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Discussion of ‘Modern Statistics for
Spatial Point Processes’

ABSTRACT. The paper ‘Modern statistics for spatial point processes’ by Jesper Møller and
Rasmus P. Waagepetersen is based on a special invited lecture given by the authors at the 21st
Nordic Conference on Mathematical Statistics, held at Rebild, Denmark, in June 2006. At the
conference, Antti Penttinen and Eva B. Vedel Jensen were invited to discuss the paper. We here
present the comments from the two invited discussants and from a number of other scholars, as well
as the authors’ responses to these comments. Below Figure 1, Figure 2, etc., refer to figures in the
paper under discussion, while Figure A, Figure B, etc., refer to figures in the current discussion. All
numbered sections and formulas refer to the paper.

The Editors

Comment by Antti Penttinen (University of Jyväskylä)

Modern point process statistics allows the use of covariates for controlling spatial variation
in (marked) point patters, uses the likelihood inference and steps towards Bayesian model-
ling have been taken. The authors have had many initiatives in this computationally intensive
science. They are in the forefront of putting forward new developments in point process sta-
tistics that follow the current mainstream of statistical thinking. This is a long way forward
from the works by Svedberg (1922) and Matérn (1960, 1971), the two earliest Scandinavian
contributors of spatial point process statistics.

My first comment is towards the role of marks. In this work a marked point process
�={u, mu :u∈X} has been considered as an unmarked point process in a higher-dimensional
space as was done in the modelling of the Norwegian spruce data. This kind of thinking is
feasible in mathematics but not in application-oriented statistics. In general, the marks mu

have a role of characterizing the points, but they are not coordinates. One consequence is,
for example, that when defining stationarity the marks are preserved in the translations of
locations.

Let us continue with the Norwegian spruce modelling. As mentioned in the paper the regu-
lar feature in the unmarked point pattern is due to man-made thinning of the forest according
to forester’s rule such as: ‘The wanted stem number is 500–600 per hectare and the trees are
evenly distributed’. This rule is just for avoiding competition! Further, the size of a tree may
affect the retaining probability of a tree in the thinning; hence, size-dependent marks can be
affected as well. Hence, the interpretation of the dependence of marks is not obvious. The
concept ‘influential zone’, introduced by the authors, is welcomed. It gives a refinement for
the standard mark correlation analysis (Stoyan & Stoyan, 1995). A simple new device based
on influental zone type reasoning could be

A(k)=E

⎛
⎝∑

i �= j

|b(ui , kmi)∩b(uj , kmj)|
⎞
⎠.

Here, mj is the diameter at breast height of the tree at uj , and k is a prefixed ‘dilation factor’
(k =5 in the paper). An application of this summary supports my earlier view, which was
based on mark-correlation analysis, that there is probably no correlation between the marks,
or if any, it is very weak (cf. Fig. A).
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Fig. A. The estimate of A(k) (solid curve) and pointwise maximum and minimum envelopes (dotted
curves) from 99 simulations under independent marking, conditional on the point locations. Zero
boundary has been applied.

My third remark is on the ‘well-defined’ inhomogeneous K - and g-functions. These are
essentially defined for the class of second-order reweighted stationary processes as are the
two inhomogeneous models, log Gaussian Cox process and generalized Thomas process, pre-
sented in the paper. But what would be the devices of examining this property in data? Using
locally defined pair-correlation functions, I found empirical evidence that this property does
not hold for the tropical rainforest data.

My fourth critical comment is on the new approach of defining residuals for a point
process model fit through a nice application of the conditional intensity and the Ruelle–
Nguyen–Zessin formula. This is without doubt a deep theoretical contribution. Before
celebrating this result, I am waiting applications where this new residual analysis really gives
advantages over the more traditional summary-based model critique.

Something very traditional can be found in the paper: The window problem is ignored as
is the case in most applications of point process statistics. The window may be crucial both
for modelling and interpretation of the results, for example, in plant biology and physics. In
some applications it may have a similar role as site-dependent covariates.

Finally I would add some personal views over the prospects for spatial point process
statistics. We are still lacking a practice of analysing complex marked point pattern data with
covariates and generic models for marked point patterns. Maybe the development in point
process statistics has been too conventional? One could possibly find means such as statis-
tical reconstruction of point patterns through summary-constrained optimization (Tscheschel
& Stoyan, 2006). Also new types of data would benefit the development. An example is the
use of additional hereditary information when deciding the mother–offspring relationship in
cluster models as in Shimatani (2002). Third, the traditional models, often originated from
physics, are models in equilibrium while this is seldom true for biological systems. Incorpo-
rating temporal aspects (see, e.g. Särkkä & Renshaw, 2006), or even spatio-temporal data,
would lead to modelling with improved interpretation.

Comment by Eva B. Vedel Jensen, Michaela Prokešová and Gunnar Hellmund (University of
Aarhus)

First of all, we want to congratulate the authors for writing a very clear review of the state of
the art of modelling and analysing spatial point process data. Next, we will like to
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comment on some additional issues concerning spatio-temporal modelling, inhomogeneity,
Cox processes and simulation-free procedures.

The examples considered in the paper are mainly used for illustrative purposes. We agree
with the authors that ‘many scientific problems call for new spatial point process methodol-
ogy for analysing complex and large data sets (often with marks and possibly in space-time)’.
To the list of such application areas mentioned in the paper we can add neuroscience where
each point of a marked spatio-temporal point process is used to model the time of onset,
duration and spatial extent of a neuronal activation at a particular spatial position. New
challenges are here to construct spatio-temporal clustered point processes with long-distance
dependencies and to develop efficient Bayesian analysis of huge data sets with spatio-
temporal point process models as priors (Taskinen, 2001; Hartvig, 2002; Jensen & Thora-
rinsdottir, 2007). It could have been worthwhile to use a few more pages on future aspects,
especially relating to spatio-temporal point processes.

Specific procedures are discussed for introducing inhomogeneity into the different types
of point process models considered. In the case of Cox processes, log-linear inhomogen-
eity is specified multiplicatively in the random intensity function or, equivalently, as a loca-
tion-dependent thinning of a homogeneous Cox process. There is a variety of other ways
of introducing inhomogeneity depending on the type of Cox process considered. In the case
of a shot-noise Cox process, one obvious alternative possibility is to let the process � be
inhomogeneous. We are happy that collaboration has been started between the authors and
us concerning the statistical analysis of such an inhomogeneous Cox process. In Fig. B, differ-
ent possibilities for introducing inhomogeneity into a shot-noise Cox process are illustrated
by simulation. In the case of a log Gaussian Cox process, inhomogeneity may be obtained
by a transformation of a stationary Gaussian process (Monestiez et al., 1993). For the Gibbs
point processes, the focus is on first-order inhomogeneity (non-constant first-order potential).
Alternative ways of introducing inhomogeneity in a Gibbs point process are briefly discussed
in section 10. In Jensen & Nielsen (2001), a review of four such classes of inhomogeneous

Fig. B. Examples of realizations of inhomogeneous shot noise Cox processes. The (mean) intensity func-
tion is the same in all three examples. To the left, the inhomogeneity is introduced via the location of
the mothers in �, in the middle the inhomogeneity is obtained by a location dependent thinning of a
homogeneous Cox process while to the right the inhomogeneity is obtained by a local scaling mecha-
nism.
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Gibbs point processes are given, together with a solution of the non-trivial problem of intro-
ducing log-linear inhomogeneity into these models.

Two main classes of Cox processes are discussed separately, viz. the shot-noise Cox pro-
cesses and the log Gaussian Cox processes. We think that it is very much worthwhile to intro-
duce a unified framework, thus being able to see shot-noise and log Gaussian Cox processes
in a new light, investigate their relationships and define further natural extensions, includ-
ing models with both shot-noise and log Gaussian components. The latter type of extension
would, in particular, be of interest for the tropical rain forest data. Such unified framework
can be based on the concept of a Lévy basis (infinitely divisible and independently scattered
random measure); cf. Barndorff-Nielsen & Schmiegel (2004) and references therein. The basic
ideas are studied in depth in Hellmund (2005), spatio-temporal point processes are discussed
in Prokešová et al. (2006b), and an extended version (Hellmund et al., 2007) is in preparation.
A Lévy driven Cox process (LCP) has driving field of the form

�(u)=
∫

R
k(r, u)L(dr), u ∈S,

where L is a positive Lévy basis on (R, B), R is a bounded subset of Rd , say, and k is a
non-negative weight function on R×S. The Lévy–Ito representation implies that the result-
ing process is a shot-noise Cox process with trend. A log Lévy driven Cox process (LLCP)
has driving field of the form

�(u)= exp
(∫

R
k(u, r)L(dr)

)
.

It turns out that � is a product of a log Gaussian field and an independent log shot noise
field. The extension to spatio-temporal point processes is straightforward; cf. Prokešová
et al. (2006b). Lévy bases also appear to be a powerful tool in modelling of turbulence and
growth phenomena (Barndorff-Nielsen & Schmiegel, 2004; Jensen et al., 2007; Jónsdóttir
et al., 2007).

We suggest that the simulation-free estimation procedures are studied further. As mentioned
by the authors, the estimating function (47) is the one obtained in a likelihood-based
approach under a Poisson model with �(u) as intensity function. In the paper, a next step
is to estimate the remaining model parameters by using an estimating function based on a
second-order characteristic like the K -function. As an alternative, a two-step likelihood pro-
cedure may be considered in analogy with the ones used for statistical inference in transfor-
mation and local scaling point process models; cf. Nielsen & Jensen (2004) and Prokešová
et al. (2006a). To be more specific, let the model parameters be denoted by �= (�, �), where
� parametrizes the intensity function ��, say, and � is the remaining part of the parameter.
Write the likelihood as

L(�)=L1(�)L2(�),

where L1 is the likelihood function for a Poisson point process with intensity function �� and
L2 is the remaining part of the likelihood function. The idea is now to calculate an estimate
�̂ of � and subsequently estimate � by maximizing L2(�̂, �) with respect to �. Note that L2 is
the likelihood function of the data with respect to the inhomogeneous Poisson point process
with intensity function ��.

Comment by Adrian Baddeley (University of Western Australia and CSIRO)

The authors give an excellent summary of the state of the art in statistical methods for spa-
tial point pattern data. It is an exciting time to be working in this field. Two decades ago, it
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was widely believed that spatial point patterns are not amenable to standard methods of sta-
tistical inference. It is now clear that the fundamental tools of statistics, such as likelihoods,
residuals and inferential techniques, are abundantly applicable and effective for spatial point
pattern data.

As the scope of applications expands, we encounter larger and more complex data sets,
more complex statistical issues and practical problems.

Modelling of spatial inhomogeneity (section 10.2) is an important topic requiring further
development. The authors’ work on inference for Cox processes (sections 7.3 and 7.4) is a
key contribution. I hope (12) will become known as the ‘Waagepetersen model’; it seems
very important. A challenging problem is to deal with ‘singular’ inhomogeneity, such as the
concentration of points almost exactly along a line, observed with earthquakes and galaxy
surveys (Baddeley, 2006; Ogata & Katsura, 1988).

Computationally intensive, simulation-based inference will play an increasing role (section
10.4). One might expect that statistically inefficient estimating equations and pseudolikeli-
hood inference will eventually disappear from favour. However, the same advances in
computer technology that enable statisticians to perform simulation-based inference also
enable scientists to collect enormous data sets. We will probably always need a plurality of
techniques, ranging from the statistically inefficient but computationally fast ones, up to the
statistically optimal but computationally expensive.

Techniques described in this paper concern the analysis of a single, spatial pattern of points.
Data sets consisting of many spatial point patterns arise, for example, in microscopy, where
each microscope field of view generates an observed point pattern. Statistical theory for such
data is still under development (Diggle et al., 2000; Bell & Grunwald, 2004; Baddeley et al.,
2007).

Statisticians usually assume a spatial point pattern has been observed without error. In
reality the observations may be subject to sampling bias and measurement error. It is scien-
tifically crucial to take into account all sources of sampling bias. The observed spatial distri-
bution of astronomical gamma-ray bursts must be corrected for the uneven sky coverage of
the observing satellite and its localization errors. Having personally observed Minke whales
in the wild, I wonder whether their natural curiosity may lead to positive sampling bias
(over-representation relative to the true abundance) and positive correlation between Minke
sightings.

The interpretation of summary statistics requires more sophistication. Consider the classi-
cal interpretation of the pair correlation function as indicating either randomness, attraction
or repulsion. Like any second-moment property, the pair correlation does not completely
justify such causal interpretations. Defensible inference about interpoint interaction requires
a model of interaction. This is one argument for retaining Gibbs/Markov models. I wonder
whether the difficulties of fitting scale parameters in current Markov models (section 10.3)
are attributable to the non-differentiability of the interaction terms.

Much interesting work remains to be done in spatial statistics. The new residuals for spa-
tial point patterns (section 6) should be extended to partial residuals, leverage diagnostics
and similar tools. Space–time processes are another exciting frontier.

Comment by Jean-Michel Billiot (Université Grenoble II)

It is true that spatial statistics recently have made significant advances. Its use in a large field
of areas calls for more and more flexible statistical models to describe the largest kind of
situations. Of course, several models such as the Gibbs models come from statistical physics;
refer, among others, the Lennard–Jones interaction but also the Widom–Rowlinson model
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(Widom & Rowlinson, 1970) for the liquid vapour phase transition. As it is pointed out in
the paper, in the attractive case, things are quite unsatisfactory and often more difficult. As
an example, consider the Ruelle class of superstable and regular potential (Ruelle, 1970). The
attractive part needs to be balanced by a repulsive one at a small scale so as to satisfy the
stability assumption. Notice that, for this model, some characteristics are known such as a
fine bound of the correlation functions, the Kirkwood Salsburg equations take a simple form,
and ergodic theorems, cluster expansion, variational principle and large deviations inequali-
ties are available (Nguyen & Zessin, 1979; Georgii, 1994). That explains partly why some fine
asymptotic results on maximum-likelihood estimation (MLE) or maximum-pseudolikelihood
estimation (MPLE) can be established for this family (Mase, 1992, 1999). Unfortunately, it
becomes harder for general attractive Gibbs models. For these models, the local stability
assumption useful for geometric convergence of spatial birth and death process and also
for perfect simulation is not satisfied. But Ruelle (1970) shows how it can be weakened to
obtain the thermodynamic limit. Clearly, for models with a finite range, we can avoid edge
effect with a minus sampling, but even in that case the stability of the energy ensuring the
finiteness of the partition function remains a problem, for example, in the case of Quermass
or nearest neighbours interactions (Kendall et al., 1999; Bertin et al., 1999). It is easy to
understand that the stationarity assumption is not reasonable in various applications and it
is a challenge to develop theory to make better statistical analyses. One way could be trying
powerful large deviations techniques and maybe derive asymptotic properties of estimators
for some kind of inhomogeneous models. Otherwise, determinantal and permanent point
processes are promising – they come from quantum mechanics whose explanatory power is
matchless. But it is a non-local theory, so finding Gibbsian properties of such models seem
to be a hard question. However, the knowledge of the Papangelou conditional intensity may
be helpful to do statistical inference at least for the pseudolikelihood method.

Comment by Noel Cressie (The Ohio State University)

The authors have written a very clear, comprehensive paper that I enjoyed reading. I would like
to pursue one aspect mentioned in their review, that of aggregation of spatial point processes.

Spatial lattice processes for at most a countable number of ‘small areas’ are often assumed
to be Markov random fields (MRFs). This is a very attractive way to build in spatial depen-
dence based on the collection of all univariate conditional distributions of the ith small area’s
value (Yi , say) conditional on all other values {Yj : j /= i}. The ‘spatial Markov’ feature of these
models comes from positing a neighbourhood Ni of small areas whose values determine the
ith conditional distribution (e.g., Besag, 1974) referred to above. Specifically, if [U |V ] denotes
the conditional probability density (or mass function) of U given V, then an MRF satisfies[

Yi | {Yj : j /= i}]= [Yi | {Yj : j ∈Ni}
]

,

for all small areas i.
Consider the bounded region S and let {x1, . . ., xn} denote the point pattern of n≥0 loca-

tions in S. For example, these might be home addresses of people who died of colon cancer
in a given time period. Confidentiality considerations mean that the data are released in an
aggregated form, as counts. Let S =∪Ai , where {Ai} denote the small areas over which colon
cancer deaths are aggregated. Define

Yi ≡#
(∪{xj : xj ∈Ai}

)
,

where #(B) denotes the number of elements in the finite set B. These types of count data {Yi},
and MRF models for them, are common in the disease-mapping literature (e.g., Banerjee
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et al., 2004, section. 5.4). In fact, to make meaningful epidemiological statements, one
requires further demographic data {Ei}, the number of people at risk by small area. This
requirement is immaterial to my question, which I shall now ask.

Are there spatial point process models for {x1, x2, . . ., xn} that result in common MRF
models for {Yi} or {Yi/Ei}? An affirmative response to this question would be important,
because epidemiological relationships modelled at the individual level could be inferred from
data and resulting models at the small-area level. Curiously, there are a few results in the
other direction, giving spatial point processes that result from infill asymptotics of MRFs
(Besag et al., 1982; Cressie et al., 2000). But this is far less interesting than the connection
from point processes to lattice models under aggregation.

Any further light the authors can shine on aggregation of spatial point processes would
generate a lot of interest in both applications and theory.

Comment by Pavel Grabarnik (Russian Academy of Sciences) and Aila Särkkä (Chalmers
University of Technology)

The paper is a comprehensive review of spatial point process models as well as methods and
tools for model checking, simulation and inference. The examples studied are all from biol-
ogy, and they include features like clustering, inhomogeneity and interaction.

When modelling (biological) point pattern data, several aspects such as biological reasoning,
model convenience and aims of modelling should be taken into account. For example, when
modelling clustering, one should think what is the reason for clustering. As mentioned in the
paper, it can be, for instance, seed dispersal or variation in intensity of some covariate. These
two lead to different choice of a model. However, it may be more desirable to choose, for
example, a likelihood-based model to make the inference easier than a biologically most rele-
vant model. Furthermore, sometimes the goal is to generate point patterns with specific statis-
tics, and then the biological relevance of the generating mechanism (model) is less important.

If the main emphasis is on finding a realistic model, biological reasoning cannot be
ignored. For example, if the interaction we are modelling is known to be non-symmetric,
we should fit a model capable of describing a non-symmetric character of the interactions. It
seems natural in example 5.2 that the locations of Messor nests affect the locations of Cata-
glyphis nests but not vice versa. Interaction between neighbouring trees in a forest is also
non-symmetric or hierarchical: A small tree does not affect a large tree as much (if at all) as
the large tree affects the small one. However, trees that are approximately of the same size
affect each other. We suggest dividing the trees into size classes and apply a hierarchical
model (Grabarnik & Särkkä, 2007). Trees in the class of largest trees are affected only by
other trees in the same class, but trees in smaller size classes, on the other hand, are affected
by other trees in the same class and by all larger trees. Interaction within classes is
symmetric, and interaction between the classes hierarchical. Both a traditional Gibbs point
process model and our model with hierarchical interactions may be able to produce patterns
with similar statistics and patterns that are similar to the data. However, interpretation of
the between-classes interaction is different in the two cases: In the former case the interaction
function describes the mutual interaction between the trees, while in the hierarchical case it
describes the effect of large trees on small ones. Therefore, the hierarchical model is more
relevant from the point of view of ecology.

Comment by Yongtao Guan (Yale University)

I would like to thank the authors for writing up such a comprehensive summary paper. This
paper with no doubt will serve as an excellent reference for graduate students who wish to
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work on topics related to spatial point processes in their dissertation research. My main
comments are about modelling inhomogeneous spatial point patterns, which are detailed as
follows.

For the Beilschmiedia pendula Lauraceae data studied in this paper, the authors fit two
different models: a log Gaussian Cox process (LGCP) model and an inhomogeneous Thomas
process (ITP) model. Both models appear to fit the data well, as can be observed by looking
at Fig. 9. However, the inferential results regarding the key regression parameters are very
different. Therefore, an important question is which model is more appropriate for the given
data.

It should be noted that the LGCP and the ITP models have very different ecological impli-
cations. Specifically, the LGCP model suggests that the inhomogeneity is caused solely by
the spatially varying environmental conditions (both observed and unobserved), whereas the
ITS model attributes it to both the (observed) environmental conditions and (unobserved)
dispersal effects. In reality, the inhomogeneity may be caused by a combination of many
factors such as spatially varying environmental conditions (both observed and unobserved),
dispersals and interactions among trees. It is generally difficult to disentangle effects from
these factors (which is what the LGCP and the ITS models attempt to do) as they cannot be
quantified by observed data. Guan & Loh (2007) recently proposed a thinned block boot-
strap procedure that can be used to make inference on the regression parameters without
assuming a specific parametric model (e.g. LGCP or ITP) on the high-order structures of
the process. The main assumption is that the process is second-order reweighted stationary.
There is a great need for such flexible non-parametric inferential procedures because of the
complex structures that many spatial point pattern data often possess.

My last comment is regarding how to assess the goodness-of-fit of a fitted intensity model
for clustered data. I strongly agree with the authors that Gibbs process and its variations
are not appropriate for such data. For model diagnostics, Waagepetersen (2005) suggested
defining the residuals in terms of the intensity function. However, we also need to account
for the variability of the obtained residuals. This is necessary as the variance of the residuals
can be highly variable, regardless how well the regression parameters can be estimated. More
research is needed on this topic.

Comment by Peter Guttorp (University of Washington)

I very much enjoyed reading this paper, and congratulate the authors for having produced a
very nice overview of places where point process work has gone over the last decade or two.

Many of the examples in this paper deal with ecological problems. Ecology really deals
with interactions, often a multitude of interactions at different scales. Traditionally, statis-
tical ecology has been cursed by using the Poisson process as a null hypothesis. While the
Poisson adequately describes the idea that ‘nothing is going on’, rejecting it does not help
understanding ecological systems.

Data nowadays are collected on many scales and in many ways, for example, in the case
of forest ecology using quadrant counts (relatively quick), satellite data of different coverage
and resolution (arriving continuously, at least on the time scale of slow ecological change)
and detailed mapping (slow and expensive). A hierarchic structure, using the true map as an
underlying unobserved state, is a natural approach. But the intensity is often scale-dependent,
having, for example, components of clustering (from seed dispersion), repulsion (from crowns
blocking sunlight) and non-stationarity (from fertility gradients and orography). Would
a reasonable approach be to overlay these different processes in the style of a generalized
additive model (GAM)?
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One often wants to establish statistical (or causal) relationships between measurement sys-
tems, to use cheaper and less labour-intensive measurement methods to draw conclusions
regarding changes in spatial patterns. While this can be thought of as a space–time problem,
it is really more of a comparison of patterns to detect change. How would the authors go
about testing for change of this type?

Can one use the whale analysis to develop improved survey designs?
The method of moments and other estimating equations have been very common in point

process models in hydrology. Of course, it is not efficient, and can be rather disastrously bad.
In the rain forest example, the estimating equation values of � and �3 are outside the corres-
ponding Bayes intervals. Is this due to high variability in the estimating equation estimators
or due to dependence on the prior?

In hydrology, where I have done most of my point process work, various types of clus-
ter processes are very common, as they are somewhat natural when modelling precipitation
events (although the underlying process of storm fronts rarely would be Poisson, as fronts
by definition need to be separated). It would be useful to have a complete list of the clus-
ter processes for which Markov chain Monte Carlo (MCMC) methods (or exact likelihood
methods) have been worked out.

I would like to finish with two historical remarks. First, what is the origin of the Poisson
process? I have not found anything in Poisson’s work that relates to it. However, a paper of
Clausius (1858) in developing the kinetic theory of heat uses the assumptions of a Poisson
process to calculate the mean free path of a particle in three dimensions. So far this is the
earliest calculation I have found of this type. The second remark refers to the Neyman–Scott
process. While their 1958 cosmology paper is a common original reference, the clustering
process originates in Neymans 1939 paper on contagious distribution, preceding Thomas’
special case of Gaussian dispersion function by over a decade.

Comment by Olle Häggström (Chalmers University of Technology)

My congratulations to Jesper Møller and Rasmus Waagepetersen for their well-written and
authoritative account of an area that has grown explosively during the last decade or two.
I have two comments on their paper.

1. Markov chain Monte Carlo (MCMC) convergence. In section 9.2, Møller and
Waagepetersen discuss Metropolis–Hastings algorithms for point processes defined in terms
of conditional intensities, stressing that local stability of the point process guarantees that
the algorithm converges to equilibrium geometrically fast, which in turn implies a central
limit theorem (CLT) for Monte Carlo errors. I entirely agree with this statement, but wish
to stress that applying it requires a good deal of caution, the reason being that, even if the
convergence is geometrically fast, the mixing time may nevertheless be very large.

A prototype example is single-site dynamics for the Ising model in a large two-dimen-
sional box in the phase coexistence region of the parameter space. Such a Markov chain is
irreducible and aperiodic with finite state space, and so geometric convergence to equilibrium
is automatic. Yet, the time taken to come close to equilibrium becomes astronomical even
for moderately sized systems. To make things worse, the system quickly settles down into a
kind of metastable behaviour where all the usual MCMC diagnostics instruments will fool
us into believing that convergence to equilibrium and CLT behaviour have kicked in. See, for
example, Marcelli & Martinelli (1996) for more on this type of metastability phenomena in
the Ising model.

The Widom–Rowlinson and area-interaction point processes, studied, for example, in
Chayes et al. (1995) and Häggström et al. (1999), seem bound to exhibit qualitatively the
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same kind of behaviour in certain parts of the parameter space, although rigorously they are
less well-understood. In general, it can be quite difficult to determine whether a particular
model leads to such metastable behaviour.

In my view, it is not enough to rely on geometric ergodicity when applying Metropolis–
Hastings chains and other MCMC algorithms (including simulated tempering). We also need
explicit quantitative control on the mixing time.

2. Modelling. What is the purpose of statistical analysis of spatial point patterns? Sometimes,
perhaps, one is content with estimating, say, the intensity function or the pair correlation
function, and that is the end of the story. Much more interesting is the situation where the
statistical analysis is part of the project of trying to understand, on a deeper level, the physi-
cal or biological mechanism underlying the observed point pattern. In such a situation, I feel
that the following two general modelling strategies are worth employing.

First, the specific physics or biology of the situation at hand should play a central role in
the development of the stochastic point process models. Whatever we know about the under-
lying physics or biology that appears to influence what kind of point patterns arise should
be taken into account in the modelling. This mindset may be contrasted against one where
real-world data serve mainly as decorations of the models and methods under consideration.
Of course, both attitudes can be found within the research area surveyed by Møller and
Waagepetersen, but their selection of material suggests that the latter is still more common.

Second, understanding the phenomena underlying the point pattern typically involves
understanding the dynamics by which it is produced. Hence, it is highly desirable that the
spatial point process model is a projection of a spatio-temporal model that describes this
dynamics. The comment in section 10.3 of the paper advising against Gibbs point process
modelling in forestry, on the grounds that growth of forests does not exhibit the time revers-
ibility that the dynamical models producing Gibbs point processes do, is very much in this
spirit.

Comment by Ute Hahn (Universität Augsburg)

It is a great pleasure to congratulate Jesper Møller and Rasmus Waagepetersen on their bril-
liantly written, most interesting and comprehensive overview on recent developments in point
process statistics.

As stated in section 10.2, one of the branches currently coming to the fore is the analysis of
inhomogeneous point patterns. With a thorough analysis of a tropical rain forest map includ-
ing concomitant information on the terrain, the authors convincingly illustrate the power of
Bayesian analysis for inhomogeneous Cox process models.

While Cox point processes are indeed very versatile models for patterns that exhibit cluster-
ing or no interaction, neither these nor second-order intensity-reweighted stationary processes
appear to be appropriate for a situation shown in Fig. C of a pattern that is highly regular
or repulsive both in the areas with high and low intensity.

Obviously, such patterns cannot even approximately be explained by independent thinning,
and therefore, statistical methods based on the second-order intensity-reweighted stationarity
assumption are not appropriate in this case.

Section 10.2 mentions other models that have been suggested for inhomogeneous point
processes, among others, transformation of homogeneous Markov point processes or local
scaling. These models are more appropriate for patterns as the one depicted in Fig. C.
I should like to add that, similar to the suggestions made in section 6.2, these approaches
also evoke recommendations for their statistical analysis. Nielsen (2000) fits a transformed
Strauss process to an inhomogeneous pattern of cells in stomach tissue after having estimated
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Fig. C. Realization of a locally scaled hard core model.

the backtransformation, and Fleischer et al. (2006) apply a similar principle to the clustered
inhomogeneous pattern of root profiles in a soil transect and thus obtain second-order sta-
tistics including the J -function.

Prokešová et al. (2006a) propose an inhomogeneous K -function for point processes with a
local scaling property. It is indeed possible to derive locally scaled analogues to all distance
based summary statistics, including the F -, G- and J -function, just by replacing the distance
||u −v|| between points that occurs in the definition of the statistics, for example (41) for the
K -function, with the intensity adjusted distance d�(u, v) :=∫[u, v]

√
�(s)ds, where [u, v] denotes

the line segment spanned by u and v. This means that the point process is locally rescaled to
unit rate, and further occurrences of the intensity function in the definition of the summary
function have to be replaced by unity. The calculation of intensity adjusted distances can be
simplified, using averages, to

d̂�(u, v)= 1
2

(√
�(u)+

√
�(v)

)
||u −v||

or

d̂�(u, v)=2
(√

1/�(u)+
√

1/�(v)
)−1

||u −v||.
The latter was preferred in the aforementioned paper for model immanent reasons. A locally
scaled K -function can then be defined as

K ∗
A(t)= 1

�(A)
E
∑
u∈XA

∑
v∈X\{u}

1[d�(u, v)≤ t].

Ideally, K ∗
A(t) should not depend on the choice of A⊂R2, and in my experiences it is virtually

independent of A even if the model is only close to being ‘locally scaled’.

Lothar Heinrich (University of Augsburg)

Jesper Møller and Rasmus P. Waagepetersen have presented a very thorough and comprehen-
sive review of the current state of spatial point process statistics. They have made a com-
mendable and wholly successful effort to demonstrate the great variety of applications and
sources of point process modelling in different fields with interesting examples of real life
point patterns and by referring to the relevant monographs as well as to original papers of
point process literature. The authors avoid the use of the measure theoretic machinery and
deeper excursions into point process theory and statistical physics which make this survey

© Board of the Foundation of the Scandinavian Journal of Statistics 2007.



696 Discussion of the paper by Møller & Waagepettersen Scand J Statist 34

paper readable even for statisticians with modest mathematical background. However, the
authors do not hide the mathematical rigorousness which is necessary for doing a correct
statistical treatment of point process models and mention also theoretically difficult issues
such as the problem of phase transitions of Gibbsian point processes on unbounded regions.
It is quite natural that the different topics touched in this survey paper are not equally weighted.
So main emphasis is put on research areas in point process statistics to which the authors
have contributed a lot. In particular, the authors’ research on point process models specified
by a (random) intensity function (in section 4) or by the Papangelou conditional intensity
(in section 5) in connection with the development of computational methods including MCMC
techniques to their statistical inference have provided important tools for analyzing especially
inhomogeneous point patterns on a bounded sampling region.

From the methodoligical view point it is noteworthy that the approaches based on
parametrized (conditional) intensity functions allow to benefit from analogies with general-
ized linear models and random effect models. This shows that the adaptation of well-
established satistical methods including time series analysis to the statistics of spatial point
processes can be fruitful perhaps also for issues like experimental design, missing data and
outlier analysis, etc.

As mentioned in the introductory section, in practice statisticians are often faced with
rather small (mostly planar) sampling windows or with small numbers of points forming a
single realization of a possibly inhomogeneous point process. Small means here less than 100
points in a squre [0,10]× [0,10]. It seems that the term modern statistics suggests that statistics
of such point patters is now possible. Nevertheless, even homogeneous and motion-invariant
point processes remain rather complicated stochastic models and large sample or, equiva-
lently, large domain statistics is an appropriate tool for their statistical analysis. In particular,
goodness-of-fit tests (of the Kolmogorov-Smirnov and Cramér-von Mises type) based e.g. on
Ripley’s K -function, see Heinrich (1991), or its scaled versions, see Heinrich (2007), or on
other non-parametric summary statistics should also be an object of future research aiming at
rigorous statistical model identification.

In summary, this survey is well done, it will stimulate future research, and thus Jesper
Møller and Rasmus P. Waagepetersen deserve our thanks and congratulations.

Comment by Wilfrid S. Kendall (University of Warwick)

I very much enjoyed reading this paper: the authors are to be congratulated on producing
an excellent overview of the current state of art for statistics for point processes – a topic to
which they are themselves major contributors. Here are a couple of discussion comments.

1. My attention was caught by the remarks in sections 5.3 and 10.3 concerning phase tran-
sition behaviour. The unsuitability of the Strauss model for handling attractive interaction
ultimately derives from, and finds extreme expression in, the remarks of Kelley & Ripley
(1976), who show that the Strauss local specification fails to produce a well-defined point
process when the interaction is positive and the number of points is unconstrained. But phase
transition phenomena cause problems for modellers using the attractive area-interaction point
process. This presents a rather sharper problem; the attractive area-interaction point process
itself exists, and indeed is Ruelle-stable; nevertheless the phase transition exhibited by the pro-
cess defined on all of R2 produces a bi-modality for bounded-window processes. What diag-
nostics would indicate when such phase transition phenomena might be a potential problem
for a general point process model (possibly conditioned by data)? Both bi-modality and sub-
stantial dependence on boundary conditions would cause slow-down in the coupling from the
past algorithms of Kendall & Møller (2000), which may be suggestive for useful diagnostics.
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2. Also in section 10.3, the authors comment on issues arising when the pattern to be mod-
elled does not arise from a dynamical process in statistical equilibrium. The issue is subtle.
Valid Markov point process models for such situations may themselves be achieved as
statistical equilibria of spatial birth–death processes; there is a difference between algorithmic
time and model time! However, and clearly, the model cannot itself be justified as arising
from an equilibrium argument (though one could justify it empirically in terms of forming
an exponential family using a relevant sufficient statistic). The point is reminiscent of King-
man (1977)’s note on Poisson distributions and reproducing populations. To conclude on a
note of wild speculation, perhaps it might be possible to establish a result that shows that
simple dynamic population models (such as might arise in forestry, to take the example in the
paper) must give rise to Markov point process models that involve sufficient positive interac-
tion that phase transition issues might be an issue.

Comment by Andrew Lawson (University of South Carolina)

Drs Møller and Waagepeteresen are to be congratulated on a very nice review of the current
state of spatial point process analysis.

General Comments: First of all I was concerned that the authors could only demonstrate the
use of spatial point process (SPP) methods for ecological examples. There are many
examples of SPPs in spatial epidemiology, bioinformatics, engineering, defence studies and
social science. Inclusion of a range of applications would help to convince the wary reader
of the benefits of SPP analysis. In my experience, most researchers, within and without the
subject of statistics, shy away from point processes as a vehicle for analysis and it would be
useful to try to ‘sell’ the analysis by its wide application. This underselling is also under-
scored by the lack of accessible and easy-to-use software for SPP analysis. While some exists
in R or S currently (e.g. splancs, spatstat), there is no flexible and simple-to-use packaged
software for much of the methodology discussed in this review. In addition, often researchers
wish to ask more sophisticated questions about their data rather than simple descriptions of
pattern (see the Minke Whale comment below). The flexible modelling of linear predictors,
hierarchical modeling with (non-spatial) random effects, missingness (except as edge effects)
and model goodness-of-fit are a few areas that are not developed here.

Specific Comments:
Berman–Turner integration schemes: I have worked with these over time and found the simple
Dirichlet weight schemes to be very inaccurate (Lawson, 1992). Delauney schemes are better
but must be augmented by subtriangles usually to a depth of four to five subdivisions (Wang
& Lawson, 2006).

Residuals for PPs: While the authors have recently developed residual analysis for a range
of processes, the original suggestion of comparison of a saturated intensity estimate to a
model estimate was made for Poisson SPPs in Lawson (1993).

Minke Whale example: The authors analyse data from a dynamic mobile population as a
static spatial problem. Both observation position and the population of whales are chang-
ing location over time, but the authors present a static analysis. In addition the authors do
not present convincing arguments for using their methods compared to others (e.g. Neyman–
Scott process; Cowling, 1998; or Hedley & Buckland, 2004). How do their shot-noise Cox
process add to our understanding of the underlying processes, compared to other (simpler)
methods?

Bayesian approaches: There has been extensive use of Bayesian models for clustering of
point and line processes in a range of applications that are not mentioned by the authors
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(see, e.g. Lawson, 2000; Lawson & Denison, 2002; McKeague & Loiseaux, 2002; Gangnon,
2006; Lawson et al., 2007).

Comment by Jorge Mateu (Universitat Jaume I)

I enjoyed reading this stimulating and timely review paper, which is both certainly interesting
and useful for the practice of spatial point process modelling. It is thus a pleasure to con-
gratulate the authors for an able and comprehensive research on available statistical tools for
point process analysis.

Particularly welcome in this account is the exposition of the various worked-out examples
and applications, the conciseness and the non-technical introduction to the modern
theory, and the continuous analogies with generalized linear models and random effect
models. This will surely attract the interest of many applied researchers coming from a wide
range of disciplines.

Consider first the specialized case of marked point processes, when the marks are modelled
through a (quite general) harmonic decomposition of the form

Y (t)= c +
∑
w∈�

aw cos(2	wt)+bw sin(2	wt)

where �⊂ R is a set of frequencies, and c, aw, bw ∈ R, ∀w ∈�. Nothing is mentioned in the
paper in this case, and the spectral approach can provide a useful statistical tool by con-
sidering the marked periodogram I (p), and defining a residual measure, called discrepancy
(Renshaw et al., 2007). The discrepancy function is related to some of the residuals for point
processes commented in the paper, and applying statistical inference is of primary interest.

Although many studies of spatial point processes analyse only point patterns in terms of
purely spatial relationships, in real life, point configurations may evolve dynamically over
time and space. The understanding of the space–time interdependency is clearly crucial if
we are to understand the underlying mechanisms that generate such evolving structures. The
authors comment in several parts of the paper on the modelling of cluster processes, and
just in one occasion on space–time point processes. In this context we would like to reinforce
the use of modern statistical tools when analysing such situations, for instance, (multi-)gene-
rations or growing and reproducing particles of spatial point processes.

Ecological and biological interactions usually occur at specific locations promoting the
redistribution of organisms in space. This can generate complex ecological systems result-
ing in different ecological spatial patterns. Multi-generation point processes have the poten-
tial to generate spatial point patterns evolving through discrete time. These point processes
can be a reasonable approximation for population reproducing at discrete intervals of time
and where usually generations are non-overlapping. Diggle (2003) formulates a Cox process
where the events of the (t +1)th (i.e. offspring) generation are determined by the t-th parent
distribution. Whilst Comas & Mateu (2007a) extend this general Cox process formulation
to a multi-generation process assuming interaction effects between parent-to-parent, parent-
to-offspring and offspring-to-offspring.

In addition, it is also of interest the development and statistical analysis of spatially explicit
marked point process models to generate spatial patterns of reproducing and moving cells
evolving through continuous time. In this context, marked points (i.e. cells) can divide and
move as a result of (a) their own growth and division motions, and (b) the division motions
and the growth of their touching neighbours. This provides a modelling framework to simu-
late cell aggregate (i.e. tissue) dynamics. Moreover, adding movement to dividing and grow-
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ing points opens up new areas of application as well as new theoretical problems such as the
analysis and generation of dense packing of discs (or spheres); cf. Comas & Mateu (2007b).

These two aforementioned situations are built upon particular classes of cluster point pro-
cesses. Thus, developing strategic inferential tools for the analysis of space–time dynamics
and interdependencies is of crucial present (not future) interest.

Comment by Håvard Rue, Sara Martino (Norwegian University of Science and Technology)
and Nicolas Chopin (CREST-LS and ENSAE, Paris)

The authors are to be congratulated for providing a nice, modern overview of statistics for
spatial point processes, which would not be what it is today without all the contributions
from the authors themselves.

We would like to focus our comment on Bayesian inference for log Gaussian Cox pro-
cesses (LGCP). In particular, we would like to expand on the authors’ comment in section
10.4: ‘. . .it may be possible to compute accurate approximations of posterior distributions
without MCMC’. It is a pleasure to announce that this is now indeed the case! We find our
new results extremely exciting, with respect to accuracy, speed and generality (Rue et al.,
2007).

We consider the problem of approximating posterior marginals in latent Gaussian models.
These cover a large class of models and are characterized by a posterior of the following form:

	
(
x, � |y

)∝	(�)	
(
x |�)∏

i∈I
	
(
yi |xi , �

)
.

Here, some data y observe the latent Gaussian field x pointwise. (This assumption can be
relaxed.) The likelihood and the covariance matrix of x are parametrized by a typically
low-dimensional vector �. We approximate the posterior marginals for each xi as follows: first,
construct approximations to 	(xi |�, y) and 	(� |y), and then, combine them via numerical
integration

	̃(xi |y)=
∑

j

	̃(�j |y)× 	̃(xi |�j , y)×�j

to provide approximations to 	(xi |y). Here, both 	̃(�j |y) and 	̃(xi |�j , y) are constructed from
the classical Laplace approximation, and �j are integration weights. Laplace approximations
are tightly connected with Gaussian approximations to full conditionals, which have been
frequently used in block Markov chain Monte Carlo (MCMC) algorithms; see, for example,
Rue & Held (2005) for an overview. Computational aspects are very important and not
straightforward; see Rue et al. (2007) for details.

We have re-analysed the tropical rain forest tree data using a slightly different model. The
log intensity � takes the following form,


i =�0 +�1 ×altitudei +�2 ×gradienti +ui + vi , i =1, . . ., 200×100

where u is a second-order (polynomial) intrinsic Gaussian Markov random field, constructed
to mimic a thin-plate spline (Rue & Held, 2005, chapter 3) and v is a vector of independent,
zero mean, Gaussians. The hyperparameters � are the unknown log precisions for u and v. As
u is (polynomial) intrinsic, we impose the constraint 1T u=0 to separate out the mean inten-
sity. Note that, in this case, the latent field is x= (�0, �1, �2, uT , �T )T with dimension 40,003.

The obtained posterior marginals for �1 and �2 are shown in Fig. D, with 95% intervals
[0.009, 0.164] and [3.78, 9.53] for �1 and �2, respectively. We verified our results with long
MCMC runs on a cruder dimension, and were unable to detect any approximation error at
all. Computing the marginals for the �s took about 10 minutes on a 2.1 GHz laptop. If the
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Fig. D. Approximated posterior marginals for �1 (A) and �2 (B).

posterior marginals for the spatial component, u, are also calculated, the computational cost
increases to about 4 hours.

Our results are slightly different from those obtained by the authors. Two reasons may
explain this. Firstly, we use a different spatial model, which includes unstructured effects.
Secondly, MCMC for such a large model is difficult, not just because of the large dimen-
sion of the spatial component itself, but because of the strong correlation between the latent
field and its hyperparameters �. Unless these two components are updated jointly, there is
a considerable danger of not exploring the whole space, and hence of underestimating the
variability; refer to Rue & Held (2005, chapter 4) for a throughout discussion on this effect.

We end with some final comments on the model chosen for this example. The authors insist
on using a continuous spatial model, but note that the exponential covariance function used
is not recommended by Stein (1999), because of the implied non-differentiability. Further,
the range and variance parameters are both not identifiable under infill-asymptotics (Zhang,
2004), which has implications also for MCMC algorithms. The assumption of linear effects
of the covariates should always be verified, for example, by using smooth covariate effects
instead; see, for example, Lang & Brezger (2004).

Comment by Frederic P. Schoenberg (University of California, Los Angeles)

I congratulate the authors on an excellent survey of important results surrounding spatial
point processes and am delighted to have been asked to contribute to this discussion. I
was particularly impressed with the way in which the authors place modern point process
models and methods within a context of general statistical methodology so that point
process methods might be easily understood by statisticians in general.

One question I have for the authors is: how should one deal with the problem of inter-
actions between the covariates, that is, when the loglinear form in (7) or (8) is not appropri-
ate? For instance, in example 4.1, what if the intensity of tropical rain forest trees at a given
location depended also on the interaction between the altitude and gradient at that location?
How might one test whether such an interaction is present, and if so, how can this interaction
be incorporated into the modelling and estimation procedure?

Although the residual plots considered in the paper are very nice and potentially useful,
my sense is that the story is not yet finished when it comes to residual methods and good-
ness-of-fit testing for spatial point processes. Most of the techniques considered in the paper
seem primarily designed to address whether the model’s parametric form seems generally
adequate, but how should one test whether the process is best modelled as a shot-noise
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process versus a Gibbs process? The most useful of the residual methods described in the
paper is probably the smoothed residual field, but even it seems to be a rather low-power
diagnostic, and it is rather difficult to imagine any reasonably flexible model demonstrating
gross signs of inadequacy with such a plot. The diagnostic tests in section 6.2 seem powerful
for describing second-order properties, but it seems unlikely that any of the residual methods
described in section 6.1 could be used to discriminate between a Poisson process and a process
with moderate short-range clustering, which is unfortunate.

As someone who deals mostly with spatial–temporal (rather than purely spatial) models
for point processes, I could not help but feel that something was lacking in the analyses of
some of the example data sets. Obviously these data sets were picked with simplicity in mind,
but it nevertheless should be pointed out that to ignore the evolution of points in time in the
case of analysing whale sightings or ant nests hardly seems advisable in practice.

In addition to the proposed extensions listed in section 10, another area that may become
important is the extension of existing models and techniques to the case of non-simple point
processes. If two or more points may be overlapping at exactly the same location, then
several of the formulas and interpretations considered in the paper become invalid, and
models for such non-simple processes seem to be elusive in the current literature. For plant
locations, non-simplicity might not be a problem, but one could imagine two whale sightings
at different times occurring at essentially the same location (up to the scale at which
measurements are recorded). For the temporal marked point process case, some extensions to
non-simple processes were described in Schoenberg (2006). It would be interesting for spatial
extensions to be considered as well.

Again, my congratulations to the authors on their extraordinarily clear, thorough and well-
written review.

Comment by Dietrich Stoyan (TU Bergakademie Freiberg)

This paper presents a wealth of powerful methods, and I would like to congratulate the
authors on their excellent work. However, it will take time for the methods to become widely
used in the sciences. In addition to the didactically well-chosen examples of the authors, more
instructive examples are needed. And these examples could be analysed more thoroughly, as
I explain here for the rain forest data.

Already visual inspection of Fig. 2 shows that it is a clustered pattern, no K -function is
necessary to come to this conclusion. The important problem of determining the range of
correlation rcorr is not discussed, which is perhaps impossible by means of the K -function
as shown in Fig. 9. Assuming stationarity I calculated the pair correlation function (p.c.f.)
for the bandwidths h=0.5, 1.2 and 5 m. The three estimates practically coincide and suggest
a rcorr ≈ 150 m, which may correspond to a cluster diameter of 300 m. This scale may cor-
respond to local interaction between plants and the environment. By the way, an argument
as that of the authors against p.c.f. estimation could favour the empirical distribution func-
tion over histograms, as these are ‘sensitive to the choice of’ the class interval length. To
my surprise, the estimates �̂=1.33 and �̂=34.7 given in section 8.2 used for a stationary log
Gaussian Cox process yield a very good approximation of the empirical p.c.f.

If stationarity for the pattern is not assumed, both K̂ (r) in Fig. 9 and my ĝ(r) tell only
little about interaction among trees, as these estimates result from averaging over the whole
window. Therefore, subwindows should be considered. Of particular interest are ‘quasi-
homogeneous’ subwindows, which resemble research plots of foresters in some way. They
give information on local interaction of points, with reduced influence of covariates. I con-
sidered the two subwindows W1 = [560, 680] × [0, 120] and W2 = [580, 760] × [180, 410]. The
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corresponding intensities and (local) p.c.f.s differ greatly. While clustering is indicated for
W1, the pattern in W2 seems to be close to complete spatial randomness or Poisson process
behaviour. The estimated rcorr are 20 m and 5 m, respectively, marking the scale of local inter-
action between single trees resulting from the individual’s size and dispersal. The different
results for W1 and W2 seem to reveal that the assumption of second-order reweighted
stationarity (s.o.r.s.) may not hold with the given window or is not better than the stationarity
assumption. I miss in the paper any discussion of the validity of the s.o.r.s. assumption.

Finally, I doubt that point process statistics is the right approach for treating the ‘ques-
tion whether the intensity of the trees may by viewed as a spatially varying function of the
covariates’. I would recommend a geostatistical approach using a constructed regionalized
variable Z(x) with x ∈R2. A possible form is

Z(x)=N(b(x, R)),

that is, Z(x) is the number of points in the disk of radius R centred at x. I calculated the
variogram for R =12.5 m using a 25 × 25 m2 lattice of 800 points. It looks like an empiri-
cal variogram as often observed in geostatistical studies and suggests rcorr ≈500 m. This scale
seems to correspond to the variability of the covariates shown in Fig. 3.

Figures of the p.c.f. and of the variogram mentioned can be found in an extended version
of this comment at www.mathe.tu-freiberg.de/Stoyan/e-publik.html.

Response by Jesper Møller and Rasmus P. Waagepetersen (Aalborg University)

We thank the discussants for their enthusiastic and thought-provoking remarks.

Data examples: Our data examples were chosen to illustrate spatial point patterns with a
variety of features and methods available for analysing them.

We have mainly been involved in applications within ecology and, as Lawson remarks,
many other scientific disciplines provide equally important areas of application for spatial
point processes. Concerning spatial epidemiology, we are to some extent sceptical regard-
ing the relevance of spatial point process modelling, as points often represent locations of
residences which essentially fall on a discrete grid. We agree of course with Häggström and
Grabarnik and Särkkä that existing knowledge concerning the underlying physics or biol-
ogy should be used in the modelling. The ants nests and the Norwegian spruces examples
do include some biological knowledge, which is used in the modelling of interactions. In the
whales and the rain forest trees examples, our interest is focused on inference for the inten-
sity or the intensity function, and we hence apply rather crude models to take into account
the clustering – see also the more detailed comments below.

Rain forest trees: The clustering of the rain forest trees is treated as a nuisance pheno-
menon that we nevertheless need to take into account in the inference for the intensity func-
tion parameters. As Stoyan points out, quantifying the clustering and studying the biological
reason for it is an equally important topic. We agree that the pair correlation function is more
informative than the K -function, but for minimum contrast estimation, the use of the pair
correlation function requires extra tuning parameters: a bandwidth for kernel estimation and
a truncation near zero (for clustered point patterns, the kernel estimate of the pair correlation
function is biased near the origin). The estimates of the K -function obtained assuming either
stationarity or second-order reweighted stationarity do not deviate much for the rain forest
trees, which explains the good accordance between Stoyans empirical pair correlation func-
tion and the pair correlation obtained for our fitted log Gaussian Cox process. Moreover,
it seems that Stoyans geostatistical approach is to some extent similar to our log Gaussian
Cox process modelling: Assume that conditional on a Gaussian field �, log Z(u) (using
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Stoyan’s notation) is normal with conditional mean given by the right-hand side of (8). Then
the difference to the log Gaussian Cox process approach is that ‘Poisson sampling error’
is replaced by normal measurement error (nugget effect), and the order of log and condi-
tional expectation is interchanged. Furthermore, is the geostatistical approach, which involves
specifying the disk radius R, really superior to the log Gaussian Cox process model?

Minke whales: In reply to Lawson and Schoenberg, notice that our goal is relatively mod-
est, as we just wish to quantify clustering so as to assess the uncertainty of the whale intensity
estimate. Hence, the cluster model is not intended to provide biological understanding of the
whale population. The space–time reasoning behind our whale approach is the following:
the space–time process of whale positions is assumed to possess an equilibrium distribution
given by a spatial cluster model. Although it is not clear from the abridged presentation in
the current paper, Waagepetersen & Schweder (2006) do not regard the whale sightings along
different transect legs as observations of a single spatial realization of whale positions. Waage-
petersen & Schweder (2006) indeed obtain the likelihood as a product of likelihoods evaluated
for each transect leg separately assuming approximate independence between data observed
along different transects at different times. Rather than using a parametric model for the clus-
tering, one might consider estimating the inhomogeneous K -function, but such an estimate
is very uncertain (Waagepetersen & Schweder, 2006) given the small number of observations
and the very elongated shape of the components of the observation window. Bootstrapping
the distribution of the intensity estimate seems difficult because of the inhomogeneity caused
by varying observation conditions; perhaps it might be possible to use the thinned bootstrap
procedure mentioned by Guan. Regarding Guttorps remark on survey design, note that eval-
uating the uncertainty of the simple moment based intensity estimate �̃=n/

∫
W p(u) du (where

n is the number of observed whales within the window W and p is the detection probability)
only requires a specification of the second-order properties of the whale process. (A sim-
ulation study in Waagepetersen & Schweder (2006) did not demonstrate a notable loss of
efficiency from using �̃ instead of the maximum-likelihood estimate.)

Norwegian spruces: This example may seem a bit contrived, as the repulsion in the point
pattern is to a large extent due to forest management, as pointed out by Penttinen. However,
our Gibbs model still seems a rather nice marked point process approach to quantifying the
spatial distribution of the trees. Penttinen remarks that the marks (stem diameters) appear to
be independent when analysed by a more traditional approach based on summary statistics.
On the other hand, our data analysis shows that the interaction parameter � in the condi-
tional intensity (30) is significant. Hence, the conditional intensity of a mark does depend on
the neighbouring marks.

Inhomogeneity: Baddeley, Hahn and Jensen et al. stress the importance of accounting for
inhomogeneity. The notion of second-order reweighted stationarity seems both intuitively and
mathematically appealing when dealing with inhomogeneous point processes. It is moreover
general in the sense that it is implied by translation invariance of the pair correlation function,
which is a common characteristic for spatial point processes. (Our more general definition of
second-order reweighted stationarity in Baddeley et al. (2000) is given in terms of another
common characteristic namely the intensity function.)

Penttinen and Stoyan remark that second-order stationarity may not be a valid assumption
for the rain forest data, but it is nevertheless a much better approximation than stationarity
(commonly assumed in the literature on spatial point processes). It may be even better with
an improved model for the intensity function, where we may, for example, take into account
the influence of trees of other species and consider additional covariates regarding soil prop-
erties.
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Hahn and Jensen et al. mention alternative models of inhomogeneity (locally scaling, clus-
ter process with inhomogeneous mother process) illustrated by instructive plots, and we
encourage and pursue research into these interesting models and associated summary sta-
tistics. Cluster processes with an inhomogeneous mother process as illustrated in the left
panel of Fig. B may be obtained as shot-noise Cox processes or generalized shot-noise Cox
processes (Møller & Torrisi, 2005). The simple approach of modelling inhomogeneity by a
Markov point process with an inhomogeneous first-order term (Ogata & Tanemura, 1986;
Stoyan & Stoyan, 1998) may still be appealing to many statisticians, not least due to the
spatstat software. Berthelsen & Møller (2007) discuss non-parametric Bayesian inference for
such inhomogenous Markov point processes.

Baddeley mentions some examples of ‘singular’ inhomogeneity, such as the concentration
of points close to a line segment process. Further examples include Blackwell (2001), Black-
well & Møller (2003), and Skare et al. (2007), where the line segment process is given by the
edges of a random (and possibly disturbed) Voronoi tessellation. These papers also demon-
strate the usefulness of a Bayesian approach for a complex spatial model.

Cox and cluster processes: Guan discusses the very different interpretations of cluster
models and log Gaussian Cox processes and the problem of disentangling various factors
causing clustering. Assuming second order reweighted stationarity, he then describes a thinned
block bootstrap procedure that avoids the specification of second-order properties of the
point process when assessing parameter estimates obtained using the first order estimating
function (47). The covariance matrix of the regression parameter estimates, on the other
hand, only depends on the second-order properties of the point process. Hence, the inference
concerning the regression parameter estimates is rather insensitive to whether a log Gauss-
ian Cox process or a cluster model is specified, provided the fitted K -functions are similar.
When likelihood-based methods are used, the specific choice of model is likely to be more
critical, cf. the different inferences for the log Gaussian Cox process depending on whether
a Bayesian or an estimating function approach is used (see also Guttorp’s contribution).

Jensen et al. consider first a Levy driven Cox process which turns out to be a shot noise
Cox process (with trend), and second a log Levy driven Cox process (LLCP) which in fact is
a Cox process with the random intensity �(u)=�1(u)�2(u), where �1 is a log Gaussian Cox
process and �2 is an independent log shot noise process (so a log Gaussian Cox process is
the special case where �2 ≡1). We expect a more tractable class of Cox processes is obtained
by replacing the log shot noise process for a LLCP by a shot noise process, since

�(n)(u1, . . . , un)=E [�1(u1) · · ·�1(un)]×E [�2(u1) · · ·�2(un)]

where the first expectation is well known for a log Gaussian process (Møller et al., 1998),
while the last expectation is much simpler to evaluate if �2 is a shot noise process rather
than a log shot noise process.

Jensen et al. conclude by suggesting a two-step estimation procedure, but we disagree that
this is simulation free for the following reasons. For transformation inhomogeneous Markov
point processes, maximizing L2(�̂, �) (using the notation in Jensen et al.) requires Markov
chain Monte Carlo (MCMC) as discussed in Nielsen & Jensen (2004). For a Cox process,
for example, a stationary log Gaussian Cox process with exponential covariance function
c(u, v)=�2 exp(−||u − v||/�) and intensity �= exp(�+�2/2), the first step of estimation gives
�̂=n(x)/|W |. If we let �= (exp(−�2/2), �), we obtain

L2(�̂, �)=E�̂, �

[
exp
(∫

W

(
�̂− e�(s) ds

)) n∏
i =1

(
e�(xi )/�̂

)]
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where the expectation is with respect to a stationary Gaussian process � with mean � and
covariance function c as specified by (�̂, �). This expectation requires again MCMC, and
apart from having one parameter less, maximization of L2(�̂, �) seems just as hard as find-
ing the maximum-likelihood estimate (MLE) based on the original likelihood.

Gibbs and Markov models: The problem with fitting the interaction range parameter in a
Markov model is, as Baddeley remarks, to a large extent due to non-differentiability. This
excludes gradient based methods for optimizing the likelihood or pseudolikelihood function,
and standard asymptotic arguments based on Taylor expansions are not valid.

We agree when Baddeley argues that Markov models may be needed to interpret inter-
action, and when Kendall notices that, if a Gibbs model is the equilibrium distribution of
an (algorithmic) time-reversible process, it does not itself disqualify the model. As Kendall
suggests it seems an interesting question to investigate whether spatial Gibbs model may arise
as the marginal distribution of a simple non-homogeneous space–time process at a given time
point.

We also agree with Billiot that determinantal and permanental point processes are prom-
ising models. These are defined by weighted determinants and permanents, and the special
case of a usual determinant (the fermion point process) seems particularly tractable when
studying Gibbsian properties (Georgii & Yoo, 2005).

Kendall notices that the attractive area-interaction point process defined on all of
R2 exhibits phase transition; this issue is further discussed in Häggström et al. (1999). Kendall
asks what diagnostics would indicate when phase transition phenomenon might be a potential
problem for a general point process model. This is indeed a good question of relevance in
physics, although for large point patterns in biology and many other areas, phase transition
may not be an issue because of inhomogeneity.

Grabarnik and Särkkä discuss how hierarchical modelling can also be used to model asym-
metric interactions between trees of different size classes. We agree that taking into account
a hierarchical structure is important, but the hierarchical approach is more difficult when
the classes of trees are not qualitatively but quantitatively defined. There is an issue of how
to choose ‘cut-points’ and also the size of the trees may not reflect an ordering in time; for
example, a small tree may have appeared earlier than larger trees, and from a time point of
view one should then condition on the small tree.

Guttorp mentions that the intensity is often scale-dependent with, say, components of clus-
tering, repulsion and non-stationarity; Guan adds a similar comment. Guttorp asks if we
should overlay these different processes in the style of a generalized additive model (GAM).
For example, consider the random intensity �(u) in (12), which describes clustering around
the points in the mother process � and non-stationarity caused by the covariates. We may
extend this to a random Papangelou conditional intensity with pairwise interaction

�(u, x |�)=�(u) exp

(∑
v∈x

� · t({u, v})

)

where � is an interaction parameter (compare with (25)). Conditional on �, this defines an
inhomogeneous Markov point process with density

f (x |�)= 1
c�, �, �

(∏
u∈x

�(u)

)
exp

⎛
⎝ ∑

{u,v}⊆x

� · t({u, v})

⎞
⎠

where � denotes the unknown parameters in (12). This complicated likelihood may either
be treated by a MCMC MLE missing-data approach or probably more conveniently by a
Bayesian MCMC approach (as the normalizing constant c�,�,� is intractable, the auxiliary
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variable method in Møller et al., 2006, may be needed). For somewhat similar situations, see
Berthelsen & Møller (2006, 2007).

Aggregation: Guttorp notices that data nowadays are collected on different scales, and
Cressie asks how aggregated data modelled by a Markov random field (MRF) may be
described by an underlying point process, for example, in epidemiological applications. This
issue is also discussed in Møller (2003), but we are not aware of any satisfactory solution.
Considering Poisson and shot-noise Gaussian Cox processes with a degenerate kernel (Brix,
1999) leads to a trivial MRF with no interaction. Considering any of the known Cox or
Markov point process models would not lead to a common MRF but to a very complicated
lattice process, which may be best analysed by a MCMC missing data approach.

Residuals: From both a theoretical and a practical point of view, the use of residuals for spa-
tial point processes still needs development; cf. the comments by Penttinen and Schoenberg.
We believe that residuals should play an important role in model assessment. For example, in
Illian et al. (2007), L-functions indicate deviations from an inhomogeneous Poisson process,
but they do not inform whether the deviations are due to ‘random’ clustering or a misspeci-
fied model for the intensity. A posterior predictive analysis of residuals, on the other hand,
suggests that there are no systematic deviations from the specified intensity model. Regard-
ing the rain forest data, a residual analysis in Guan (2007) discloses an extraordinarily dense
cluster of trees not accounted for by the inhomogeneous cluster model depending on topo-
graphic covariates.

Computational methods: We agree with Baddeley that both simulation-demanding likelihood-
based methodology and quick simulation-free approaches will continue to be of importance.
As Guttorp remarks, estimating functions based on first or second-order properties are less
efficient than likelihood-based estimation. However, the theoretical advantage of likelihood-
based methods may be partly lost when in practice we approximate the likelihood using
Monte Carlo methods and hence introduce a Monte Carlo error in the estimation pro-
cedure. In a simulation study, the estimating function (47) performed well, but it was not
possible to quantify the loss of efficiency due to intractability of MLE within the settings of
the simulation study.

Lawson points out that the availability of user-friendly software is pertinent for more wide-
spread application of spatial point process methodology. In reply to this and a question by
Schoenberg, for spatial Poisson and Markov point processes, spatstat provides a very flexible
software package, which, for example, allows for routine fitting of interactions between
covariates and model selection in a manner similar to ordinary linear and generalized linear
models. For Cox processes, the simple estimating function approach available for second-
order reweighted stationary Cox processes can easily be carried out using spatstat. Like-
lihood-based inference for Cox processes (Møller & Waagepetersen, 2003) is a much less
developed area. We, for example, tried to apply the cluster process MCMC methodology in
Waagepetersen & Schweder (2006) to the rain forest data but faced problems with extremely
slow mixing of the MCMC chain. Hence, more research into universally applicable MCMC
methods for cluster processes seems needed. For log Gaussian Cox processes, MCMC methods
based on fast Fourier transforms seem to work reasonably well but user-friendly software (e.g.
an R package) still needs to be written. The computational developments for log Gaussian
Cox processes by Rue et al. (2007) are very welcome and we hope that their methodology will
soon find its way into publicly available software. Rue et al. mention the danger of separately
updating the Gaussian field and the covariance parameters, but while they consider intrin-
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sic Gaussian random fields, we have not experienced similar problems in our applications
involving second order stationary Gaussian fields.

In the context of maximum pseudo-likelihood estimation, Lawson remarks that numeri-
cal integration based on Delaunay triangles performs better than Dirichlet weights, which is
one of the options available in spatstat for evaluating the pseudolikelihood. In the context
of inhomogeneous Poisson and cluster processes, Waagepetersen (2007) suggests to replace
deterministic numerical integration schemes in spatstat with Monte Carlo approximations.
This allows evaluation of the parameter estimation error resulting from the approximation of
the integral in the Poisson likelihood, and theoretical results indicate that Dirichlet weights
may not be optimal in the case of smooth covariates.

Häggström adds a cautionary note regarding geometric ergodicity. Geometric ergodicity is
a qualitative property, and even in the case of uniform ergodicity, the mixing time may be
extremely large when simulating a spatial point process; cf. Møller (1999). Indeed, as Häggström
stresses, quantitative results are needed, however, yet no useful quantitative results have been
provided for spatial point processes; cf. appendix B in Møller (1999). This is one reason why
perfect simulation is appealing, although ordinary MCMC methods including a detailed out-
put analysis based on time series plots, estimated autocorrelations, etc. (e.g. Dellaportas &
Roberts, 2003; Møller & Waagepetersen, 2003), play the prominent role in practice.

Miscellaneous: Our paper has essentially restricted attention to statistical theory and
practice for analysing a single spatial point pattern. We completely agree with Baddeley,
Häggström, Jensen et al., Kendall, Mateu, Penttinen, and Schoenberg when they stress the
importance of space–time and marked point processes; cf. sections 10.1 and 10.5.

Statistical theory for many spatial point patterns, spatial point patterns observed with
noise, point patterns with multiple points, interpretation of summary statistics are still under
developments, as remarked in section 10.1 and by Baddeley and Schoenberg. Concerning
spatial point patterns observed with noise, it may be worth noticing that a Poisson (or Cox)
process with i.i.d. disturbances of the points results in another Poisson (or Cox) process,
while a Markov point process with i.i.d. disturbances of the points does not result in another
Markov process.

Penttinen states that we ignore the window problem. Sections 2, 6.1, 6.2, 7.2 and 8.1 dis-
cuss this important issue, but perhaps we should had added more; see, for example, Møller
and Waagepetersen (2003).

We agree with Heinrich who stresses the importance of research in large domain statistics
e.g. for goodness-of-fit tests based on non-parametric summary statistics like the K -function.
Large domain statistics also becomes important in connection with parametric inference for
inhomogeneous point processes as in Waagepetersen & Guan (2007) who establish the joint
asymptotic normality of parameter estimates obtained using respectively (47) and minimum
contrast estimation as in example 13.

Mateu discusses multi-generation point processes evolving through discrete time. It is rather
straightforward to construct such models and study them by simulation, but the models may
be hard to analyse otherwise. One exception is spatial Hawkes processes, where some moment
results exist (Brémaud et al., 2005; Møller & Torrisi, 2007).
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