
Nonparametric estimation of recursive point processes
with application to mumps in Pennsylvania.

Andrew Kaplan1 Junhyung Park2 Frederic P. Schoenberg3

1 Department of Statistics, 8142 Math-Science Building, University of
California, Los Angeles, 90095-1554, U.S.A., amkaplan@ucla.edu
2Department of Statistics, 8142 Math-Science Building, University of
California, Los Angeles, 90095-1554, U.S.A., junhyung@ucla.edu
3Department of Statistics, 8142 Math-Science Building, University of
California, Los Angeles, 90095-1554, U.S.A., frederic@stat.ucla.edu

Abstract

“The self-exciting Hawkes point process model (Hawkes, 1971) has been used to
describe and forecast communicable diseases. A variant of the Hawkes model, called the
recursive model, was proposed by Schoenberg et al. (2019) and has been shown to fit
well to various epidemic disease datasets. Unlike the Hawkes model, the recursive model
allows the productivity to vary as the overall rate of incidence of the disease varies.
Here, we extend the data-driven non-parametric E-M method of Marsan and Lengliné
(2008) in order to fit the recursive model without assuming a particular functional form
for the productivity. The non-parametric recursive model is trained to fit to weekly
reported cases of mumps in Pennsylvania during the January 1970 - September 1990
time frame and then assessed using one week forecasts for the October 1990 - December
2001 time period. Both its training and predictive ability are evaluated compared to
that of other candidate models, such as Hawkes and SVEILR (Susceptible, Vaccinated,
Exposed, Infected, Lightly infected, Recovered) compartmental models.”

1. Introduction
The self-exciting Hawkes point process model (Hawkes, 1971) has been commonly used to

describe clustered phenomena, including earthquakes (Ogata 1988, 1998), crimes (Mohler

et al., 2011), invasive species (Balderama et al., 2012) and contagious diseases (Meyer et

al., 2012), (Meyer & Held, 2014). The model is specified by a conditional rate λ(t)

satisfying
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λ(t) = µ+K
∫ t

0
g(t− t′)dNt′

, (1)

where µ is the background rate, the parameter K is called the productivity, and the

density function g is called the triggering function. The simple Hawkes model makes the

assumption that the productivity, K, which is the expected number of future infections

directly transmitted by each infected individual, is constant.

Schoenberg et al. (2019) argued that the expected number of transmissions for a

subject infected at time t may depend on the conditional rate at time t. For instance,

early in the outbreak of a disease, when the prevalence of the disease is low, the

rate of transmission may be much higher than at later times when the virus has already

spread, due to differences in awareness, human mitigation efforts, and prior exposure of

the population to the disease. Schoenberg et al. (2019) thus introduced the recursive

model, which allows for changes in the productivity over time as the rate of incidence

varies:

λt = µ+
∫ t

0
H(λt′ )g(t− t

′)dN ′

t (2)

Note that here and in what follows, we alternate between the notation λ(t) and

λt which are interchangeable. As in the simple Hawkes model, the conditional

intensity is dependent on the background rate µ(t) and the triggering function g

governing temporal distribution of transmissions from an individual as a function of time

since the individual’s infection. However, the conditional rate λ in the recursive

model also depends on the function H, which determines how the productivity varies with

the conditional rate. If H is constant, then the recursive model is equivalent to the

Hawkes model. Schoenberg et al. (2019) showed improved fit for the recursive model

compared to that of the simple Hawkes model in describing known cases of Rocky

Mountain Spotty Fever in California between 1960 and 2011. Wang (2019) showed

improved fit of the recursive model relative to Hawkes models for Coccidioidomycosis

in California, and Yang (2019) found improved fit of the recursive model over the Hawkes
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and SEIR models using data on Pertussis in Nevada from 1940 to 2017.

The purpose of this paper is to estimate the recursive model non-parametrically,

so that the forms of both functions g and H are purely data driven, allowing

for more flexibility when fitting the recursive model to data, which in turn

should result in more accurate forecasts. In Schoenberg et al. (2019),

Wang (2019), and Yang (2019), both the Hawkes and recursive models were

estimated parametrically after assuming a specific form for the functions g

and H. The fitting is performed by extending the non-parametric estimation

technique for the Hawkes model developed by Marsan and Lengliné (2008), but

modified to take into account the additional recursive component, H. The

non-parametric recursive model is evaluated using epidemiological data by

comparing the accuracy of both the model fit and forecast to those of other

point process models, as well as more widely used compartmental models such as

the SEIR (Susceptible, Exposed, Infected, Recovered) compartmental model first

introduced by Kermack and McKendrick (1927) and specifically its extension, the SVEILR

model. The SVEILR model is a system of differential equations that can be adjusted to

account for varying methods of transmission and rates of exposure, vaccination and

recovery. To date, non-parametric methods for point process models have shown promise.

The non-parametric version of the Hawkes model outperformed the generalized SEIR model

in fitting and forecasting the spread of Ebola (Kelly & Park et. al., 2019), (Park et. al.,

2019). In addition, it has been extended to applications in other areas such as renewal

immigration (Wheatley et. al., 2014), online learning algorithms (Yang et. al., 2017)

and finance (Kirchner & Bercher, 2018).

Of particular interest here is whether the proposed non-parametric version of the

recursive model can outperform both the Hawkes and SVEILR models in its ability to fit

epidemic data and to forecast future cases. We compare the models using 32 years of

reported cases of mumps in Pennsylvania, fitting using training data from January 1970

to September 1990 and then assessing their fit using data from October 1990 to

December 2001.
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2. Methods

2.1 Nonparametric Hawkes Estimation Method of Marsan and
Lengliné (2008)
Parametric Hawkes models are conventionally estimated by maximum likelihood estimation

(MLE) (e.g. Ogata 1988), and the resulting estimates have desirable asymptotic properties

such as consistency, asymptotic normality and efficiency (Ogata 1978). However, in

practice often the likelihood function is quite flat around its maximum, and

optimization methods may fail to converge or depend greatly on the choice of starting

values (Schoenberg 2013). As an alternative, Veen and Schoenberg (2008) suggested a

method based on the expectation-maximization (EM) algorithm to approximate maximum

likelihood estimation. The key to such an approach is that the information containing

which event triggers which later event is unknown. The probabilities of such triggerings,

for each pair of points, are updated iteratively as parameter estimates are also updated.

In 2008, Marsan and Lengliné extended this EM-based method to the case of

estimating the triggering function of a Hawkes process non-parametrically. Marsan and

Lengliné (2008) assumed that the triggering function is a step function and proposed

using the EM-based method to estimate the step heights as though they were parameters

in a parametric model. In this setting, the expectation step of the E-M algorithm

involves computing an updated matrix of triggering probabilities given the conditional

intensity. In the maximization step, estimates of λ are recalculated given the updated

matrix of triggering probabilities.

2.2 Non-Parametric Estimation of the Recursive Model
In fitting the recursive model (2), both the triggering function g and the

productivity function H must be estimated. We propose an iterative EM-based procedure

similar to that in Marsan and Lengliné (2008), where the productivity function H is

estimated based on initial estimates of the background rate µ and the triggering

function g. This estimated productivity function is then used to update estimates of the

background rate µ and the triggering function g, and so on until a level of
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convergence is reached.

A few details should be given before describing the algorithm. We suppose purely

temporal point process data of the form τ1, τ2, ..., τn, where n is the

number of events observed in the time interval [0, T ]. P is defined as a matrix of

estimated probabilities such that Pij is the estimated probability that event i was

directly triggered by event j. This probability matrix is by definition lower-triangular

since an event j can only trigger later events. Each diagonal entry Pii represents

the probability that infection i is a background event, not triggered by any previous

event. The sum of any row of P must therefore equal 1, since each event must either be a

background event or have been triggered by some prior event. As in Marsan and Lengliné,

g is assumed to be a step function indicating the density of triggered points with time

lags in some prespecified bins, and similarly we estimate H as a step function with

predefined bins corresponding to intervals of the conditional rate, λ. We assume

here that the background rate µ is constant and estimate this parameter µ as well.

After a quick initialization step (first E-step) where initial estimates of Pij and

H are defined, the following E-M algorithm can be run until a level of convergence or

number of iterations is reached. Note that the initial value for H is a guess constant∑
i

∑
j<i

P̂ij

n
.

Maximization Step:

Part 1: Estimate ĝ. First determine the interevent times, τi − τj, for all

positive integers j < i < n. For each bin Bl, an interval of the real line containing

some of the interevent times, set

ĝl =
∑
i

∑
j<i I(τi − τj ∈ Bl)(P̂ij)∑

i

∑
j<iwlP̂ij

(3)

where wl is the width of bin Bl. The bins Bl need not be of equal width.

We suggest setting the bins so that they span the entire range of interevent times. To be

consistent with the methodology used for the non-parametric version of the Hawkes model

(Gordon, 2017), a loglinear approach using base 10 is applied here.

5



Part 2: Update µ̂.

µ̂ = 1
T

n∑
i

P̂ii. (4)

Part 3: Update λ̂(τi) using µ̂ and the most recently updated

estimates of ĝ and Ĥ, letting

λ̂(τi) = µ̂+
i∑

j=1
Ĥj ĝ(τi − τj). (5)

Part 4: Update estimates of the productivities Hi = H(λ(τi)).

For each bin Ck, an interval of the real line containing some of the values of λ̂(τj), set

Ĥk =
∑n−1
j=1

∑n
i=j+1 I(λ̂j ∈ Ck)(P̂ij)∑n
j=1 I(λ̂j ∈ Ck)

, (6)

provided ∑n
j=1 I(λ̂j ∈ Ck) > 0, and Ĥk = 0 otherwise.

Thus the sum of the columns of P̂ij where λ̂j ∈ Ck are averaged.

Then, for any j such that λ̂(τj) ∈ Ck, set Ĥ(λ(τj)) = Ĥk.

Expectation Step:

Update P̂ using the values of ĝ, Ĥ and µ̂ obtained in the Maximization Step.

P̂ij = ĝ(τi − τj)Ĥj

µ̂+ ∑i−1
k=1 ĝ(τi − τk)Ĥk

. (7)

Running all the parts of the expectation and maximization steps results in one complete

iteration of the recursive Algorithm. While it may be customary to run until convergence,

due to small changes from iteration to iteration in the large matrix Pij of size n× n,

the algorithm often fails to converge completely. In such cases, we terminated

the algorithm after 100 iterations.

2.3 Fitting and Forecasting Point Process Models
In the case of the parametric versions of the point process models, the values for the

parameters in the triggering functions are estimated via maximum likelihood estimation
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(Ogata, 1978). For the parametric Hawkes process,

λ(t) = µ+K
∑
i:τi<t

g(t− τi) (8)

two common forms for the triggering function g are the Pareto

g(u) = (p− 1)cp−1 1
(u+ c)p (9)

and the exponential

g(u) = βe−βu. (10)

When fitting the parametric recursive model, the productivity K varies by

Ki = c

(λi)p
(11)

To fit the non-parametric Hawkes model, we used the version of the Marsan and

Lengliné (2008) E-M algorithm implemented by Gordon (2017), which is available in the

R package nphawkes.

To assess and compare competing models, one may inspect the likelihood as well

as the root mean squared error (RMSE) over each week. The latter is particularly relevant

when making comparisons over a testing period for simulations of the models fit using

separate training data. Because of occasional outliers in the simulations, we compared the

trimmed mean of the simulated totals, with the top and bottom 10% of these values

removed, to the observed weekly totals in the testing data. Another statistic useful for

goodness of fit assessment is the scaled Stoyan-Grabarnik statistic (Stoyan & Grabarnik,

1991), ∑n
i=1

1
T λ̂(τi)

, which should ideally be close to one if the estimates λ(τi) are close to

the true conditonal rate, since the expected value of the statistic is easily seen to

equal one by the martingale formula (Baddeley et al. 2005).

Another diagnostic tool useful for comparing the fit of point process models is

superthinning (Clements et al. 2012). Given a constant b selected by the user, such as

the mean of the estimated conditional intensities at the observed points (Gordon et al.
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2015), one thins the data keeping each observed point τi independently with

probability min{1, b
λ̂(τi)
} and then superposing simulated points according to a Poisson

process with rate max{0, b− λ̂(t)}. If the estimated conditional rate λ̂(t) is correct,

then the resulting residual process is a stationary Poisson process of rate b. The

superthinned residuals may thus be inspected for trend, clusters, gaps or other patterns

as evidence of lack of fit of the model.

2.4 The SVEILR Model
Fitting the SVEILR model requires that parameters such as the rate of exposure, method of

spread and human intervention must be prescribed. The model is designed as a closed

system of differential equations where subjects go from one state, i.e. susceptible,

infected or recovered to another at a rate determined by terms that have a simple

interpretation. A single vaccine model is warranted since the original mumps vaccine was

introduced before this period in 1967 and the second dose was not mandated until 1989

(CDC, 2019).

We followed Li et al. (2018), who developed a one vaccine model for mumps in

mainland China, where the disease is still prevalent. Although there is sufficient

availability of the second MMR dose, China only provides one free dose of MMR and there

is no push from National Health and Family Planning Commission of the People’s Republic

of China (NHFPC) to require children to take a second dose (Li et al., 2018). The proposed

expanded SVEILR (Susceptible, Vaccinated, Exposed, Infected, Light Infection, Recovered)

model adds two necessary nodes to take into account the vaccinated state (V) as well as a

lightly infected state (L) since not all cases are symptomatic (Li et al., 2018), (CDC,

2019).

In this analysis, the differential equation model used to model mumps in

Pennsylvania during the 1970-1990 time period is quite similar to the one applied in

Li et al. (2018). As in Li et al. (2018), the values optimized by minimizing the sum of

squares include the transmission rate (β), waning immunity rate (λ), vaccine coverage

of the susceptible/exposed (ε), proportion of people seeking medical advice (γ) and
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initial proportions susceptible and vaccinated (S(0), V (0)).

The system of differential equations developed by (Li et al., 2018) for this SVEILR

model is as follows:

∂S

∂t
= µ− pµE − βS(I + L) + λV − (ε+ µ)S

∂V

∂t
= εS + ε1E − λV − κβV (I + L)− µV

∂E

∂t
= βS(I + L) + ρµE + κβV (I + L)− (α + ε1 + µ)E

∂I

∂t
= αγE − (δ1 + µ)I

∂L

∂t
= α(1− γ)E − (δ2 + µ)L

∂R

∂t
= δ1I + δ2L− µR

The set of differential equations establish the rate that the numbers in each state

change over time. In addition, each term in this model represents an effect which can be

interpreted independently. As described in Li et al. (2018),

β = transmission rate
λ = waning immunity rate
ε = vaccine coverage of the susceptible
ε1 = vaccine coverage of the exposed
κ = invalid vaccination rate
α = rate moving from exposed to severe or mild infectious
γ = proportion of the severe infections seeking medical advice
δ1 = rate moving from severe infectious to recovered
δ2 = rate moving from light infectious to recovered.

The model was then applied to monthly mumps data acquired from the CDC of China. Since

mumps spreads the most rapidly amongst children in school, Li et al. (2018) fit the SVEILR

model for half year periods since peak cases tend to occur after major holiday breaks. Li

et al. (2018) fit the SVEILR model using data from February 2009 to September 2014 by

minimizing the sum of squares between the number of severe infections (state I) accounted

for by the model and the actual case count and then forecast from October 2014 to
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September 2015.

The only difference in our fitting of the model to mumps in Pennsylvania versus

that of Li et al. (2018) is that peaks in mumps cases occur in Pennsylvania annually

corresponding with the beginning of the academic year when schoolchildren return from

break rather than twice per year as reported in Li et al. (2018). As a result, the SVEILR

model is fit here using weekly data for each year separately beginning from the first week

in October and ending in the last week in September.

Forecasting the SVEILR model was performed using standard exponential

smoothing. Parameter estimates are obtained by taking a weighted average for all the years

during the training period (Shmueli & Lichtendahl, 2016). To smooth, a reasonable value of

the smoothing parameter α is chosen and for each of the six parameters of interest

(β, λ, γ, ε, S(0), V (0)), the value of each parameter estimate is determined by

(1−α
α

)(αpi−1)(α2pi−2)...(αkpi−k) where pi is the parameter estimate from year i.

3. Pennsylvania Mumps Data
Mumps is a contagious viral disease, usually spread through airborne transmission, causing

symptoms including fever, headache, fatigue, loss of appetite, and swelling of the

salivary glands (CDC, 2019). While morbidity from mumps is low (2 out of 10,000 cases

in the United States in the pre-vaccine era), mumps has been known to cause orchitis

(testicular inflammation), encephalitis and even permanent hearing loss in a small

percentage of cases (CDC, 2019). Recent interest has been in investigating the occasional

outbreak of mumps since the second dose of MMR was mandated and whether there is

waning immunity over time to the disease (Lewnard & Grad, 2018), (Porter & Oleson,

2013).

Recorded cases of mumps statewide in Pennsylvania between January 1970 and

December 2001 were obtained courtesy of Project Tycho (Van Panhuis, Cross &

Burke, 2018) and are shown in Figure 1. The dataset consists of weekly statewide case

totals during this time period. Weeks with no data over this timeframe were treated as

having no confirmed cases. We selected January 1, 1970 - September 30, 1990 as the
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training portion of the dataset and October 1, 1990 - December 31, 2001 as the testing

portion.

When fitting point process models to the data, the estimated onset time for each

infection within a given week period is randomly drawn from a uniform distribution

covering the 7 day time interval as in Park et al. (2019) and Schoenberg et al. (2019).

For each point process model, 3 iterations of uniformly drawn event times were used, for

each iteration, parameters were estimated by MLE, and of the three sets of parameters,

those yielding the smallest RMSE over the training set were selected.

In 1967, the still currently used mumps vaccine was introduced in the United States.

In the U.S., the mumps vaccine is now available in combination with the measles and

rubella vaccines, known as MMR (CDC, 2019). In 1977, one dose of the MMR vaccine was

recommended for all children 12 months and older. In 1989, the vaccine policy was updated

to include a second dose at 4-6 years of age after it was discovered that waning immunity

to mumps was a real possibility (CDC, 2019). As a result, the incidence of mumps in the

U.S. has dropped from 55.5 cases per 100,000 people to less than 2 cases per 100,000 in

2017 (Elflein, 2019), and this decrease is also evident from Figure 1.

Despite the fact that the MMR vaccine has appeared to greatly diminish MMR

incidence, occasional outbreaks still occur. In 2006, there was an outbreak which

affected many midwestern university students, most of whom lived in dormatories (CDC,

2019). Another occurred in 2009 when 3502 cases of mumps were reported in the Orthodox

Jewish communities in New York City, an area where 90% of the children at the time

received one or more doses of MMR (CDC, 2019). These mini-resurgences of mumps have

led researchers to question whether those vaccinated are still prone to losing immunity to

the disease over their lifetimes (CDC, 2019).
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4. Results

4.1 Model Fitting
4.1.1 SVEILR Model

Table 1 lists the parameter estimates for the SVEILR model for each of the twenty years

fit individually during the course of the training period. The decrease over time in the

annual estimated incidence of infection is obvious. This may be due to corresponding

increases in the vaccination rate which rose from 58.4% in 1970 to a high of 67.6% in 1982

(CDC, 2011). However, data from 1986 to 1990 was not recorded and the survey methods

to collect such data changed after 1993 resulting in dramatically higher vaccination rates

being reported (CDC, 2011). However, some of the reduction in reported cases is also

reflected by a drop in the estimates of the proportion of infections that are severe, γ.

This is especially apparent in the precipitous drop in γ̂ from 1970 to 1971.

In addition, Figure 1 shows the fit of the SVEILR model to the Pennsylvania mumps

training data on the left side of the dotted line. The SVEILR model appears to adequately

account for both the seasonality of mumps infections as well as the decreasing overall

trend during the twenty year period. In addition, the model is largely identifying the

peak times correctly. The RMSE for the SVEILR model over the training period is 15.58

cases per week.

4.1.2 Point Process Models

For the simple Hawkes model given by (8) and with triggering function (9), the following

parameter estimates are obtained using MLE: µ̂ = 0.089, κ̂ = 0.951 points per observed

event, ĉ = 1.82 events per day, and p̂ = 2.50. For the recursive model with triggering

function (10) and with recursive component (11), the estimates are µ̂ = 0.1279,

ĉ = 0.8623 points per observed event, β̂ = 0.7027 events per day, and p̂ = −0.04486.

Fitted estimates of the triggering function, g, for the parametric and non-parametric

Hawkes and recursive models are shown in the left panel of Figure 2. The right panel shows

the corresponding estimated productivity functions, Ĥ(λ), for the four models. There

appear to be rather substantial variations in productivity as the estimated conditional rate
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varies.

Figure 3 shows the weekly numbers of observed cases on mumps in Pennsylvania

along with the fitted rates from the fitted parametric and non-parametric Hawkes and

recursive models. All four of the point process models appear to fit quite closely on the

training data, despite underestimating the largest peaks, especially in 1970-1972.

As shown in Table 2, the non-parametric version of the recursive model achieves

the lowest RMSE of five models considered. All four of the point process models fit the

training data substantially better than the SVEILR model. The Stoyan-Grabarnik

statistics, for the parametric Hawkes model, the nonparametric Hawkes model, the

parametric recursive model, and the nonparametric recursive model, respectively, were

0.9992, 0.9988, 1.0035 and 1.0003, indicating no noticeable lack of fit for any of the

four point process models.

4.1.3 Residual Analysis

Figure 4 shows the superthinned residuals over time for the non-parametric recursive

model. The number of superthinned residuals from 1970 to 1975 is slightly lower than for

subsequent years, indicating overestimation of the rate during this early period. Figure 4

also shows a histogram and lag plot of the standardized interevent times for the

superthinned residuals from the non-parametric recursive model. There is a noticeably

higher frequency than expected of the longest interevent times for the non-parametric

recursive model. However, there is no noticeable clustering of the interevent times.

4.2 Out-of-Sample Forecasting
4.2.1 Forecasting using the SVEILR Model

Figure 1 shows forecasts using the SVEILR model with parameters exponentially smoothed

using α = 0.05 or with no smoothing (α = 0). The weekly reported case counts during

the testing period resemble the last few years in the training period more than the earlier

years. To note, the RMSE is lower using α = 0 than when using α = 0.05.
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4.2.2 Forecasting using point process models

The parametric Hawkes, parametric recursive and non-parametric Hawkes models forecast

the number of cases accurately from 1990-1994, but substantially overestimate the

cumulative number of infections during later years. On the other hand, the forecast using

the non-parametric recursive model slightly underestimates the case counts during the

first several years of the testing data but is relatively accurate from 1996-2001. Overall,

as shown in Table 2, the non-parametric recursive model has the smallest RMSE of 1.905

cases/week, followed by the non-parametric Hawkes model with an RMSE of 2.253

cases/week. The SVEILR model, whether with α = 0 or α = 0.05, had substantially higher

RMS errors.

The non-parametric recursive model has both the lowest RMSE within the training

portion of the dataset as well as improved accuracy in forecasting weekly cases of mumps

in the testing dataset. The next best in fitting was the parametric recursive and the

runner up for forecasting was the non-parametric Hawkes model. The RMS error for all

four point process models was smaller than that of the SVEILR model for both fitting

and forecasting.

5. Discussion
The nonparametric recursive model appears to outperform the alternative models for

forecasting weekly mumps cases in Pennsylvania and is also substantially less prone to

overfitting as evidenced by the improved performance during the testing period relative to

competing point process and SVEILR models.

An important item for further research would be to explore how all of these

models might be improved by estimating a nonstationary background rate,

incorporating the decreasing trend in cases as well as their seasonality, while

simultaneously estimating the triggering portions of the models as in Zhuang and

Mateu (2019), for example. Additionally, future work should focus on ideal

selection of bin widths and bin numbers for fitting the nonparametric forms of

the recursive and Hawkes models, especially for the estimation of the productivity
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function, H. Also important is to find optimal ways to smooth the simple binned

estimates considered here, perhaps via kernel smoothing as in e.g. Mohler (2014).

The methods explored here should be applied to other diseases as well, including

emerging epidemics. It is unclear as to whether the techniques of fitting and forecasting

would remain the same if the incidence of a disease is static or even increases over time.

Another important potential use of the non-parametric recursive model is to forecast

the prevalence of various diseases based on the rate of vaccine coverage. This is

particularly relevant in light of recent anti-vaccination trends in many developed

nations, some of which may be attributable to misguided fears about unknown side-effects

from vaccines (Dubé et al., 2015). According to Dubé et al. (2015), 5% of parents in the

United States refuse for their children to be vaccinated and up to one-third of children

in the U.S. lack the recommended protection from easily avoidable diseases.
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8. Appendix

Academic Year β λ γ ε S(0) V (0) I/100000
Jan 1970 - Sep 1970 0.55211 0.01426 0.16893 0.00100 0.08833 0.61189 68
Oct 1970 - Sep 1971 0.34540 0.01142 0.19802 0.00100 0.07234 0.75687 51
Oct 1971 - Sep 1972 0.56523 0.00521 0.05487 0.00100 0.02342 0.82246 40
Oct 1972 - Sep 1973 0.48028 0.00615 0.08134 0.00100 0.02063 0.87002 49
Oct 1973 - Sep 1974 0.38864 0.00915 0.10813 0.00100 0.07885 0.75271 41
Oct 1974 - Sep 1975 0.32220 0.00858 0.04812 0.00100 0.04734 0.72389 36
Oct 1975 - Sep 1976 0.87266 0.00618 0.07130 0.00100 0.00391 0.54681 35
Oct 1976 - Sep 1977 0.58590 0.00502 0.01516 0.00100 0.06679 0.82386 12
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Academic Year β λ γ ε S(0) V (0) I/100000
Oct 1977 - Sep 1978 0.52773 0.00452 0.03159 0.00621 0.00001 0.78110 33
Oct 1978 - Sep 1979 0.33159 0.00704 0.02371 0.00100 0.07724 0.86552 16
Oct 1979 - Sep 1980 0.41620 0.01561 0.05648 0.00943 0.00001 0.93898 17
Oct 1980 - Sep 1981 0.42398 0.02703 0.05925 0.03364 0.00001 0.98814 63
Oct 1981 - Sep 1982 0.48071 0.02221 0.05562 0.04158 0.00001 0.95661 13
Oct 1982 - Sep 1983 0.38916 0.02290 0.01558 0.02730 0.00001 0.92277 5
Oct 1983 - Sep 1984 0.31616 0.00602 0.00599 0.00100 0.20079 0.74775 4
Oct 1984 - Sep 1985 0.38391 0.01970 0.05065 0.03394 0.08606 0.89321 8
Oct 1985 - Sep 1986 0.69370 0.06991 0.13761 0.11711 0.88178 0.11712 5
Oct 1986 - Sep 1987 0.25167 0.02881 0.02315 0.02672 0.00001 0.95429 4
Oct 1987 - Sep 1988 0.48329 0.00521 0.01040 0.00100 0.06763 0.83424 8
Oct 1988 - Sep 1989 0.12743 0.02214 0.09552 0.00790 0.15226 0.82994 8
Oct 1989 - Sep 1990 0.79982 0.00534 0.01344 0.00100 0.00001 0.58238 8

Table 1: Annual estimates of the transmission rate (β), waning immunity rate

(λ), vaccine coverage of those who are susceptible or exposed (ε), proportion

of people with severe infections (γ), initial proportions susceptible and vaccinated

(S(0), V (0)) and rate of severe infection per 100,000 people at the end of each year ( I
100000).

Model Training RMSE Stoyan-Grabarnik Forecasting RMSE Standard Error
SVEILR (α = 0.05) 15.580 — 4.136 0.095
SVEILR (α = 0) 15.580 — 3.059 0.087
Param. Hawkes 5.901 0.9992 2.380 0.090
Param. Recursive 5.058 0.9988 2.502 0.089
N.P. Hawkes 4.744 1.0035 2.253 0.089
N.P. Recursive 4.692 1.0003 1.905 0.078

Table 2: RMSE for each model using the training data and the testing data. The standard

error reported is for the forecasting RMSE.
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Figure 1: Reported weekly total cases of Pennsylvania mumps (gray) with fitted SVEILR

model estimates for the training period (solid black) and SVEILR forecasts for the

testing period using exponential smoothing with α = 0.05 (dash line) or α = 0

(solid line).
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Figure 2: Estimated triggering density, g, for the parametric Hawkes, non-parametric

Hawkes, parametric recursive and non-parametric recursive models (top). Estimated

productivity function, Ĥ(λ), for the Hawkes, parametric recursive and

non-parametric recursive models (bottom).
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Figure 3: Estimated conditional rates and observed weekly number of cases of mumps in

Pennsylvania over the 1970-1990 training period. The fits for the parametric Hawkes

(top left), non-parametric Hawkes (top right), parametric recursive (bottom left) and

non-parametric recursive (bottom right) models are shown along with the observed number

of reported cases.
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Figure 4: For the non-parametric recursive model: (a) Count of superthinned residuals

over time using b = 100, (b) histogram of standardized times between consecutive events,

ui = F−1(τi − τi−1), where F is the cumulative distribution function of the exponential

with rate b = 100, and (c) lag plot of standardized times between consecutive events, for

superthinned residuals.
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