smaller fires were significantly underreported. Fire department officials believe that

the data from years after 1950 are complete.

From Figure 6 one can see how fuel age may affect the spatial configuration of

fires. For the fires in 1963 and 1964, a one year interval, the 1964 fires burn up until

the border of the 1963 fire and stop (Figure 6a). However, when looking at the years

1928 and 1968, a 40 year interval, we see that the 1968 fire burns right over the 1928

fire (Figure 6b). It should be clarified that in the intervening years between 1928 and

1968, there was almost no overburning of the 1928 fires in Figure 6(b) — the 1968
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fire is the first instance of significant overburning at this location.

3 Methodology

First, we define the quantity of interest, h(u), as the proportion of u-year-old fuel

expected to burn each year. If pi(u) is the proportion of u-year-old fuel which burns

in year i, i = 1, . . . , n (where n is the most recent year), and yi(u) is the amount of

u-year-old fuel available in year i, then we assume

E [pi(u) | yi(u)] = h(u). (1)

There are a few different methods one could use to estimate the function h. For

instance, Johnson and Gutsell (1994) model the the survivorship of a location based

on fuel age information in time-since-fire maps. Specifically, if T is the “lifetime”

of a location (i.e. the time until it reburns), then they propose, as an estimator of

P(T > u), the empirical survivor function defined via

Ŝ(u) =
∑
k≥u

yn(k)

/∑
k≥1

yn(k) . (2)

From (2) it is possible to get corresponding hazard estimates. It is also possible to

use a parametric model to estimate h; however, it may be preferable not to assume

a specific model. In contrast, given fire history data {pi(u), yi(u)}, i = 1, . . . , n, one

could simply use a naive estimator such as the average burn proportion

h̄(u) =
1

n

n∑
i=1

pi(u)

or perhaps the weighted average

h̃(u) =

∑n
i=1 pi(u)yi(u)∑n

i=1 yi(u)
.
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Note that h̃ has a nice interpretation in the context of the current application. Since

h̃ is an average of the observed proportions of overburning weighted by the amount

of available fuel, years for which there was more fuel available get more weight. This

scheme makes intuitive sense — if in a given year, 1% of 1, 000 available u-year-old

hectares burns, this year should influence our estimation of hazard more than an

observation of a year where 1% of 10 available hectares burns.

Alternatively, it is possible to find estimates for h via a maximum quasi-likelihood

procedure. This type of method is useful when one does not wish to specify an

entire distribution for the data but rather just the first two moments (Wedderburn,

1974). First, fix u at a particular fuel age. Suppose we have uncorrelated observations

(pi, yi), i = 1, . . . , n, where the conditional mean is E [pi | yi] = h and the conditional

variance Var (pi | yi) is some function V (h; yi). Then the quasi-loglikelihood function

q is defined by the differential equation

∂

∂h
q(h; p1, . . . , pn, y1, . . . , yn) =

n∑
i=1

pi − h
V (h;Yi)

. (3)

Solving (3) for q and setting

ĥ = arg max
h

q(h; p1, . . . , pn, y1, . . . , yn) (4)

yields the maximum quasi-likelihood estimate (MQLE) of h.

Wedderburn (1974) and McCullagh (1983) note that quasi-likelihoods behave

much like regular likelihoods and estimates derived from quasi-likelihoods share many

of the desirable properties of standard maximum likelihood estimates. For example,

under general conditions, estimates of the type in (4) are consistent and asymptoti-

cally normal (Jennrich, 1969).
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The maximum quasi-likelihood procedure requires that the first two conditional

moments of pi be specified. For fixed u, the conditional mean is constant from (1).

Therefore, we only need to specify a model for the conditional variance. For the

current application, it seems reasonable to use

Var (pi | yi) = σ2 h

yi
(5)

where σ2 is an unknown constant of proportionality independent of u. The intuition

behind (5) is that if the entire study area were divided into small 1-unit pieces, and

each unit burned independently of the others, then yi would represent the number of

u-year-old pieces that are available in year i and pi would represent the proportion

that burn. In this case, Var (pi | yi) ∝ 1/yi. We believe that relation (5) provides

a reasonable approximation for the variance behavior of pi. For example, if yi is

very small, then it is more likely that either we will observe total reburning or no

reburning. Therefore, pi will be 1 or 0 and Var (pi | yi) is high. If yi is large, then

the distribution of pi is spread more uniformly between 0 and 1 and will have lower

variance. In Figure 7 the log of the sample conditional variance is plotted against

log [h̃(u)/y(u)]. The superimposed dotted line has a slope of 1 and an intercept fitted

to the data. The linear relationship appears consistent with (5). A variant of Figure 7

was constructed using h̄(u) in place of h̃(u), however there was little difference between

the resulting figure and Figure 7.

3.1 Estimation of h(u)

A nice property of h̃ (defined in the previous section) is that if we assume the data

are conditionally uncorrelated, then h̃ coincides exactly with the MQLE of h. To see
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this, note that if Cov (pi, pj | y1, . . . , yn) = 0, for all i 6= j, then the quasi-loglikelihood

for h (using (5) for the variance) is defined by the differential equation

∂

∂h
q(h; p1, . . . , pn, y1, . . . , yn) =

n∑
i=1

yi
pi − h
hσ2

.

Solving the differential equation, we get for the quasi-loglikelihood

q(h; p1, . . . , pn, y1, . . . , yn) =
n∑
i=1

yi
σ2

(pi log h− h). (6)

Maximizing (6) over h gives us the maximum quasi-likelihood estimate (MQLE)

ĥ =

∑n
i=1 piyi∑n
i=1 yi

. (7)

In addition to the already mentioned large sample properties of MQLE’s, we can

also readily obtain finite sample properties for ĥ. First, it is clear that ĥ is also

the weighted least squares estimate of h. Therefore, ĥ is the best unbiased estimate

among linear combinations of the pi’s. Second, if we assume that

E
[
pki | y1, . . . , yn

]
= E

[
pki | yi

]
(i = 1, . . . , n)

for k = 1, 2, the variance of ĥ for a sample of size n can be expressed as

Var
(
ĥ
)

=
σ2

n
E [ 1 /ȳ ] .

For larger samples, this variance formula could be used in conjunction with a normal

approximation to get confidence bounds for the individual estimates.

After computing ĥ for many different fuel ages u, we use a local linear smoother

to construct the estimated fire interval hazard curve and highlight the overall trend.

In order to assess the variability of the fire interval hazard curve without impos-

ing a more restrictive model, we construct 95% confidence bands for the curve us-

ing the bootstrap. For each fuel age u, we sample with replacement the pairs
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(p1, y1), . . . , (pn, yn) to get (p∗1, y
∗
1), . . . , (p∗n, y

∗
n). From the bootstrap samples we com-

pute ĥ∗ = (
∑
p∗i y
∗
i ) / (

∑
y∗i ). After computing ĥ∗ for all fuel ages u we refit the local

linear smoother. This procedure is then repeated 1000 times and confidence bounds

are constructed using the percentile method (Efron and Tibshirani, 1993, ch. 13).

For the larger problem of wildfire risk estimation, one could generalize the above

approach in a number of ways. Given a location z and the fuel age uz at that

location, it seems feasible to model the hazard of fire as a function of ĥ(uz) and other

meterological, topographical, and socio-economic covariates. Hence, we could have

hazard(z) = f
(
ĥ(uz), xz

)
where xz represents a vector of covariates for location z. A simple example for f

would be a linear model where

hazard(z) = ĥ(uz) + β′xz

and β is a vector of parameters. For an example of the use of linear models in fire

prediction, see Mandallaz and Ye (1997).

Note that computing pi and yi for each u involves intersecting and differencing the

fire boundaries, which are very large polygons, each with many vertices. Hence, the

computational cost can be substantial, but it is by no means prohibitive. We used

the R statistical computing environment (Ihaka and Gentleman, 1996) to write most

of the software needed to construct the estimator. For the polygon manipulations we

used the very fast General Polygon Clipper software library written by Alan Murta

(see http://www.cs.man.ac.uk/~amurta/software).
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4 Results and Discussion

The result of applying our method to the Los Angeles County DPW data is shown in

Figure 8. The estimated fire interval hazard curve serves as a concise quantification

of the dependence of burn area on fuel age. Using data from the past century, it is

apparent that as fuel age increases from 1 year to 30 years, the proportion of fuel

that burns steadily increases. However, for fuel ages greater than 30 years or so, the

proportion remains nearly constant. Thus, the relationship between fire risk and fuel

age appears to be nonlinear. There is considerable scatter around the estimated fire

interval hazard curve. However, the statistical significance of this overall increase

and leveling off of the estimated curve is confirmed by the bootstrap 95% confidence

bands for the curve.

The type of nonlinear threshold relationship detected in Figure 8 is distinctly

different from the linear models in common use. However, the shape of the fire

interval hazard curve is in general agreement with our knowledge of the vegetation

in Los Angeles County. Typically, chaparral, the dominant vegetation, does not burn

easily until it has reached about 30 years of age, while older chaparral will burn

readily (Pyne et al., 1996). The estimated fire interval hazard curve indicates that

after an area reaches a certain age, it does not necessarily become more flammable or

hazardous. One possible interpretation is that large wildfires occur when conditions

are ripe, i.e. when fuel age is at least 30 to 40 years, but that there is little distinction,

with regard to risk based on fuel age, between conditions that are sufficient and

conditions that are extreme.

It should be noted that small fires burning less than 1 acre were not included
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in our dataset. Ed Johnson (personal communication, October, 2001) has pointed

out that an apparent decrease in hazard in locations having recently burned could

perhaps be partially attributed to an increase in the rate of very small undetected fires

during the vegetative regeneration cycle. However, as such small fires are thought to

account for only a tiny fraction of total burn area, it is unlikely that these fires are

solely responsible for the apparent decrease in hazard in Figure 8.

In order to take into account some of the spatial inhomogeneity of the fires, the

fire interval hazard curve was also estimated for separate sub-regions of Los Angeles

County. These sub-regions are shown in Figure 9 and their estimated fire interval

hazard curves are shown in Figure 10. Each of the curves seem to agree with the

estimated curve for the entire County; for each region there is no significant increase

in the estimated hazard curve after 25–30 years. However, only in region 3 do we see

a significant increase in hazard for fuel ages between 1 and 15 years. For regions 1,

2, and 4 it is difficult to say whether there is simply not enough data to detect an

increase in hazard or whether there is genuinely no increase.

4.1 Stability

In order to compare the stability of ĥ(u) to the estimate corresponding to the survivor

function in (2) proposed by Johnson and Gutsell (1994) we compute each estimator for

consecutive sample sizes. We start with a small subset of the dataset and progressively

increase the sample size by one year, each time computing both estimators, until the

entire dataset is used. Let hJGk (u) and ĥk(u) denote the time-since-fire estimator and

the estimator from (7), respectively, estimated from a sample of size k. Figure 11
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shows both estimators for u = 1 and for increasing values of k. It is apparent that

as k increases, ĥk(u) tends to stabilize and converge while hJGk (u) continues to vary.

Note that the y-axes on the Figures 11(a) and 11(b) are different; the MQLE in 11(b)

varies on a much smaller scale.

This process is then repeated for all u. Rather than show hJGk (u) and ĥk(u) for

each u, we take the sample standard deviation of the set
{
ĥk(u) : k = 1, 2, . . .

}
for

values of u between 1 and 50. The results are shown in Figure 12. The estimator

ĥ(u) appears to exhibit significantly less variation than the survivor curve estimate.

The reason behind this is simple: ĥ(u) uses all of the data up to the current year

of observation (year k). When data from year k + 1 is added, its effect on ĥ(u) is

counterbalanced by all of the reburn intervals recorded from years 1 to k. If ĥk(u) is

the current estimate of h(u), then given data from year k + 1, the updated estimate

for each u is

ĥk+1(u) = ĥk(u) +
yk+1(u)∑k+1
j=1 yj(u)

[
pk+1(u)− ĥk(u)

]
.

Hence, the estimate moves from its old value ĥk(u) toward the new observation

pk+1(u), but only by the fraction yk+1(u)
/∑k+1

j=1 yj(u) . By contrast, the survivor

curve method relies only on the most recent burn in each location and hence is heav-

ily dependent on the most recent observations.

4.2 Missing Data

Perhaps the simplest case of missing data is when the missing fires do not burn over

previous fires and are subsequently not burned over. Then the missing fires contribute

only to the denominators of our proportions. That is, they represent available area
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that never gets reburned. If the missing fires were large, the effect of their deletion

would be to inflate the estimates of h(u) for all fuel ages. Other than this simple

case, it is difficult to say how missing data affect the estimation of h(u) since little is

known about the spatial configuration of the missing fires.

One possible method for examining the effect of missing data on ĥ(u) could be to

use a cross-validation type of procedure. Let ĥ(j)(u) represent the estimate of h(u)

computed with the jth year removed from the dataset. For each u, a simple measure

of the increased variability due to missing years of data is

γ1(u) =
1

n− 1

n∑
j=1

[
ĥ(j)(u)− 1

n

n∑
k=1

ĥ(k)(u)

]2

,

or alternatively

γ2(u) =
1

n− 1

n∑
j=1

[
ĥ(j)(u)− ĥ(u)

]2

where ĥ(u) is the estimate of h(u) using all the years 1, . . . , n. If the fire patterns

in the missing years are essentially similar to those in non-missing years, then γ1

(or γ2) may provide a decent measure of how missing data affects ĥ(u). For the

Los Angeles County DPW dataset the assumption that the missing years of data are

similar to the non-missing years is doubtful, especially since most of the missing years

are from the early 1900’s. Increases in development as well as changes in land use

and fire suppression policies since the turn of the century likely have changed the fire

burn patterns over time. In general, the availability of detailed information on fires

continues to be a major problem and the subject of missing data should be studied

more intensely in the future.
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5 Conclusions

In this paper we have presented a new technique for estimating fire interval distri-

bution of a region using detailed spatial-temporal fire history data. It has already

been noted by other authors that fuel age and the fire interval distribution are im-

portant to understanding the overall behavior of fire. The estimator presented here

can capture more complex relationships than previous methods because it does not

impose a parametric model. As a maximum quasi-likelihood estimate, we know that

ĥ(u) possesses good statistical properties such as consistency and asymptotic normal-

ity. Furthermore, ĥ(u) exhibits good finite sample behavior such as being the best

linear unbiased estimator and having a variance of order 1/n. Using our estimator,

we have shown that for Los Angeles County, the proportion of area burned increases

steadily for fuels less than 30 years old, but remains nearly constant thereafter. The

data suggest that the proportion of fuel burned and age of the fuel have a nonlinear

threshold-type relationship.

The characterization of the relationship between burn area in Los Angeles County

and fuel age is intended to be useful to fire hazard modelers. The focus on fuel age by

no means is meant to underemphasize the importance of other factors in influencing

fire risk. These other factors include land use policies, population density, and fire

prevention policies, as well as meteorological and topographic variables. For example,

the expansion of the urban-wildland interface has introduced a major proliferation of

fires in previously uninhabited areas. Also, wind is a major factor affecting the size

of wildfires. Large catastrophic fires are often driven by high winds and are generally

immune to fire suppression (Keeley et al., 1999). Examining the interactions between
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these variables and their effect on burn area is still an important direction for future

research.

Finally, while Los Angeles County represents a significant fire regime, an impor-

tant direction for future research is to investigate the application of our method to

wildfire data from other regions. In particular, differences in vegetation life cycles

and spatial configurations of fuels may considerably alter the observed relationship

between burn area and fuel age.
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A Appendix: Figure Captions

1. Frequency with which different areas of Los Angeles County have burned be-

tween 1878 and 1996.

2. Centroids of fire boundaries for years 1878–1996 with elevation (meters).

3. Precipitation in Los Angeles County (average inches per year). Each number on

the plot represents the location and average yearly precipitation at each weather

station.

4. Fire boundaries for the year 1980, with elevation.

5. Total area burned in each year of the dataset (ha).

6. Overburning for different fuel ages. (a) Fires from the years 1963 (gray) and

1964 (white). There is relatively little overburning (black) — approximately 50

hectares. (b) Fires from 1928 (gray) and 1968 (white). The overburning here is

much more extensive — 237 hectares.

7. A plot of the log conditional variance of p(u) | y(u) vs. log h(u)/y(u). Given n

years of fire history data {(p1(u), y1(u)}, . . . , {(pn(u), yn(u)}, the values of pi(u)

are binned according to values of log h̃(u)/yi(u). In each bin, the variance of

the pi(u)’s is used as an estimate of Var (p(u) | y(u)).

8. Estimated fire interval curve for the Los Angeles County data.

9. Four sub-regions of Los Angeles County. The points represent the centroids of

the fire boundaries.
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10. Estimated fire interval hazard curve for each of the sub-regions of Los Angeles

County.

11. Estimated values of h(1) using the (a) estimate based on (2) and (b) the

MQLE (7).

12. Standard deviations for the ĥ(u) and the estimates derived from the survivor

curve method of Johnson and Gutsell.
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B Appendix: Figures
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