
POINT PROCESS, SPATIAL-TEMPORAL

1. Introduction.

A spatial-temporal point process (also called space-time or spatio-temporal
point process) is a random collection of points, where each point represents
the time and location of an event. Examples of events include incidence of dis-
ease, sightings or births of a species, or the occurrences of fires, earthquakes,
lightning strikes, tsunamis, or volcanic eruptions. Typically the spatial lo-
cations are recorded in three spatial coordinates, e.g. longitude, latitude,
and height or depth, though sometimes only one or two spatial coordinates
are available or of interest. Figure 1 is an illustration of a realization of a
spatial-temporal point process with one spatial coordinate depicted. Figure 2
displays some point process data consisting of micro-earthquake origin times
and epicenters in Parkfield, California, between 1988 and 1995, recorded by
the High-Resolution Seismographic station Network (Nadeau et al., 1994).
Figure 3 displays the centroids of wildfires occurring between 1876–1996 in
Los Angeles County, California, recorded by the Los Angeles County Depart-
ment of Public Works (times of the events not shown).
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Figure 1: Spatial-temporal point process

2. Characterizations.

A spatial-temporal point process N is mathematically defined as a ran-
dom measure on a region S ⊆ R × R3 of space-time, taking values in the

1



1988 1989 1990 1991 1992 1993 1994 1995

−1
0

−5
0

5
10

year

di
st

an
ce

 a
lo

ng
 fa

ul
t (

km
)

Figure 2: Epicenters and times of Parkfield microearthquakes, 1988–1995

non-negative integers Z+ (or infinity). In this framework the measure N(A)
represents the number of points falling in the subset A of S. For the set A in
Figure 1, for example, the value of N(A) is 2. Attention is typically restricted
to points in some time interval [T0, T1], and to processes with only a finite
number of points in any compact subset of S.

Traditionally the points of a point process are thought to be indistinguish-
able, other than by their times and locations. Often, however, there is other
important information to be stored along with each point. For example, one
may wish to analyze a list of points in time and space where a member of a
certain species was observed, along with the size or age of the organism, or
alternatively a catalog of arrival times and locations of hurricanes along with
the amounts of damage attributed to each. Such processes may be viewed
as marked spatial-temporal point processes, i.e. random collections of points,
where each point has associated with it a further random variable called a
mark.

Much of the theory of spatial-temporal point processes carries over from
that of spatial point processes. However, the temporal aspect enables a nat-
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Figure 3: Centroids of recorded Los Angeles County wildfires, 1878–1996

ural ordering of the points that does not generally exist for spatial processes.
Indeed, it may often be convenient to view a spatial-temporal point pro-
cess as a purely temporal point process, with spatial marks associated with
each point. Sometimes investigating the purely temporal (or purely spatial)
behavior of the resulting marginalized point process is of interest.

The spatial region of interest is often a rectangular portion of R2 or R3,
but not always. For the data in Figure 2, for example, the focus is on just
one spatial coordinate, and in Figure 3 the region of interest is Los Ange-
les County, which has an irregular boundary. Cases where the points are
spatially distributed in a sphere or an ellipse are investigated by Brillinger
(1997) and Brillinger (2000). When the domain of possible spatial coordi-
nates is discrete (e.g. a lattice) rather than continuous, it may be convenient
to view the spatial-temporal point process as a sequence {Ni} of temporal
point processes which may interact with one another. For example, one may
view the occurrences of cars on a highway as such a collection, where Ni

represents observations of cars in lane i.

Any analytic spatial-temporal point process is uniquely characterized by
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its associated conditional rate process λ (Fishman and Snyder, 1976). λ(t, x,

y, z) may be thought of as the frequency with which events are expected to
occur around a particular location (t, x, y, z) in space-time, conditional on the
prior history Ht of the point process up to time t. Note that in the statistical
literature (e.g. Daley and Vere-Jones, 1988; Karr, 1991), λ is more commonly
referred to as the conditional intensity rather than conditional rate. How-
ever, the term intensity is also used in various environmental sciences, e.g. in
describing the size or destructiveness of an earthquake, so to avoid confusion,
the term rate may be preferred.

Formally, the conditional rate λ(t, x, y, z) associated with a spatial-temporal
point process N may be defined as the limiting conditional expectation

lim
∆t,∆x,∆y,∆z↓0

E[N{(t, t + ∆t) × (x, x + ∆x) × (y, y + ∆y) × (z, z + ∆z)}|Ht]

∆t∆x∆y∆z
,

provided the limit exists. Some authors instead define λ as

lim
∆t,∆x,∆y,∆z↓0

P [N{(t, t + ∆t) × (x, x + ∆x) × (y, y + ∆y) × (z, z + ∆z)} > 0|Ht]

∆t∆x∆y∆z
.

For orderly point processes (processes where lim|A|↓∅ P{N(A) > 1}/|A| = 0
for interval A), the two definitions are equivalent. λ is a predictable process
whose integral, C (called the compensator), is such that N − C is a mar-
tingale. There are different forms of conditioning corresponding to different
types of martingales; see Kallenberg (1983), Merzbach and Nualart (1986),
or Schoenberg (1997).

3. Models.

The behavior of a spatial-temporal point process N is typically modelled
by specifying a functional form for λ(t, x, y, z), which represents the infinites-
imal expected rate of events at time t and location (x, y, z), given all the
observations up to time t. Although λ may be estimated nonparametrically
(Diggle 1985; Guttorp and Thompson, 1990; Vere-Jones, 1992), it is more
common to estimate λ via a parametric model.

In general, λ(t, x, y, z) depends not only on t, x, y, z but also on the times
and locations of preceding events. When N is a Poisson process, however,
λ is deterministic; i.e. λ(t, x, y, z) depends only on t, x, y, and z. The sim-
plest model is the stationary Poisson, where the conditional rate is constant:
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λ(t, x, y, z) = α, for all t, x, y, z. In the case of modeling environmental dis-
turbances, this model incorporates the idea that the risk of an event is the
same at all times and locations, regardless of where and how frequently such
disturbances have occurred previously. Processes that display substantial
spatial heterogeneity, such as earthquake epicenters, are sometimes modelled
as stationary in time but not space.

Stationary spatial-temporal point processes are sometimes described by
the second order parameter measure ρ(t′, x′, y′, z′) which measures the co-
variance between the numbers of points in spatial-temporal regions A and B,
where region B is A shifted by (t′, x′, y′, z′). For example, Kagan and Vere-
Jones (1996) explore models for ρ in describing spatial-temporal patterns of
earthquake hypocenters and times. For a self-exciting (equivalently clustered
or underdispersed) point process, the function ρ is positive for small values
of t′, x′, y′, and z′; N is self-correcting (equivalently inhibitory or overdis-
persed) if instead the covariance is negative. Thus the occurrence of points in
a self-exciting point process is associated with other points occurring nearby
in space-time, whereas in a self-correcting process, the points have an in-
hibitory effect.

Self-exciting point process models are often used in epidemiology and seis-
mology to model events that are clustered together in time and space. A
commonly used form for such models is a spatial-temporal generalization of
the Hawkes model, where λ(t, x, y, z) may be written as

µ(t, x, y, z) +
t∫

T0

∫
x′

∫
y′

∫
z′

ν(t − t′, x − x′, y − y′, z − z′)dN(t′, x′, y′, z′).

The functions µ and ν represent the deterministic background rate and clus-
tering density, respectively. Often µ is modelled as merely a function of
the spatial coordinates (x, y, z), and may be estimated non-parametrically as
in Ogata (1998). When observed marks m associated with each point are
posited to affect the rate at which future points accumulate, this information
is typically incorporated into the function ν, i.e.

λ(t, x, y, z) =

µ(t, x, y, z) +
t∫

T0

∫
x′

∫
y′

∫
z′

ν(t − t′, x − x′, y − y′, z − z′, m)dN(t′, x′, y′, z′, m).
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A variety of forms have been given for the clustering density ν. For in-
stance, in modeling seismological data with two spatial parameters (x and
y) and a mark (m) indicating magnitude, Musmeci and Vere-Jones (1992)
introduced explicit forms for ν, including the diffusion-type model

ν(t, x, y,m) =
C

2πσxσyt
exp

{
αm − βt − (x2/σ2

x + y2/σ2
y)/2t

}
.

Ogata (1998) investigated the case where

ν(t, x, y,m) =
K0 exp{α(m − mo)}
(t + c)p(x2 + y2 + d)q

,

as well as a variety of other models. Several other forms for ν were suggested
by Rathbun (1993), Kagan (1991); see Ogata (1998) for a review.

Sometimes λ is modelled as a product of marginal conditional intensities

λ(t, x, y, z) = λ1(t)λ2(x, y, z),

or even

λ(t, x, y, z) = λ1(t)λ2(x)λ2(y)λ4(z).

These forms embody the notion that the temporal behavior of the process is
independent of the spatial behavior, and in the latter case that furthermore
the behavior along each of the spatial coordinates can be seen as independent.
In such cases each of the functions λi may be estimated individually; see e.g.
Rathbun (1993) or Schoenberg (1997). Occasionally one subdivides the spa-
tial region into a finite number of subregions and fits temporal point process
models to the data within each subregion. In such a case the conditional
intensity may be written

λ(t, x, y, z) =
∑
i

λ1(t)1i(x, y, z),

where 1i are indicator functions denoting the relevant region. An example is
in Zheng and Vere-Jones (1994). Introduction of interactions between differ-
ent subregions are incorporated into this model by Lu, Harte, and Bebbington
(1999).

For further remarks on modeling and examples see Vere-Jones and Thom-
son (1984) and Snyder and Miller (1991).
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4. Estimation and inference

The parameter vector θ for a model with conditional rate λ(t, x, y, z; θ) is
usually estimated by maximizing the log-likelihood function

L(θ) =
T1∫

T0

∫
x

∫
y

∫
z
log{λ(t, x, y, z; θ)}dN(t, x, y, z)

−
T1∫

T0

∫
x

∫
y

∫
z
λ(t, x, y, z; θ)dzdydxdt.

Asymptotic properties of the maximum likelihood estimator θ̂ have been de-
rived under various conditions, along with formulas for standard errors; see
e.g. Rathbun and Cressie (1994). Alternatively, simulations may be useful
for obtaining approximate standard errors and for other types of inference.

The estimated conditional rate λ(t, x, y, z; θ̂) can be used directly for pre-
diction and risk assessment. See Fishman and Snyder (1976) and Brillinger
(1982), for example.

Spatial-temporal point processes may be evaluated via residual analysis,
as described in Schoenberg (1997). One typically selects a spatial coordinate
and rescales the point process in that direction. If the z-coordinate is cho-
sen, for example, then each point (ti, xi, yi, zi) of the observed point process

is moved to a new point (ti, xi, yi,
zi∫
z0

λ(ti, xi, yi, z; θ̂)dz), where z0 is the lower

boundary in the z-direction of the spatial region being considered. The result-
ing rescaled process is stationary Poisson if and only if the model is correctly
specified (Schoenberg, 1999). Hence a useful method for assessing the fit of
a point process model is to examine whether the rescaled point process looks
like a Poisson process with unit rate. Several tests exist for this purpose, see
e.g. Ripley (1979) or Heinrich (1991).
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