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Point processes,
spatial–temporal

A spatial–temporal point process (also called space–
time or spatio-temporal point process) is a random
collection of points, where each point represents the
time and location of an event. Examples of events
include incidence of disease, sightings or births of
a species, or the occurrences of fires, earthquakes,
lightning strikes, tsunamis, or volcanic eruptions.
Typically the spatial locations are recorded in three
spatial coordinates, e.g. longitude, latitude, and height
or depth, though sometimes only one or two spatial
coordinates are available or of interest. Figure 1 is
an illustration of a realization of a spatial–temporal
point process with one spatial coordinate depicted.
Figure 2 displays some point process data consisting
of microearthquake origin times and epicenters in
Parkfield, CA, between 1988 and 1995, recorded
by the US High-Resolution Seismographic Station
Network [16]. Figure 3 displays the centroids of
wildfires occurring between 1876 and 1996 in Los
Angeles County, CA, recorded by the Los Angeles
County Department of Public Works (times of the
events not shown).

Characterizations

A spatial–temporal point processN is mathematically
defined as a random measure on a regionS � � ð

�3 of space–time, taking values in the non-negative
integers�C (or infinity). In this framework the mea-
sureN�A� represents the number of points falling in
the subsetA of S. For the setA in Figure 1, for exam-
ple, the value ofN�A� is 2. Attention is typically
restricted to points in some time interval [T0, T1],
and to processes with only a finite number of points
in any compact subset ofS.

Traditionally the points of a point process are
thought to be indistinguishable, other than by their
times and locations. Often, however, there is other
important information to be stored along with each
point. For example, one may wish to analyze a list
of points in time and space where a member of a
certain species was observed, along with the size
or age of the organism, or alternatively a catalog
of arrival times and locations of hurricanes along
with the amounts of damage attributed to each. Such
processes may be viewed asmarked spatial–temporal
point processes, i.e. random collections of points,
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Figure 1 Spatial–temporal point process
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Figure 2 Epicenters and times of Parkfield microearthquakes, 1988–1995
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Figure 3 Centroids of recorded Los Angeles County wild-
fires, 1878–1996

where each point has associated with it a further
random variable called a mark.

Much of the theory of spatial–temporal point
processes carries over from that of spatial point
processes (see Point processes, spatial). However,
the temporal aspect enables a natural ordering of
the points that does not generally exist for spatial
processes. Indeed, it may often be convenient to view
a spatial–temporal point process as a purely temporal
point process (see Point processes, temporal), with
spatial marks associated with each point. Sometimes
investigating the purely temporal (or purely spatial)
behavior of the resulting marginalized point process
is of interest.

The spatial region of interest is often a rectan-
gular portion of�2 or �3, but not always. For the
data in Figure 2, for example, the focus is on just
one spatial coordinate, and in Figure 3 the region of
interest is Los Angeles County, which has an irreg-
ular boundary. Cases where the points are spatially
distributed in a sphere or an ellipse are investigated
by Brillinger [2, 3]. When the domain of possible
spatial coordinates is discrete (e.g. a lattice) rather
than continuous, it may be convenient to view the
spatial–temporal point process as a sequencefNig of
temporal point processes that may interact with one
another. For example, one may view the occurrences
of cars on a highway as such a collection, whereNi
represents observations of cars in lanei.

Any analytical spatial–temporal point process is
characterized uniquely by its associated conditional

rate process	 [6]. 	�t, x, y, z� may be thought of
as the frequency with which events are expected
to occur around a particular location (t, x, y, z) in
space–time, conditional on the prior history,Ht, of
the point process up to timet. Note that in the statisti-
cal literature (e.g. [4] and [12]),	 is more commonly
referred to as the conditional intensity rather than
the conditional rate. However, the term intensity is
also used in various environmental sciences, e.g. in
describing the size or destructiveness of an earth-
quake, so to avoid confusion, the term rate may be
preferred.

Formally, the conditional rate	�t, x, y, z� associ-
ated with a spatial–temporal point processN may be
defined as a limiting conditional expectation, as fol-
lows. Fix any pointp D �t, x, y, z� in space–time.
Let B denote the set�t, t Ct�ð �x, x Cx�ð
�y, y Cy�ð �z, z Cz�, where  is the vector
�t,x,y,z�. Then

	�p� D lim
!0

E[N�B�jHt]/jj �1�

provided the limit exists. Some authors instead define
	�p� as

lim
!0

P[N�B� > 0jHt]/jj �2�

For orderly point processes (processes where
limjAj#; PrfN�A� > 1g/jAj D 0 for interval A), the
two definitions are equivalent.	 is a predictable pro-
cess whose integralC (called the compensator) is
such thatN� C is a martingale. There are different
forms of conditioning corresponding to different
types of martingales; see [11], [14], or [21].

Models

The behavior of a spatial–temporal point processN
is typically modeled by specifying a functional form
for 	�t, x, y, z�, which represents the infinitesimal
expected rate of events at timet and location (x, y, z),
given all the observations up to timet. Although
	 may be estimated nonparametrically [5, 7, 24],
it is more common to estimate	 via a parametric
model.

In general,	�t, x, y, z� depends not only ont, x, y
and z but also on the times and locations of preced-
ing events. WhenN is a Poisson process, however,
	 is deterministic, i.e.	�t, x, y, z� depends only on
t, x, y and z. The simplest model is the station-
ary Poisson, where the conditional rate is constant:
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	�t, x, y, z� D ˛ for all t, x, y, z. In the case of mod-
eling environmental disturbances, this model incor-
porates the idea that the risk of an event is the
same at all times and locations, regardless of where
and how frequently such disturbances have occurred
previously. Processes that display substantial spa-
tial heterogeneity, such as earthquake epicenters, are
sometimes modeled as stationary in time but not
space.

Stationary spatial–temporal point processes are
sometimes described by the second-order parameter
measure��t0, x0, y0, z0�, which measures the covari-
ance between the numbers of points in spatial–temp-
oral regionsA and B, where regionB is A shifted
by (t0, x0, y0, z0) (see Space–time covariance mod-
els). For example, Kagan and Vere-Jones [10] explore
models for� in describing spatial–temporal patterns
of earthquake hypocenters and times. For a self-
exciting (equivalently, clustered) point process, the
function � is positive for small values oft0, x0, y0
and z0; N is self-correcting (equivalently, inhibitory)
if instead the covariance is negative. Thus the occur-
rence of points in a self-exciting point process is
associated with other points occurring nearby in
space–time, whereas in a self-correcting process the
points have an inhibitory effect.

Self-exciting point process models are often used
in epidemiology (see Spatial statistics in environ-
mental epidemiology) and seismology (see Seismo-
logical modeling) to model events that are clustered
together in time and space. A commonly used form
for such models is a spatial–temporal generaliza-
tion of the Hawkes model, where	�t, x, y, z� may
be written as

��t, x, y, z�

C
∑
i

��t � ti, x � xi, y � yi, z � zi� �3�

where the sum is over all points�ti, xi, yi, zi� with
ti < t. The functions� and� represent the determin-
istic background rate and clustering density, respec-
tively. Often � is modeled as merely a function of
the spatial coordinates (x, y, z), and may be estimated
nonparametrically as in [17]. When observed marks
m associated with each point are posited to affect the
rate at which future points accumulate, this informa-
tion is typically incorporated into the function�, i.e.
the conditional rate	 is modeled as a background

rate plus∑
i

��t � ti, x � xi, y � yi, z � zi, m� mi� �4�

A variety of forms has been given for the clustering
density �. For instance, in modeling seismological
data with two spatial parameters (x and y) and a
mark (m) indicating magnitude, Musmeci and Vere-
Jones [15] introduced explicit forms for�, includ-
ing the diffusion-type model where��t, x, y, m� is
given by

C

2��x�yt
exp


˛m � ˇt �

(
x2

�2
x

C y2

�2
y

)

2t


 �5�

Ogata [17] investigated the case where

��t, x, y, m� D K0 exp[̨ �m � m0�]

�t C c�p�x2 C y2 C d�q �6�

as well as a variety of other models. Several other
forms for � were suggested by Rathbun [18] and
Kagan [9]; see [17] for a review.

Sometimes	 is modeled as a product of marginal
conditional intensities

	�t, x, y, z� D 	1�t�	2�x, y, z� �7�

or even

	�t, x, y, z� D 	1�t�	2�x�	2�y�	4�z� �8�

These forms embody the notion that the temporal
behavior of the process is independent of the spatial
behavior, and in the latter case that furthermore the
behavior along each of the spatial coordinates can
be seen as independent. In such cases each of the
functions	i may be estimated individually; see, for
example, [18] or [21]. Occasionally one subdivides
the spatial region into a finite number of subregions
and fits temporal point process models to the data
within each subregion. In such a case the conditional
intensity may be written

	�t, x, y, z� D
∑
i

	1�t�1i�x, y, z� �9�

where the 1i are indicator functions denoting the
relevant region. An example is given in [26]. The
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introduction of interactions between different subre-
gions is incorporated into this model by Lu et al. [13].

For further remarks on modeling and examples
see [23] and [25].

Estimation and Inference

The parameter vector$ for a model with conditional
rate	�t, x, y, z; $� is usually estimated by maximizing
the log-likelihood function

L�$� D
∫ T1

T0

∫
x

∫
y

∫
z
log[	�t, x, y, z; $�] dN�t, x, y, z�

�
∫ T1

T0

∫
x

∫
y

∫
z
	�t, x, y, z; $�dz dy dx dt �10�

Asymptotic properties of themaximum likelihood
estimator O$ have been derived under various con-
ditions, along with formulas forstandard errors;
see, e.g., [19]. Alternatively, simulations may be use-
ful for obtaining approximate standard errors and for
other types of inference (see Resampling methods).

The estimated conditional rate	�t, x, y, z; O$� can
be used directly for prediction and risk assess-
ment (see Risk assessment, seismological). See [1]
and [6], for example.

Spatial–temporal point processes may be evalu-
ated viaresidual analysis, as described in [21]. One
typically selects a spatial coordinate and rescales the
point process in that direction. If thez coordinate
is chosen, for example, then each point (ti, xi, yi, zi)
of the observed point process is moved to a new
point (ti, xi, yi,

∫ zi
z0
	�ti, xi, yi, z; O$�dz), where z0 is

the lower boundary in thez direction of the spatial
region being considered. The resulting rescaled pro-
cess is stationary Poisson if and only if the model is
correctly specified [22]. Hence a useful method for
assessing the fit of a point process model is to exam-
ine whether the rescaled point process looks like a
Poisson process with unit rate. Several tests exist for
this purpose; see, for example, [8] or [20].
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