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algorithms that can be applied to point process data through use of spike-time distance

and prototype patterns.
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1 Introduction

Methods involving distance metrics for point patterns have received increasing use recently.

Such methods have had particularly important applications in the analysis of collections of

neuron spike trains (Victor and Purpura 1997). In addition, point pattern distance metrics

are required for the computation of a prototype point pattern, a construct introduced in

Schoenberg and Tranbarger (2004) and shown to be useful in the description of earthquake

aftershock sequences. The present paper investigates the computation and implementation

of distance metrics, especially in the context of their use in prototype point pattern analysis.

The spike-time distance metric proposed by Victor and Purpura (1997) involves matching

points in one point pattern to the points in another point pattern. The metric is somewhat

analogous to several distance metrics currently in use in computer imaging and other areas.

For instance, the concept of Earth Movier’s Distance (EMD) introduced by Rubner, Tomasi,

and Guibas (1998) evolved from the Hitchcock (1941) solution to the original transportation

problem first discussed by Monge (1781). EMD measures the amount of work required to

transform a histogram of the values in one image into that of the values in another image using

basic operations (see Rubner et al., 2000), and was shown by Levina and Bickel (2004) to be

equivalent to Mallows distance on probability distributions when the two image signatures

in question are appropriately weighted by their sizes.

In contrast to EMD, the spike-time distance of Victor and Purpura (1997) focuses on

matching the points of the two processes rather than their summary histograms. In addition,

unlike EMD, the spike-time distance can be used to compare two point patterns of unequal

length, and no modification involving only partial matching is required. Indeed, the difference
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in the number of points is a key ingredient in spike-time distance.

In Section 2, we review spike-time distance and explore various properties that aid in

its computation. Prototype point patterns are described in Section 3 and issues in their

computation and approximation are discussed. Algorithms for clustering collections of ob-

served point patterns based on their spike-time distances and prototype point patterns are

discussed in Section 4. A discussion and suggestions for further research are presented in

Section 5.

2 Calculation of spike-time distance

Let X and Y be temporal point patterns, i.e. each is a collection of points on the real line,

and corresponds to a σ-finite non-negative integer-valued measure on R (see Daley and Vere-

Jones 2003). (We refer to such a collection of points as a point pattern, as distinguished

from a point process, which is a random variable whose outcomes are point patterns.)

The spike-time distance between X and Y is defined as the total cost of transforming

X into Y using a series of basic operations (Victor and Purpura, 1997). Points from X can

be deleted at a cost pd, added at a cost of pa, or moved horizontally a distance ∆ at a cost

of pm∆. The sum of costs for the deletion, addition, and moving operations necessary to

transform point pattern X into point pattern Y is the spike-time distance between X and

Y . Note that in order for this to be a distance metric, it must be symmetric and thus the

constraint pa = pd must be imposed. While in some applications it might be desirable for

pa and pd to take on different values, this paper focuses on the case where the spike-time

distance is a symmetric distance metric. Hence in what follows we assume pa = pd.
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2.1 Basic Properties

The minimal sequence of operations required to transform point pattern X into point pattern

Y can be difficult to determine. In the special case where no points of X or Y are added or

deleted, however, the computation is quite trivial in view of the following result.

Theorem 1. Suppose that temporal point patterns X and Y each consist of exactly n

points and that pm << pa = pd, so that in effect addition and deletion of points are not

permitted. Then

d(X, Y ) = pm

n∑
i=1

|xi − yi|, (1)

where x1, x2, . . . , xn and y1, y2, . . . , yn are the sorted points of X and Y , respectively.

Proof.

The statement is trivial for n = 1.

Suppose n = 2, and without loss of generality assume x1 ≥ y1.

If also x2 ≥ y2, then

|x1 − y2|+ |x2 − y1| ≥ |x1 − y1 + x2 − y2| = |x1 − y1|+ |x2 − y2|,

since both (x1 − y1) and (x2 − y2) are non-negative.

Alternatively, if x2 < y2, then y2 − x1 ≥ y2 − x2 > 0, since x1 ≤ x2 < y2. Similarly,

0 ≥ y1 − x1 ≥ y1 − x2. Therefore, |y1 − x1| ≤ |y1 − x2| and |y2 − x2| ≤ |y2 − x1|, so

|y1 − x1|+ |y2 − x2| ≤ |y1 − x2|+ |y2 − x1|.

Hence the basic operations that move the point x1 to y2 and move the point x2 to y1
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have a total penalty that is at least as large as the penalties for moving x1 to y1 and moving

x2 to y2.

Now suppose n = k + 1 and that the result in Theorem 1 holds for n = k. Consider

any sequence of elementary operations that includes moving xk+1 to yi and moving xj to

yk+1, where i, j < k + 1. By the n = 2 case proven above, |xk+1 − yi| + |xj − yk+1| ≥

|xj − yi| + |xk+1 − yk+1|. That is, the elementary operations considered have cost at least

as large as those obtained by moving xk+1 to yk+1 and moving xj to yi. Hence the minimal

total cost in aligning X and Y is obtained by the elementary operations that involve moving

xk+1 to yk+1; the cost of aligning the other k points of X with the other k points of Y is

given by (1) with n = k. The result folllows by induction.
2

In light of Theorem 1, the problem of determining the best sequence of operations to

transform point pattern X into point pattern Y reduces to the problem of determining

whether each point in the point patterns will be removed (i.e. deleted from one string or

equivalently added to the other), or whether it will be kept, i.e. paired to a point in the

other string. Once the points to be kept are determined, the best approach for matching the

kept points in X to those in Y is simply sequential, based on Theorem 1. Evaluation of each

potential set of kept points is thus remarkably straightforward as each potential distance is

simply the number of points removed summed with the integrated difference between the

cumulative functions associated with the remaining points in the two temporal point patterns

(Schoenberg and Tranbarger 2004).

Given two temporal point patterns X and Y whose spike-time distance is sought, the

following two results are useful in determining which points will be kept and which will be

removed.
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Lemma 2. Any point that is more than (pa + pd)/pm = 2pd/pm away from its nearest

neighbor in the alternate point pattern will be removed.

Proof. The proof is immediate: for such a point x in X, it is more costly to move x to a

point y in Y than to delete x and add to X a point at y. 2

Theorem 3. Any pair of points xi and yj such that

|xi − yj| < min
k 6=i

{|xk − yj|} < min
k 6=j

{|xi − yk|} < 2pd/pm (2)

will be kept.

Proof. There are three possible outcomes for points xi and yj satisfying the condition (2).

Either both points are removed, one point is kept while the other is removed, or both points

are kept. We will show that the first two of these outcomes are excluded.

Suppose that both points are removed. Then the distance penalty function includes the

penalty 2 ∗ pd associated with those deletions. Since |xi − yj| < 2 ∗ pd/pm, the penalty could

be reduced by keeping both points and moving them to each other, at a cost of |xi−yj| ∗pm.

Therefore, removing both xi and yj cannot yield the minimum penalty.

Suppose that one point is kept while the other is removed. Assume without loss of

generality that xi is kept while yj is removed. Then xi is paired with some point yk such

that yk 6= yj and the spike-time distance includes both penalty pd for removal of yj and

|xi − yk| ∗ pm for the move of point xi to yk. Since |xi − yk| > |xi − yj| the total spike-time

distance penalty could be reduced by removing point yk rather than point yj and moving

xi to yj. Therefore, removing one point while keeping the other cannot yield the minimum

penalty.

The only option that remains is that both xi and yj are kept in the sequence of moves
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yielding minimal total cost.
2

Using these three properties of the optimal sequence of operations in the spike-time dis-

tance metric, the problem of determining the distance between process X and process Y is

simplified to identifying points known to be kept or deleted, then checking the total cost

associated with each possible combination of potentially kept points. Calculating the total

cost associated with each potential combination of kept points in the two point patterns is

not computationally time prohibitive, as the sequential ordering prescribed by Theorem 1

makes this calculation extremely straight-forward.

2.2 Application and Penalty Selection

It is not uncommon in point process applications to observe a collection of independent real-

izations of point processes observed on a common space. An example discussed in Schoenberg

and Tranbarger (2004) is the collection observed times of aftershocks from mainshocks in

different regions, over a fixed period of time following the mainshock. Alternatives include

the origin dates of wildfires in a region, where each year is viewed as a separate point pat-

tern. Throughout this work, we refer to such a collection of point processes simply as a point

process dataset.

The number and proximity of points in each point pattern observed in a point process

dataset are important to consider when determining the penalties used in the distance metric.

When selecting these penalties, it is the ratio of the deletion (addition) penalty pd to pm

that governs the results. For simplicity, we suggest setting pa = pd = 1 and determining pm

by examining the spread of the points in the data. If pm is too large, then little movement

of points will take place in the computation of distances between point patterns, as the
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cost of deletion and addition will be less than most potential moves. Alternatively, if pm

is too small, then moves will be made between points that are not very close at all. With

either extreme, the resulting spike-time distance will measure little more than the sum of,

or difference between, the number of points in the two observed point patterns. That is, the

spike-time distances will approach the sum of the two point pattern lengths for very large

values of pm, and will approach the absolute difference between these lengths for very small

pm values.

With these extremes in mind, one option is to set pm to a value such that points closer

than the the typical inter-point distance are paired, and points further than this are removed

and reintroduced in calculating the spike time distance. This leads to selecting penalties such

that:

(T/M)pm = 2pd (3)

where M is the median number of points in the observed point patterns.

3 Prototype point patterns

With a distance metric clearly defined, it becomes possible to identify a prototype point

patern that can be used for describing a typical observation within the point process dataset.

We define this prototype to be the point pattern Y such that the sum

n∑
i=1

d(Xi, Y ), (4)

is minimized, where Xi, i = 1...n, are the n observed point patterns in the dataset.
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3.1 Basic properties of prototype points

Fortunately, one need not search over all possible point patterns in determining the prototype

for a given point process dataset. A convenient feature making prototypes easy to identify

is described in the next result. Before stating this fact, we first turn to the definition of the

median of a sorted list of numbers z = {z1, z2, . . . , zm}, whose length m is even. Many texts

define the median of such a list as the mean of the two entries zm/2 and zm/2+1. Instead, let

us refer to any value M such that zm/2 ≤ M ≤ zm/2+1 as a median of z.

With this convention in mind, we return to the problem of determining prototypes.

Suppose that Y is the prototype of a point process dataset consisting of n point patterns

X1, . . . , Xn. For any point p in the prototype, consider the collection of points in the point

process dataset zp = {z1, z2, . . . , zm} to which p is paired. That is, each point zi is the point

to which p is moved in determining the spike-time distance between Y and Xj, for some j.

Note that m ≤ n, since p might not be kept in the spike-time distance between the prototype

and some of the point patterns in the dataset.

Theorem 4. Any point p in the prototype is a median of zp.

Proof. Fix any prototype point p and the list zp = {z1, . . . , zm} of points in the dataset

to which p is paired. Note that, in order for p to be a point of the prototype, the sum of

distances from zi to p must be less than or equal to the sum of distances from zi to any other

point q. Let q be a median of zp, and suppose that p is not a median of zp. We will show

that the sum of distances from zi to q is less than the sum of distances from from zi to p,

contradicting the assumption that p is a point of the prototype.

First suppose that the length m of zp is odd, and without loss of generality assume p < q.
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The sum of all m distances from zi to q is:

m∑
i=1

|zi − q| =
(m−1)/2∑

i=1

|zi − q|+
m∑

i=(m+3)/2

|zi − q|+ |z(m+1)/2 − q|

=

(m−1)/2∑
i=1

|zi − q|+
m∑

i=(m+3)/2

|zi − q| (5)

since |z(m+1)/2 − q| = 0. The sum of the m distances from zi to p is:

m∑
i=1

|zi − p| =
(m−1)/2∑

i=1

(|zi − q| − (q − p)) +
m∑

i=(m+3)/2

(|zi − q|+ (q − p)) + (z(m+1)/2 − p)

=
m∑

i=1

|zi − q| − (
m− 1

2
)(q − p) + (

m− 1

2
)(q − p) + (z(m+1)/2 − p)

=
m∑

i=1

|zi − q|+ (z(m+1)/2 − p). (6)

Therefore, the sum of distances from zi to p in (6) is greater than the sum of distances to q,

which is a contradiction.

If m is even, then without loss of generality assume that p < zm/2. The sum of all m

distances from zi to q is:

m∑
i=1

|zi − q| =
(m/2)−1∑

i=1

(|zi − z(m/2)|+ (q − z(m/2))) +

(m/2)+1∑
i=(m/2)

(|zi − q|)

+
m∑

i=(m/2)+2

(|zi − z(m/2)+1|+ (z(m/2)+1 − q))

=

(m/2)−1∑
i=1

(|zi − z(m/2)|) + (z(m/2)+1 − zm/2) +
m∑

i=(m/2)+2

(|zi − z(m/2)+1|)

+ (
m

2
) ∗ (z(m/2)+1 − zm/2) (7)



Tranbarger and Schoenberg. Point pattern distances and prototypes. 11

and the sum of distances from zi to p is:

m∑
i=1

|zi − p| =
(m/2)−1∑

i=1

(|zi − z(m/2)| − (zm/2 − p)) +

(m/2)+1∑
i=(m/2)

(|zi − p|)

+
m∑

i=(m/2)+2

(|zi − z(m/2)+1|+ (z(m/2)+1 − p))

=

(m/2)−1∑
i=1

(|zi − z(m/2)|) + (z(m/2)+1 − zm/2) + (zm/2 − p) +
m∑

i=(m/2)+2

(|zi − z(m/2)+1|)

+ (
m

2
− 1) ∗ (z(m/2)+1 − zm/2)

=
m∑

i=1

|zi − q|+ (zm/2 − p), (8)

which again contradicts the assumption that p is a point of the prototype. 2

A consequence of Theorem 4 is that, for any point process dataset, there exists a proto-

type made up entirely of points observed in the dataset. That is, in searching for a prototype,

one may limit one’s search to all possible combinations of entries in the dataset.

3.2 Penalty selection considerations

Penalties selected for pm, pa, and pd play a significant role in prototype determination. As

discussed in Schoenberg and Tranbarger (2004), a point at time t can only be part of the

prototype if at least pa/(pa + pd) of the point patterns in the dataset contain a point within

the interval [t − 2pa/pm, t + 2pa/pm]. Selection of moving penalties that are too large will

lead to prototypes that seem unusually short, since the range t± 2pa/pm will be quite small.

When the primary purpose of the prototype pattern is to serve as an example of a typical

point pattern, it is useful to set pm to be quite small compared to what might be advisable
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for distance calculations. Setting pm to a small positive value when pa = pd enables the

prototype to take on the median number of points in the dataset. Because each prototype

point must be matched to points within at least pa/(pa + pd) of the observed point patterns,

it is not possible to achieve a prototype of greater than median length while maintaining the

pa = pd restriction.

3.3 Prototype Determination

Theorem 4 may be useful in determining the prototype of a point process dataset. In

addition, note each point of the prototype must be within (pa +pd)/pm of a fraction pa/(pa +

pd) of the dataset’s point patterns, as discussed in Schoenberg and Tranbarger (2004). Let

n be the number of point patterns in the dataset. Then each point z in the dataset for

which at least npa/[2(pa +pd)] other points from distinct point patterns in the dataset are in

the range [z − (pa + pd)/pm, z] and at least npa/[2(pa + pd)] other points from distinct point

patterns in the dataset fall in the range [z, z + (pa + pd)/pm] is a candidate for inclusion in

the prototype. Note that for the case of pa = pd, this is simply n/4 points from distinct point

patterns in the dataset occurring on either side of z, within a distance 2∗pd/pm. In practice,

this observation may significantly decrease the number of candidates to be considered as

potential points in the prototype.

3.3.1 Direct algorithms for prototype determination

With a finite number ncp of candidate prototype points to consider, one may compute the

sum in equation (4) for each possible prototype, i.e. each possible collection of points that

are potentially in the prototype. For sufficiently small pm, the prototype will have length
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equal to the median length M of the n point patterns, so one may limit one’s search to the(
ncp

M

)
collections of length M only, as candidates for the prototype. Depending on the size of

the dataset of interest, this may be a reasonable task to undertake.

Alternatively, if pm is not small enough to allow for a prototype of length M , then the

best prototype of length k can be iteratively sought for k = 0, 1, 2, . . . M . One may begin by

finding the optimal prototype candidate of length k = 0 and progressively increase k, ending

the search once the minimum sum of distances between the point patterns in the dataset

and the potential prototype for length k + 1 is greater than the minimum sum of distances

for length k.

3.3.2 Forward and reverse stepwise approximation

Finding the prototype of a set of point patterns as prescribed in Section 3.3.1 may prove to be

prohibitively tedious for large datasets. In this case, stepwise methods can be implemented

to attain an approximate prototype solution. Note that such methods may provide useful

approximations of a prototype, but are generally not exact and will not select the true

prototype of the point process dataset as defined via (4).

A reverse stepwise approach can be useful when the length of the prototype is unknown.

By first finding the optimal prototype of median length M , possible prototypes of shorter

length can be found by eliminating points from the length M prototype one at a time. This

strategy continues until the optimal prototype of length k − 1 has a larger sum of distances

(4) than the best prototype candidate of length k. It is important to note that if pa 6= pd then

it is possible that the prototype may have length greater than M . When pa < pd, prototypes

longer than M might be optimal, while setting pa > pd will create shorter prototype lengths.
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In general, an upper bound on the length of the prototype is the pd/(pa + pd) percentile

length of all observed pattern lengths in the dataset.

While the reverse stepwise approach will entail fewer computations than finding the

prototype directly, even the reverse stepwise approximation might prove prohibitively cum-

bersome due to the long length of the prototype computed in the first stage. Finding the

best prototype of length M involves calculating (4) for
(

ncp

M

)
possible prototypes, a task

which might be too large an undertaking depending on the median pattern length M , and

the number of identified candidate prototype points ncp. An alternative is to use a forward

stepwise approach, which can further reduce computation time by beginning with a short

prototype candidate and then progressively expanding it. In each iteration, the sum of

pattern-prototype distances for the prototype candidate of length k is compared with the

sum for the prototype candidate of length k − 1. Provided the length k prototype has a

smaller sum of distances (4) than the prototype of length k − 1, the process continues by

finding the optimal prototype of length k+1 that contains all points included in the solution

of length k. Once the sum of distances () for the length k + 1 prototype exceeds the sum for

the length k prototype, the process ends and the prototype of length k is selected.

4 Classification through clustering

Using the spike-time distance metric and prototype, various clustering algorithms established

for standard multivariate data can be modified for use in point process applications. This

Section describes three such adapted methods.
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4.1 HMEANS and KMEANS

HMEANS and KMEANS clustering are two closely related iterative techniques useful for

clustering multivariate data. Both HMEANS and KMEANS clustering begin by randomly

assigning each observation to one of c clusters and finding the center of each cluster. While

centers are conventionally defined as centroids in standard HMEANS and KMEANS clus-

tering of multivariate data (Spaeth 1980, Anderberg 1973, Bock 1970, Howard 1966), in the

case of a point process dataset one may instead use the prototype as the definition of the

center of a cluster of point patterns.

In HMEANS clustering, once the cluster centers are defined, the distances from each of

the observed point patterns to each of the c cluster prototypes is measured and patterns are

reassigned to the cluster with the nearest prototype. Once cluster prototypes are calculated

according to the new assignments, the process repeats until no point pattern assignments are

changed. This approach is not guaranteed to yield the optimal assignment of the n observed

patterns into c clusters. In fact, HMEANS may not result in a total of c clusters, as one or

more of the clusters may be eliminated during the iterative process.

A similar approach, KMEANS, will maintain all c clusters and has been shown to produce

the optimal partitioning possible, given the starting cluster assignments, for standard multi-

variate applications (Spaeth 1980). Rather than calculating the distance from each observed

point pattern to each of the c cluster prototypes and then reassigning all observed patterns

at once, KMEANS considers only one point pattern at a time. The distances between the

ith observed pattern in the data and each of the c cluster prototypes are calculated and

then weighted according to the number of patterns present in each cluster. This weighting
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scheme is intended to estimate the effect adding the ith pattern might have to each cluster’s

prototype. Once the ith pattern is reassigned to the cluster with the minimum weighted

distance prototype, the prototypes of the two affected clusters are recalculated. The process

cycles through iterations of i = 1, ..n and continues until no reassignments are made through

a complete cycle of all n observed patterns. While this approach is much more computation-

ally involved than the related HMEANS, it provides a powerful approach to classification of

point patterns into c groups. By eliminating the possibility of creating fewer groups than

intended, KMEANS eliminates the risk present in HMEANS of assigning all patterns to one

group.

4.2 Agglomerative approach

A third option is an agglomerative approach that assigns each observed point pattern to its

own cluster and then systematically combines clusters. This approach is especially useful in

cases where HMEANS and KMEANS fail to converge after numerous iterations.

With each observed point pattern assigned to a cluster of its own, each cluster’s prototype

is simply the member pattern. The pairwise distances between each cluster prototype can be

found and the nearest two clusters joined to form one larger two-pattern cluster. From here,

the new cluster prototype is determined, and the new pairwise distances between prototypes

are calculated. The process repeats the until only c desired clusters remain. It is important

to note that when new cluster prototypes are determined, each of the original point patterns

contained in the clusters of interest is considered, rather than using only the two prototypes

of the two former clusters.
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If the amount of data makes computing all pairwise distances unfeasible, a similar ap-

proach is to consider pairwise distances for only one point pattern at a time in either a

randomly assigned order, or in order of length from the longest pattern to the shortest.

Our investigations suggest that this procedure of ordering the point patterns from longest

to shortest and then progressively merging the point patterns minimizes problems that can

occur if the pa, pd, and pm penalties are set such that pattern length overshadows other

features in the distance measures. More specifically, this ordering is helpful because the

agglomerative method tends to consider point patterns of longer lengths only at the end, as

these patterns often are measured to be far from other patterns due to the higher numbers

of point additions, deletions, and point movements involved. Beginning the agglomerative

process with longer patterns ensures that patterns with higher numbers of points will be

paired to point patterns with similar features early in the process rather than being left to

be paired with one of only a few shorter prototype patterns in the final steps of the algorithm.

4.3 Penalty choice considerations

While setting pm to a small value is useful in determining prototypes, very small pm values

are not desirable in clustering applications. As discussed in Section 2.2, small penalties for

movement of points will lead to distances that approach the absolute difference in pattern

lengths, while large movement penalties lead to distance calculations that approach the sum

of point pattern lengths. In clustering, either of these cases will lead to clusters assigned

by grouping patterns of similar lengths rather than by grouping patterns with similarly

placed points. For this reason, penalties assigned by (3) are recommended for clustering
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applications.

5 Multi-dimensional Extensions and Discussion

The spike-time distance metric as examined in this work, and as originally proposed by

Vector and Pupura (1997), has thus far been applied primarily to temporal point patterns

as defined in Section 2. As explored in Schoenberg and Tranbarger (2004), the spike-time

metric, the related prototype pattern technique, and related clustering algorithms can be

extended to point process data with points occurring in Rd.

In Rd, the basic definition of the spike-time distance metric as a measurement of the

operations required to transform one collection of points into another remains. Points can

be added with penalty pa, deleted with penalty pd, or moved along the ith axis a distance of ∆

at a cost of p
(i)
m ∆. Moving penalties p

(1)
m , p

(2)
m , ...p

(d)
m may be set independently for movement

along each of the d axes as in (3) for distance calculations and clustering application settings.

As with the one-dimensional case, smaller values for movement penalties are again useful for

prototype determination to enable longer length prototype point patterns. While the ratio

of pa and pd to moving penalty pm was of primary importance for temporal point process

work, the relative values of the d movement penalties must also be considered when multiple

dimensions are involved. These ratios must be considered so as to avoid (or allow) inter-point

distances along one or more dimensions being more heavily weighted in distance calculations.

As might be expected, spike-time distance calculations are far more cumbersome in Rd, as

the result of Theorem 1 does not hold, so multiple pairing arrangements must be considered

for each possible set of kept points. The process to determine which points will be kept and
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which will be removed remains unchanged as Lemma 2 and Theorem 3 (and their results)

extend immediately to multiple dimensions.

For prototype pattern determination, a modified version of Theorem 4 applies to the

multi-dimensional setting. With more than one dimension, rather than each prototype point

p being a median of the points (z1, z2, ..., zm) it is paired with, each coordinate of prototype

point p will be a median of the corresponding coordinate of the points (z1, z2, ..., zm). There-

fore, while the prototype may not contain points in the dataset, there exists a prototype

made entirely of points such that each coordinate of each prototype point is a coordinate in

one of the points in the dataset.

Clustering algorithms discussed in Section 4 can be applied to multi-dimensional point

pattern data without modification. For some datasets, the computation time involved in pro-

totype determination impedes the use of the clustering algorithms as described in Section 4

and slight modifications can be made, such as considering only one of the d dimensions at a

time in each step of the prototype and/or distance calculation. Such a monothetic approach

is used in Schoenberg and Tranbarger (2004) for clustering earthquake aftershock activity

considering the time, magnitude, and location of each aftershock.

While the spike-time distance metric is only one of countless possible distance metrics

for point pattern data, the concept of a prototype sequence is one that exists independently

of distance metric specifics. Therefore, though many of the theorems presented in this work

apply solely to the spike-time metric, the approaches to determining prototypes and clusters

derived from the ability to measure distances between point patterns should remain useful

in conjunction with other point pattern distance metrics.
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