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Abstract

The process obtained by rescaling a homogeneous Poisson process by the

maximum likelihood estimate of its intensity is shown to have surprisingly

strong self-correcting behavior. Formulas for the conditional intensity and

moments of the rescaled Poisson process are derived, and its behavior is

demonstrated using simulations. Relationships to the Brownian Bridge are

explored, and implications for point process residual analysis are discussed.

Keywords: Brownian bridge; Poisson bridge; intensity; point process; Poisson

process; residual analysis
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1 Introduction.

The random time change theorem dictates how one may rescale a point pro-

cess N in order to obtain a Poisson process with unit intensity (Meyer, 1971;

Papangelou, 1972; Brémaud, 1972). The procedure amounts to stretching or

compressing the point process according to its conditional intensity process,

λ. For instance if N is a stationary Poisson process on the line with constant

intensity λ > 0, the rescaled process M defined via

(1.1)M(a, b) := N(a/λ, b/λ)

is a Poisson process of unit rate. The random time change theorem applies to

any simple point process on the line (Meyer, 1971), and has been extended to

wide classes of point processes in higher dimensions (Merzbach and Nualart,

1986; Nair, 1990; Schoenberg, 1999)).

The above results all require that the conditional intensity λ of the point

process be known. Thus one may question whether the rescaled process is

similar to a Poisson process when λ is estimated rather than known. The

present paper investigates the behavior of the rescaled process M̂T obtained

by rescaling N according to λ̂T , the maximum likelihood estimate of λ, for
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the case where N is a stationary Poisson process on the line observed from

time 0 to time T . In such cases, the rescaled process is found to be quite

different from the Poisson process with unit rate.

In practice, analysis of the rescaled process M̂T is often used in so-called

point process residual analysis; applications include model evaluation (Schoen-

berg, 1997) and point process prediction (Ogata, 1988). The fact that M̂T

is not a Poisson process, or equivalently that N(0, t) − λ̂T t is not a martin-

gale, has been observed by several authors including Aalen and Hoem (1978),

Brown and Nair (1988), Heinrich (1991), and Solow (1993). It has been ar-

gued that the difference between M̂T and a unit-rate Poisson process is neg-

ligible, since λ̂T converges a.s. to λ, or because certain statistics, such as the

Kolmogorov-Smirnov statistic, when applied to M̂T have asymptotically the

same distribution as the statistics corresponding to the Poisson process (Saw,

1975; Davies, 1977; Kutoyants, 1984; Ogata and Vere-Jones, 1984; Lisek and

Lisek, 1985; Lee, 1986; Arsham, 1987; Karr, 1991; Heinrich, 1991; Yokoyama

et al., 1993). Therefore until now the properties distinguishing M̂T from the

unit-rate Poisson process have not been extensively investigated.
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However, when T is small, the asymptotic arguments above are less rel-

evant, and the exact properties of M̂T may be important. The current pa-

per demonstrates the self-correcting nature of M̂T and its highly fluctuating

conditional intensity process. This suggests that caution should be used in

assuming that M̂T is similar to the Poisson process, particularly when the

original point process N is observed over a short time scale. Further, al-

though certain functionals of M̂T may asymptotically approach those of a

Poisson process, the asymptotic behavior of M̂T may alternatively be chac-

terized in relation to the Brownian Bridge.

The structure of this paper is as follows. Section 2 lists a few definitions

and conventions dealing with notation. Finite-sample properties of rescaled

Poisson processes are investigated in Section 3. Section 4 presents results

related to the asymptotic properties of M̂T . In Section 5, the extent of the

self-correcting behavior of M̂T is demonstrated using simulations.
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2 Preliminaries

Throughout this paper we will let N refer to a homogeneous Poisson pro-

cess on the real half-line R+ with intensity λ > 0, observed from time 0 to

time T , and M will denote the rescaled Poisson process defined by relation

(1.1). Thus N has points at times τ1, τ2, . . . , τn iff. M has points at times

τ1/λ, τ2/λ, . . . , τn/λ.

The definitions that follow relate to an arbitrary point process P on the

real half-line R+. We say P is self-correcting if, for 0 < a ≤ b < c,

cov{P (a, b), P (b, c)} < 0,

and P is called self-exciting if this covariance is positive. Well-known exam-

ples of self-correcting and self-exciting point processes, respectively, are the

stress-release process (Isham and Westcott, 1979) and the Hawkes process

(Hawkes, 1971). Note that the term self-exciting is sometimes used to refer

exclusively to the process described by Hawkes, rather than the more general

meaning given here.

When it exists, the conditional intensity process λ associated with P is

6



defined by

λ(t) = lim
∆t↓0

1

∆t
E [P [t, t + ∆t)|Ht] ,

where Ht is the filtration generated by P [0, t) from time 0 to time t. It is well

known that when it exists, the conditional intensity is unique a.e. and de-

termines all the finite-dimensional distributions of P (Daley and Vere-Jones,

1988). Therefore a natural way to characterize a point process is via its

conditional intensity. Note that for the stationary Poisson process N , the

conditional intensity λ is constant a.e. and N is neither self-correcting nor

self-exciting.

Following convention, we abbreviate the random variable P [0, t] by P (t).

Thus P (t) is the P -measure of the interval [0, t]; it is important to distinguish

this from P ({t}), i.e. the measure P assigns to the point {t}.

Let n denote the total number of observed points N(T ). λ̂T = n/T , the

maximum likelihood estimate of λ. Assuming λ̂T > 0, let M̂T denote the

point process defined via:

M̂T (a, b) := N(a/λ̂T , b/λ̂T ),

7



for 0 ≤ a ≤ b ≤ n. That is, M̂T is the process with points at times

τ1/λ̂T , τ2/λ̂T , . . . , τn/λ̂T . In the case that λ̂T = 0, let M̂T (a, b) = 0 for all

a, b > 0. Similarly, set M̂T (a, b) = 0 if n < a ≤ b.

The following function arises repeatedly in calculations of finite-sample

properties of M̂ . Let

φ(x, t) :=
exp(−x)

S(x, t)

Ei(x)− γ − ln(x)−
btc∑
i=1

xi

i× i!

 ,

where S(x, t) is the survivor function for a Poisson random variable with

mean x:

S(x, t) := 1− exp(−x)
btc∑
i=0

xi/i! ,

Ei(x) is the standard exponential integral, defined as the Cauchy principal

value of the integral

Ei(x) :=
x∮

−∞
exp(u)/u du,

and γ is Euler’s constant:

γ := lim
J→∞

{
J∑

j=1
1/j − ln(J)} ≈ .5772...
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Finally, let I denote the indicator function.

3 Finite-sample characteristics of M̂T

The support of M̂T is the subset [0, n], which is random. In residual anal-

ysis of point processes, one is interested only in the behavior of M̂T within

this support. Thus, of particular concern are the conditional moments of

M̂T (a, b), given that n ≥ b. Such properties are given in Theorem 3.1 below.

THEOREM 3.1. For 0 ≤ a ≤ b ≤ c,

(i) E[M̂T (a, b)|n ≥ b] = b− a.

(ii) Cov{M̂T (a, b) , M̂T (b, c)|n ≥ c} = −(b− a)(c− b)φ(λT, c).

(iii) Var{M̂T (a, b)|n ≥ b} = b− a− (b− a)2φ(λT, b).

PROOF. (i) Given that n = k, the unordered points {τ1, τ2, ..., τk} of N
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are i.i.d. uniform random variables on [0, T ]. Hence

E[M̂T (a, b)|n ≥ b] =
∞∑

k=dbe
E[M̂T (a, b)|n = k]P{n = k|n ≥ b}

=
∞∑

k=dbe
E[N(aT/k, bT/k)|n = k]P{n = k|n ≥ b}

=
∞∑

k=dbe
k(bT/k − aT/k)/T P{n = k|n ≥ b}

= (b− a)
∞∑

k=dbe
P{n = k|n ≥ b}

= b− a.

(ii) Note that

(3.1)
∞∑

k=dce
P{n = k|n ≥ c}/k =

exp(−λT )

P{n ≥ c}
∞∑

k=dce

(λT )k

(k × k!)

= φ(λT, c)

the last relation following from equation (5.1.10) of Abramowitz (1964).

Conditioning again on n, and letting pk,c denote P{n = k|n ≥ c} we may

write

E[M̂T (a, b) M̂T (b, c)|n ≥ c]

=
∞∑

k=dce
E[M̂T (a, b)M̂T (b, c)|n = k] pk,c
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=
∞∑

k=dce
E[N(aT/k, bT/k)N(bT/k, cT/k)|n = k] pk,c

=
∞∑

k=dce
E[

k∑
i=1

I{τi ∈ (aT/k, bT/k)}
k∑

j=1
I{τj ∈ (bT/k, cT/k)}|n = k] pk,c

=
∞∑

k=dce
E[
∑
i6=j

I{τi ∈ (aT/k, bT/k)}I{τj ∈ (bT/k, cT/k)}|n = k] pk,c

=
∞∑

k=dce
(k2 − k)E[I{τ1 ∈ (aT/k, bT/k)}I{τ2 ∈ (bT/k, cT/k)}|n = k] pk,c

=
∞∑

k=dce
(k2 − k)

(b− a)

k

(c− b)

k
pk,c

= (b− a)(c− b)

1− ∞∑
k=dce

pk,c/k

 ,

which along with (i) and (3.1) establishes (ii).

(iii) Similarly,

E[M̂T (a, b)2 |n ≥ b]

=
∞∑

k=dbe
E[N(aT/k, bT/k)N(aT/k, bT/k)|n = k] pk,b

=
∞∑

k=dbe
E[

k∑
i=1

I{τi ∈ (aT/k, bT/k)}
k∑

j=1
I{τj ∈ (aT/k, bT/k)}|n = k] pk,b

=
∞∑

k=dbe
E[
∑
i6=j

I{τi ∈ (aT/k, bT/k)}I{τj ∈ (aT/k, bT/k)}

+
k∑

i=1
I{τi ∈ (aT/k, bT/k)}|n = k]× pk,b

=
∞∑

k=dbe

(k2 − k)

(
b− a

k

)2

+
k(b− a)

k

 pk,b
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= b− a + (b− a)2

1− ∞∑
k=dbe

P{n = k|n ≥ b}/k


= b− a + (b− a)2[1− φ(λT, b)].

REMARK 3.2. It is evident from (3.1) that φ(λT, c) is positive. Thus

equation (ii) of Theorem 3.1 implies that

Cov{M̂T (a, b), M̂T (b, c)|n ≥ c} < 0,

i.e. M̂T is a self-correcting point process.

Fix t > 0. Let m denote M̂T (t). Let z := dt+ ∨ me, i.e. the least integer

strictly greater than t and greater than or equal to m. Let z′ := dt+∨(m+1)e.

Although no closed form is available for the conditional intensity of M̂T , a

formula which is useful in practice for calculating an approximation is given

in the following result.

THEOREM 3.3. The conditional intensity process λM̂ corresponding to

the point process M̂T satisfies:

(3.2)λM̂(t) =
∞∑

k=z′

(λT )k(k − t)k−m−1

(k −m− 1)!kk

 ∞∑
k=z

(λT )k(k − t)k−m

(k −m)!kk

−1

.
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PROOF.

Let Ĥt denote the history of M̂T from time 0 to t, i.e. the σ-field generated

by {M̂T (x); 0 ≤ x < t}.

λM̂(t) = lim
∆t↓0

1

∆t
E[M̂T [t, t + ∆t)|Ĥt]

= lim
∆t↓0

1

∆t

∞∑
k=z

E
[
M̂T [t, t + ∆t)|Ĥt; n = k

]
P
{
n = k|Ĥt

}

(3.3)= lim
∆t↓0

1

∆t

∞∑
k=z

E
[
N [tT/k, (t + ∆t)tT/k)|Ĥt; n = k

]
P
{
n = k|Ĥt

}

Conditional on Ĥt and on n = k, there are k − m points left to be dis-

tributed by the point process N between time tT/k and time T . Since N

is a Poisson process, these additional points are uniformly distributed on

[tT/k, T ]. Thus

E
[
N [tT/k, (t + ∆t)tT/k)|Ĥt; n = k

]
= (k −m)

∆tT/k

T − tT/k

(3.4)=
∆t(k −m)

k − t
.

Putting together (3.3) and (3.4) yields:

(3.5)λM̂(t) =
∞∑

k=z

k −m

k − t
P{n = k|Ĥt}.

Note that P{n = k | Ĥt} = P{n = k | M̂(t)}. This relation follows from

the fact that N is a Poisson process and therefore for any k, conditional on
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{n = k; M̂T (t) = m}, the m points falling between time 0 and time tT/k of

the process N are uniformly distributed on [0, tT/k]. Using Bayes’ formula,

P{n = k|Ĥt} = P{n = k|M̂T (t) = m}

=
P{M̂T (t) = m|n = k}P{n = k}∑

k
P{M̂T (t) = m|n = k}P{n = k}

=
(

k
m

) ( t

k

)m (
1− t

k

)k−m

e−λT (λT )k

k!

×
 ∞∑

k=z

(
k
m

) ( t

k

)m (
1− t

k

)k−m

e−λT (λT )k

k!

−1

=
(λT )k(k − t)k−m

(k −m)!kk

 ∞∑
k=z

(λT )k(k − t)k−m

(k −m)!kk

−1

,

which together with (3.5) yields the desired result.

4 Asymptotic properties of M̂

It is well known that the asymptotic behavior of the normalized Poisson

process can be expressed in terms of the Brownian Bridge. Both the Brown-

ian bridge process and the rescaled Poisson process, or Poisson bridge, have

been studied in connection with empirical distributions; see Major (1990) or

Csörgő and Horváth (1992) for recent results. In this context, Kac (1949)

showed that the distribution of the supremum of the rescaled Poisson process
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converges to that of the Brownian bridge. This result has been extended to

show that the rescaled Poisson process, normalized as in the following result,

converges weakly in the Skorohod space D[0, 1] to the Brownian bridge.

Theorem 4.1.

N(sT )− sn√
λT

; 0 ≤ s ≤ 1

⇒ {
B0(s); 0 ≤ s ≤ 1

}

as T →∞, where B0(s) denotes the Brownian Bridge process on [0, 1].

Versions of Theorem 4.1 have been proven by various authors; see e.g.

Bretagnolle and Massart (1989), who show in their Theorem 1 that further-

more an upper bound for the rate of convergence is log(T )/
√

T .

Of concern in the present work is the asymptotic behavior of M̂T , observed

from time 0 to the random time n. Let

XT (s) :=
M̂T (sn)− sn√

n
.

The connection between M̂T and the Brownian Bridge is summarized in the

following result, which is a simple extension of Theorem 4.1.
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COROLLARY 4.2.

{XT (s); 0 ≤ s ≤ 1} ⇒
{
B0(s); 0 ≤ s ≤ 1

}
.

PROOF. From Theorem 4.1 and Slutsky’s theorem it is sufficient to prove

that the difference between XT and
{

N(sT )−sn√
λT

}
converges to zero in probabil-

ity in the Skorohod space D[0, 1], which is in turn implied by convergence to

zero in probability using the uniform metric on D[0, 1] (see e.g. chapter 18

of Billingsley, 1968, or chapter 4 of Pollard, 1984). In light of the fact that

XT can be rewritten as

XT (s) =
N(sT )− sn√

n
,

all that is required to complete the proof is Lemma 4.3 below.

LEMMA 4.3.

sup
0≤s≤1

∣∣∣∣∣∣N(sT )− sn√
λT

− N(sT )− sn√
n

∣∣∣∣∣∣→p 0.

PROOF. Let

dT := sup
0≤s≤1

|N(sT )− sn| .

Choose any positive ε and δ. From Theorem 4.1, dT/
√

λT ⇒ sup
0≤s≤1

∣∣∣B0(s)
∣∣∣
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as T →∞. It follows that we may find constants c and T ′, so that for T > T ′,

P
(
dT/

√
λT ≥ c

)
≤ δ/3.

Let k = c/(c− ε)− 1 > 0.

For T ≥ T ′,

P

 dT√
λT

− dT√
n

> ε

 ≤ P (dT > c
√

λT ) + P

c
√

λT√
λT

− c
√

λT√
n

> ε


≤ δ/3 + P (c

√
n− c

√
λT > ε

√
n)

= δ/3 + P

 √
n√

λT
(1− ε/c) > 1


= δ/3 + P

 √
n√

λT
> 1 + k


≤ δ/3 + P

(
n

λT
> 1 + k2

)

= δ/3 + P
(
n− λT > k2λT

)

≤ 2δ/3

for sufficiently large T , since n − λT ∼
√

λT Z, where Z is the standard

normal.

A nearly identical argument shows that for large T ,

P

 dT√
λT

− dT√
n

< −ε

 ≤ δ/3,
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and the proof is complete.

REMARK 4.4. The relation between Theorem 4.1 and Corollary 4.2 is

worth mentioning. The former result describes the behavior of the Poisson

process normalized by the deterministic factor λT while the latter establishes

its behavior when normalized by the random variable n. The expression in

Corollary 4.2 is perhaps more relevant in applications, since typically λ is

unknown.

The term Poisson bridge is typically used in reference to the Poisson pro-

cess rescaled by a deterministic factor as in Theorem 4.1. In view of the

similarities between B0 and M̂ , the process M̂ may be called a stepping

stone process in analogy with the Brownian bridge process. Not only are

the two processes related asymptotically by Corollary 4.2, but both display

similar self-correcting behavior. Further, B0 and M̂ may be viewed as “tied

down” versions of Brownian Motion and the Poisson process, respectively:

B0(0) = B0(1) = 0; M̂T (0) = M̂T (n)− n = 0.
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Corollary 4.2 suggests that the asymptotics of residual point processes

may be described in relation to the Brownian Bridge. However the proof in

Corollary 4.2 is given only for residuals of the Poisson process. The extension

to more general point processes is given in the following conjecture.

CONJECTURE 4.5. Given certain restrictions on the parameterization

of the conditional intensity of N , such as those in Ogata (1978), the result

of Corollary 4.2 extends to the case where N is an arbitrary simple point

process on the line.

5 Simulations of M̂

The self-correcting behavior of M̂T can be seen from simulations. Given the

complexity of the conditional intensity of the process in (3.2), the simplicity

with which one may simulate M̂T is striking. The procedure is as follows:

• Generate n, a Poisson random variable with mean λT .
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• Distribute n points uniformly on [0, n].

The conditional intensity of M̂T may also readily be simulated, using equa-

tion (3.2). Both the numerator and denominator in (3.2) generally converge

rapidly for typical values of λ, T , m and t.

For all the simulations which follow, the product λT is chosen to be 10.

This choice is arbitrary; however the results are similar for other relatively

small values of λT .

Figure 1 shows ten simulations of M̂ ; each row of points in Figure 1 repre-

sents one simulation. The regularity of the simulations in Figure 1 is of note:

if M̂ is observed from time 0 to 7, then M̂ is guaranteed to have exactly 7

points in this interval.

The self-correcting behavior of M̂ may be demonstrated graphically. Sup-

pose we look at the processes in Figure 1 and focus on a certain interval

(t1, t2] of transformed time, e.g. (4, 5]. If M̂ is indeed self-correcting, then
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we would expect to see relatively few points in (4, 5] among processes that

have many points in [3, 4], and more points in (4, 5] among processes with

few points in [3, 4].

Figure 2 shows how M̂(4, 5] relates to M̂ [3, 4], for 1500 simulations. The

data are perturbed slightly so that all the points can be seen. The dashed

line is fit by least squares, the solid line by loess. The downward slope is

readily apparent, confirming the self-correcting nature of M̂ .

The behavior of M̂ can also be inspected by examining its conditional

intensity λM̂(t) in (3.2). Figure 3 shows the conditional intensity process λM̂

for the bottom-most simulated Poisson process shown in Figure 1. The points

of M̂ are depicted at the bottom of Figure 3. The volatility of λM̂ is evident:

note that if M̂ were a unit-rate Poisson process, λM̂ would be 1 everywhere.

Instead, λM̂(t) ranges from less than .5 to more than 3.

From equation (3.2), given λT and t, the random variable λM̂(t) depends

only on m, the number of points M̂ has between 0 and t. In particular, if
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m < t, then λM̂(t) > 1, and if m > t, then λM̂(t) < 1. Again, this verifies

self-correcting behavior: when m is low (i.e. few points have occurred), λM̂

is high, and vice versa.

Figure 4 shows how λM̂(t) decays with m, when t = 4.5. Although the

general trend seen in Figure 4 appears to hold for various t, the rate of decay

depends on t. When t is large, λM̂(t) decays very rapidly with m for m near

t. This can be seen by comparing Figure 4 with Figure 5, which shows λM̂(t)

as a function of m as in Figure 4, but with t = 12.5 instead of 4.5.

A perspective plot summarizing the general dependence of λM̂(t) on m and

t is given in Figure 6. One sees that, for a given value of t, λM̂(t) decreases

quickly as m exceeds t, and again that this decay is faster for larger t.

6 Summary and Conclusions

The rescaled or stepping stone process M̂ investigated here appears to be a

natural point process analog of the Brownian Bridge. Both processes are con-
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strained at the bounds of their support, and they are closely related asymp-

totically as shown in Section 4. In contrast to the usual formulation of the

Poisson bridge, the asymptotics investigated here are of a Poisson process

rescaled according to the random number of observed points in an interval

rather than a deterministic constant.

The process M̂ , arising from such simple and basic premises, is shown to

have a very complex, self-correcting nature. This stems from the fact that

M̂ is guaranteed to average exactly one point per unit of transformed time.

The situation is similar to the case of linear regression, where the residuals

are guaranteed to have mean zero.

As demonstrated from both simulations and direct calculation, the self-

correcting behavior in M̂ is quite substantial. The conditional intensity of M̂

is seen to vary wildly, rather than remain constant. The conclusion that M̂

is essentially similar to a Poisson process therefore appears not to be justified.

The present work shows that even in the simplest case, where the original
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process N is a stationary Poisson process on the line, the residual process is far

from Poisson when λT is small. Preliminary investigation suggests that the

present results extend to the case where N is a more complicated point pro-

cess, e.g. a non-stationary, non-Poissonian, and/or multi-dimensional point

process.
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Figure Captions:

Figure 1: Ten simulations of M̂

Figure 2: Plot of M̂(4, 5] versus M̂ [3, 4], for 1500 simulations

Figure 3: Simulation of λM̂

Figure 4: λM̂(t) vs. m, for t = 4.5

Figure 5: λM̂(t) vs. m, for t = 12.5

Figure 6: Perspective plot of λM̂(t) vs. t and m
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