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Abstract

Models for forecasting earthquakes are currently tested prospectively in well-

organized testing centers, using data collected after the models and their pa-

rameters are completely specified. The extent to which these models agree with

the data is typically assessed using a variety of numerical tests, which unfortu-

nately have low power and may be misleading for model comparison purposes.

Promising alternatives exist, especially residual methods such as super-thinning

and Voronoi residuals. This article reviews some of these tests and residual

methods for determining the goodness-of-fit of earthquake forecasting models.

Keywords: earthquakes, model assessment, point process, residual analysis, spatial-

temporal statistics, super-thinning.

1 Introduction

A major goal in seismology is the ability accurately to anticipate future earthquakes

before they occur (Bolt 2003). Anticipating major earthquakes is especially impor-

tant, not only for short-term response such as preparation of emergency personnel
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and disaster relief, but also for longer-term preparation in the form of building codes,

urban planning, and earthquake insurance (Jordan and Jones 2010). In seismology,

the phrase earthquake prediction has a specific definition: it is the identification of

a meaningfully small geographic region and time window in which a major earth-

quake will occur with very high probability. An example of earthquake predictions

are those generated by the M8 method (Keilis-Borok, et al. 1987), which issues

an alarm whenever there is a suitably large increase in the background seismicity

of a region. Such alarms could potentially be very valuable for short-term disaster

preparedness, but unfortunately examples of M8-type alarms, including the notable

Reverse Tracing of Precursors (RTP) algorithm, have generally exhibited low relia-

bility when tested prospectively, typically failing to outperform naive methods based

simply on smoothed historical seismicity (Geller et al. 1997, Zechar 2008).

Earthquake prediction can be contrasted with the related earthquake forecasting,

which means the assignment of probabilities of earthquakes occurring in broader

space-time-magnitude regions. The temporal scale of an earthquake forecast is more

on par with climate forecasts and may be over intervals that range from decades to

centuries (Hough 2010).

Many models have been proposed for forecasting earthquakes, and since differ-

ent models often result in very different forecasts, the question of how to assess

which models seem most consistent with observed seismicity becomes increasingly

important. Concerns with retrospective analyses, especially regarding data selection,

overfitting, and lack of reproducibility, have motivated seismologists recently to focus

on prospective assessments of forecasting models. This has led to the development

of the Regional Earthquake Likelihood Models (RELM) and Collaborative Study of

Earthquake Predictability (CSEP) testing centers, which are designed to evaluate

and compare the goodness-of-fit of various earthquake forecasting models. This pa-
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per surveys methods for assessing the models in these RELM and CSEP experiments,

including methods currently used by RELM and CSEP and some others not yet in

use but which seem promising.

2 A framework for prospective testing

The current paradigm for building and testing earthquake models emerged from

the working group for the development of Regional Earthquake Likelihood Models

(RELM) in 2001. As described in Field (2007), the participants were encouraged to

submit differing models, in the hopes that the competition between models would

prove more useful than trying to build a single consensus model. The competition

took place within the framework of a prospective test of their seismicity forecasts.

Working from a standardized data set of historical seismicity, scientists fit their mod-

els and submit to RELM a forecast of the number of events expected within each of

many pre-specified spatial-temporal-magnitude bins. The first predictive experiment

required models to forecast seismicity in California between 2006 to 2011 using only

data from before 2006.

This paradigm has many benefits from a statistical perspective. The prospective

nature of the experiments effectively eliminates concerns about overfitting. Further-

more, the standardized nature of the data and forecasts facilitates the comparison

among different models. RELM has since expanded into the Collaborative Study of

Earthquake Predictability (CSEP), a global-scale project to coordinate model devel-

opment and conduct prospective testing according to community standards (Jordan

2006). CSEP serves as an independent entity that provides standardized seismicity

data, inventories proposed models, and publishes the standards by which the models

will be assessed.
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3 Some examples of models for earthquake occurrences

The first predictive experiment coordinated through RELM considered time-independent

spatial point process models, which can be specified by their Papangelou intensity

λ(s), a function of spatial location s. A representative example is the model specified

by Helmstetter et al. (2007) that is based on smoothing previous seismicity. The

intensity function is estimated with an isotropic adaptive kernel

λ(s) =
N∑
i=1

Kd (s− si)

where N is the total number of observed points, and Kd is a power-law kernel

Kd(s− si) =
C(d)

(|s− si|2 + d2)1.5

where d is the smoothing distance, C(d) is a normalizing factor so that the integral

of Kd() over an infinite area equals 1, and | · | is the Euclidean norm. The estimated

number of points within the pre-specified grid cells is obtained by integrating λ(s)

over each cell.

Models of earthquake occurrence that consider it to be a time-dependent process

are commonly variants of the epidemic-type aftershock sequence (ETAS) model of

Ogata (1988, 1998) (see e.g. Helmstetter and Sornette 2003, Ogata et al. 2003, Sor-

nette 2005, Vere-Jones and Zhuang 2008, Console et al. 2010, Chu et al. 2011, Wang

et al. 2011, Werner et al. 2011, Zhuang 2011, Tiampo and Shcherbakov 2012). Ac-

cording to the ETAS model, earthquakes cause aftershocks, which in turn cause more

aftershocks, and so on. ETAS is a point process model specified by its conditional

intensity, λ(s, t), which represents the infinitesimal expected rate at which events are

expected to occur around time t and location s, given the history Ht of the process
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up to time t. ETAS is a special case of the linear, self-exciting Hawkes’ point process

(Hawkes 1971), where the conditional intensity is of the form

λ(s, t|Ht) = µ(s, t) +
∑
ti<t

g(s− si, t− ti;Mi),

where µ(s, t) is the mean rate of a Poisson-distributed background process that may

in general vary with time and space, g is a triggering function which indicates how

previous occurrences contribute, depending on their spatial and temporal distances

and marks, to the conditional intensity λ at the location and time of interest, and

(si, ti,Mi) are the origin times, epicentral locations, and moment magnitudes of ob-

served earthquakes.

Ogata (1998) proposed various forms for the triggering function, g, such as the

following

g(s, t,M) = K(t+ c)−pea(M−M0)(|s|2 + d)−q,

where M0 is the lower magnitude cutoff for the observed catalog.

The parameters in ETAS models and other spatial-temporal point process models

may be estimated by maximizing the log-likelihood,

n∑
i=1

log{λ(si, ti)} −
∫
S

∫
λ(s, t) ds dt.

The maximum likelihood estimator (MLE) of a point process is, under quite

general conditions, asymptotically unbiased, consistent, asymptotically normal, and

asymptotically efficient (Ogata 1978). Finding the parameter vector that maximizes

the log-likelihood can be achieved using any of the various standard optimization
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routines, such as the quasi-Newton methods implemented in the function optim() in

R. The spatial background rate µ in the ETAS model can be estimated in various

ways, such as via kernel smoothing seismicity from prior to the observation window or

kernel smoothing the largest events in the catalog, as in Ogata (1998) or Schoenberg

(2003). Note that the integral term in the loglikelihood function can be cumbersome

to estimate, and an approximation method recommended in Schoenberg (2013) can

be used to accelerate computation of the MLE.

There are of course many other earthquake forecasting models quite distinct from

the two point process models above. Perhaps most important among these are the

Uniform California Earthquake Rupture Forecast (UCERF) models, which are con-

sulted when setting insurance rates and crafting building codes (Field et al., 2009).

They are constructed by soliciting expert opinion from leading seismologists on which

components should enter the model, how they should be weighted, and how they

should interact (Marzocchi and Zechar, 2011). Examples of the components include

slip rate, geodetic strain rates, and paleoseismic data. Note that some seismologists

have argued that evaluating some earthquake forecasting models such as UCERF

using model validation experiments such as RELM and CSEP may be inappropri-

ate, though such a conclusion seems to run counter to basic statistical and scientific

principles.

Although the UCERF models draw upon diverse information related to the geo-

physics of earthquake etiology, commonly used models such as ETAS and its variants

rely solely on previous seismicity for forecasting future events. Many attempts have

been made to include covariates, but when assessed rigorously, most predictors other

than the locations and times of previous earthquakes have been shown not to offer any

noticeable improvement in forecasting. Recent examples of such covariates include

electromagnetic signals (Jackson 1996, Kagan 1997), radon (Hauksson and Goddard
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1981), and water levels (Bakun et al. 2005, Manga and Yang 2007). A promising

exception is moment tensor information, which is now routinely recorded with each

earthquake and seems to give potentially useful information regarding the direction-

ality of the release of stress in each earthquake. However, this information appears

not to be explicitly used presently in models in the CSEP or RELM forecasts.

4 Numerical tests

Several numerical tests were initially proposed to serve as the metrics by which RELM

models would be evaluated (Schorlemmer et al. 2007). For these numerical tests, each

model consists of the estimated number of earthquakes in each of the spatial-temporal-

magnitude bins, where the number of events in each bin is assumed to follow a Poisson

distribution with an intensity parameter equivalent to the forecasted rate.

The L-test (or Likelihood test) evaluates the probability of the observed data under

the proposed model. The numbers of observed earthquakes in each spatial-temporal-

magnitude bin are treated as independent random variables, so the joint probability

is calculated simply as the product of their corresponding Poisson probabilities. This

observed joint probability is then considered with respect to the distribution of joint

probabilities generated by simulating many synthetic data sets from the model. If

the observed probability is unusually low in the context of this distribution, the data

are considered inconsistent with the model.

The N-test (Number) ignores the spatial and magnitude component and focuses

on the total number of earthquakes summed across all bins. If the proposed model

provides estimates λ̂i for i corresponding to each of B bins, then according to this

model, the total number of observed earthquakes should be Poisson distributed with

mean (
∑B

i=1 λ̂i). If the number of observed earthquakes is unusually large or small

relative to this distribution, the data are considered inconsistent with the model.
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The L-test is considered more comprehensive in that it evaluates the forecast in

terms of magnitude, spatial location, and number of events, while the N-test restricts

its attention to the number of events. Two additional data consistency tests were pro-

posed to assess the magnitude and spatial components of the forecasts, respectively:

the M-test and the S-test (Zechar et al. 2010). The M-test (Magnitude) isolates the

forecasted magnitude distribution by counting the observed number of events in each

magnitude bin without regard to their temporal or spatial locations, standardized so

that the observed and expected total number of events under the model agree, and

computing the joint (Poisson) likelihood of the observed numbers of events in each

magnitude bin. As with the L-test, the distribution of this statistic under the forecast

is generated via simulation.

The S-test (Spatial) follows the same inferential procedure but isolates the fore-

casted spatial distribution by summing the numbers of observed events over all times

and over all magnitude ranges. These counts within each of the spatial bins are again

standardized so that the observed and expected total number of events under the

model agree, and then one computes the joint (Poisson) likelihood of the observed

numbers of events in the spatial bins.

The above tests measure the degree to which the observations agree with a partic-

ular model, in terms of the probability of these observations under the given model.

As noted in Zechar et al. (2013), tests such as the L-test and N-test are really tests of

the consistency between the data and a particular model, and are not ideal for com-

paring two models. Schorlemmer et al. (2007) proposed an additional test to allow

for the direct comparison of the performance of two models: the Ratio test (R-test).

For a comparison of models A and B, and given the numbers of observed events in

each bin, the test statistic R is defined as the log-likelihood of the data according to

model A minus the corresponding log-likelihood for model B. Under the null hypoth-
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esis that model A is correct, the distribution of the test statistic is constructed by

simulating from model A and calculating R for each realization. The resulting test

is one-sided and is supplemented with the corresponding test using model B as the

null hypothesis. The T-test and W-test of Rhoades et al. (2011) are very similar

to the R-test, except that instead of using simulations to find the null distribution

of the difference between log-likelihoods, with the T-test and W-test, the differences

between log-likelihoods within each space-time-magnitude bin for models A and B

are treated as independent normal or symmetric random variables, respectively, and

a t-test or Wilcoxon signed rank test, respectively, is performed.

Unfortunately, when used to compare various models, such likelihood-based tests

suffer from the problem of variable null hypotheses and can lead to highly mislead-

ing and even seemingly contradictory results. For instance, suppose model A has a

higher likelihood than model B. It is nevertheless quite possible for model A to be

rejected according to the L-test and model B not to rejected using the L-test. Sim-

ilarly, the R-test with model A as the null might indicate that model A performs

statistically significantly better than model B, while the R-test with model B as the

null hypothesis may indicate that the difference in likelihoods is not statistically sig-

nificant. Seemingly paradoxical results like these occur frequently, and at a recent

meeting of the Seismological Society of America, much confusion was expressed over

such results; even some seismologists quite well versed in statistics referred to results

in such circumstances as “somewhat mixed”, even though model A clearly fit better

according to the likelihood criterion than model B.

The explanation for such results is that the null hypotheses of the two tests are

different: when model A is tested using the L-test, the null hypothesis is model A,

and when model B is tested, the null hypothesis is model B. The test statistic may

have very different distributions under these different hypotheses.
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Unfortunately, these types of discrepancies seem to occur frequently, and hence the

results of these numerical tests may not only be uninformative for model comparison,

but in fact highly misleading. A striking example is given in Figure 4 of Zechar et

al. (2013), where the Shen et al. (2007) model produces the highest likelihood of the

five models considered in this portion of the analysis, and yet under the L-test has

the lowest corresponding p-value of the five models.

5 Functional summaries

Functional summaries, i.e. those producing a function of one variable, such as the

weighted K-function and error diagrams, can also be useful measures of goodness-of-

fit. However, such summaries typically provide little more information than numerical

tests in terms of indicating where and when the model and the data fail to agree, or

how a model may be improved.

The weighted K-function is a generalized version of the K-function of Ripley

(1976), which has been widely used to detect clustering or inhibition for spatial point

processes. The ordinary K function, K(h), counts, for each h, the total number

of observed pairs of points within distance h of one another, per observed point,

standardized by dividing by the estimated overall mean rate of the process, and the

result is compared to what would be expected for a homogeneous Poisson process.

The weighted version, Kw(h) was introduced for the inhomogeneous spatial point

process case by Baddeley et al. (2000), and is defined similarly to K(h), except that

each pair of points (si, sj) is weighted by 1/[λ̂(si)λ̂(sj)], the inverse of the product

of the modeled unconditional intensities at the points si and sj. This was extended

to spatial-temporal point processes by Veen and Schoenberg (2005) and Adelfio and

Schoenberg (2011).

Whereas the null hypothesis for the ordinary K-function is a homogeneous Poisson
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process, in the case of Kw, the weighting allows one to assess whether the degree of

clustering or inhibition in the observations is consistent with what would be expected

under the null hypothesis corresponding to the model for λ̂. While weighted K-

functions may be useful for indicating whether the degree of clustering in the model

agrees with that in the observations, such summaries unfortunately do not appear

to be useful for comparisons between multiple competing models, nor do they accu-

rately indicate in which spatial-temporal-magnitude regions there may be particular

inconsistencies between a model and the observations.

Error diagrams, which are also sometimes called receiver operating characteris-

tic (ROC) curves (Swets 1973) or Molchan diagrams (Molchan 1990; Molchan 1997;

Zaliapin and Molchan 2004; Kagan 2009), plot the (normalized) number of alarms

versus the (normalized) number of false negatives (failures to predict), for each pos-

sible alarm, where in the case of earthquake forecasting models an alarm is defined

as any value of the modeled conditional rate, λ̂, exceeding some threshold. Figure 1

presents error diagrams for two RELM models, Helmstetter et al. (2007) and Shen

et al. (2007) (see Sections 3 and 7 for model details).

The ease of interpretation of such diagrams is an attractive feature, and plotting

error diagrams with multiple models on the same plot can be a useful way to compare

the models’ overall forecasting efficacy. In figure 1 we learn that Shen (2007) slightly

outperforms Helmstetter (2007) when the threshold for the alarm is high, but as the

threshold is lowered Helmstetter (2007) performs noticeably better. For the purpose

of comparing models, one may even consider normalizing the error diagram so that the

false negative rates are considered relative to one of the given models in consideration

as in Kagan (2009). This tends to alleviate a common problem with error diagrams as

applied to earthquake forecasts, which is that most of the relevant focus is typically

very near the axes and thus it can be difficult to inspect differences between the
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Figure 1: Error diagrams for Helmstetter et al. (2007) in blue and Shen et al. (2007) in
orange. Model details are in Sections 3 and 7 respectively.

models graphically. A more fundamental problem with error diagrams, however, is

that while they can be useful overall summaries of goodness-of-fit, such diagrams

unfortunately provide little information as to where models are fitting poorly or how

they may be improved.

6 Residual methods

Residual analysis methods for spatial-temporal point process models produce graph-

ical displays which may highlight where one model outperforms another, or where a

particular model does not ideally agree with the data. Some residual methods, such

as thinning, rescaling, and superposition, involve transforming the point process us-

ing a model for the conditional intensity λ and then inspecting the uniformity of the

result, thus reducing the difficult problem of evaluating the agreement between a pos-

sibly complex spatial-temporal point process model and data to the simpler matter
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of assessing the homogeneity of the residual point process. Often, departures from

homogeneity in the residual process can be inspected by eye, and many standard tests

are also available. Other residual methods, such as pixel residuals, Voronoi residuals,

and deviance residuals result in graphical displays that can quite directly indicate

locations where a model appears to depart from the observations, or where one model

appears to outperform another in terms of agreement with the data.

6.1 Thinned, superposed, and superthinned residuals

Thinned residuals are based on the technique of random thinning, which was first

introduced by Lewis (1979) and Ogata (1981) for the purpose of simulating spatial-

temporal point processes, and extended for the purpose of model evaluation in Schoen-

berg (2003). The method involves keeping each observed point (earthquake) indepen-

dently with probability b/λ̂(si, ti), where b = inf
(s,t)∈S

{λ̂(s, t)}, and λ̂ is the modeled

conditional intensity. If the model is correct, i.e. if the estimate λ̂(s, t) = λ(s, t) al-

most everywhere, then the residual process will be homogeneous Poisson with rate b

(Schoenberg 2003). Because the thinning is random, each thinning is distinct, and one

may inspect several realizations of thinned residuals and analyze the entire collection

to get an overall assessment of goodness-of-fit, as in Schoenberg (2003).

An antithetical approach was proposed by Bremaud (1981), who suggested super-

posing a simulated point process onto an observed point process realization so as to

yield a homogeneous Poisson process. As indicated in Clements et al. (2012), tests

based on thinned or superposed residuals tend to have low power when the model λ̂

for the conditional intensity is volatile, which is typically the case with earthquake

forecasts since earthquakes tend to be clustered in particular spatial-temporal regions.

Thinning a point process will lead to very few points remaining if the infimum of λ̂

over the observed space is small (Schoenberg 2003), while in superposition, the sim-
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ulated points, which are by construction approximately homogeneous, will form the

vast majority of residual points if the supremum of λ̂ is large.

A hybrid approach called super-thinning was introduced in Clements et al. (2012).

With super-thinning, a tuning parameter k is chosen, and one thins (deletes) the ob-

served points in locations of space-time where λ̂ > k, keeping each point independently

with probability k/λ̂(s, t), and superposes a Poisson process with rate λ̂(s, t)/k where

λ̂ < k. When the tuning parameter k is chosen wisely, the method appears to be

more powerful than thinning or superposing in isolation.

6.2 Rescaled residuals

An alternative method for residual analysis is rescaling. The idea behind rescaled

residuals dates back to Meyer (1971), who investigated rescaling temporal point pro-

cesses according to their conditional intensities, moving each point ti to a new time
ti∫
0

λ̂(t) dt, creating a transformed space in which the rescaled points are homogeneous

Poisson of unit rate. Heuristically, the space is essentially compressed when λ̂ is small

and stretched when λ̂ is large, so that the points are ultimately uniformly distributed

in the resulting transformed space, if the model for λ̂ is correct. This method was

used in Ogata (1988) to assess a temporal ETAS model and extended in Merzbach

and Nualart (1986), Nair (1990), Schoenberg (1999) and Vere-Jones and Schoenberg

(2004) to the spatial and spatial-temporal cases. Rescaling may result in a trans-

formed space that is difficult to inspect if λ̂ varies widely over the observation region,

and in such cases standard tests of homogeneity such as Ripley’s K-function may be

dominated by boundary effects, as illustrated in Schoenberg (2003).

6.3 Pixel residuals

A different type of residual analysis which is more closely analogous to standard

residual methods in regression or spatial statistics is to consider the (standardized)
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differences between the observed and expected numbers of points in each of vari-

ous spatial or spatial-temporal pixels or grids, producing what might be called pixel

residuals. These types of residuals were described in great detail by Baddeley et al.

(2005) and Baddeley et al. (2008). More precisely, the raw pixel residual on each pixel

Ai is defined as N(Ai) −
∫
λ̂(s, t)dt ds, where N(Ai) is simply the number of points

(earthquakes) observed in pixel Ai (Baddeley et al. 2005). Baddeley et al. (2005) also

proposed various standardizations including Pearson residuals, which are scaled in

relation to the standard deviation of the raw residuals: ri =
N(Ai)−

∫
λ̂(s,t) dt ds√∫

λ̂(s,t) dtds
.

A problem expressed in Wong et al. (2013) is that if the pixels are too large, then

the method is not powerful to detect local inconsistencies between the model and

data, and places in the interior of a pixel where the model overestimates seismicity

may cancel out with places where the model underestimates seismicity. On the other

hand, if the pixels are small, then the majority of the raw residuals are close zero

while those few that corrspond to pixels with an earthquake are close to one. In

these situations where the residuals have a highly skewed distribution, the skew is

only intensified by the standardization to Pearson residuals. As a result, plots of the

both the raw and the Pearson residuals are not informative, and merely highlight the

pixels where earthquakes occur regardless of the fit of the model. The raw or Pearson

residuals may be smoothed, as in Baddeley et al. (2005), but such smoothing typically

only reveals gross, large-scale inconsistencies between the model and data.

If one is primarily interested in comparing competing models, then instead one

may plot, in each pixel, the difference between log-likelihoods for the two models, as

in Clements et al. (2011). The resulting residuals may be called deviance residuals,

in analogy with residuals from logistic regression and other generalized linear mod-

els. Deviance residuals appear to be useful for comparing models on grid cells and

inspecting where one model appears to fit the observed earthquakes better than the
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other. It remains unclear how these residuals may be used or extended to enable

comparisons of more than two competing models, other than by comparing two at a

time.

6.4 Voronoi residuals

One method of addressing the problem of pixel size specification is to use a data-

driven, spatially adaptive partition such as the Voronoi tessellation, as suggested in

Wong et al. (2013). Given n observed earthquakes, one may obtain a collection of

n Voronoi cells A1, ..., An, where Ai is defined as the collection of spatial-temporal

locations closer to the particular point (earthquake) i than to any of the other observed

points (Okabe et al. 2000). Thus N(Ai) = 1 for each cell Ai. One may then compute

the corresponding standardized residuals ri =
1−

∫
λ̂(s,t) dtds√∫
λ̂(s,t) dtds

over the Voronoi cells Ai.

As with pixel residuals, for each Voronoi cell one may choose to plot the raw residual,

or the residual deviance if one is interested in comparing competing models. Voronoi

residuals are shown in Wong et al. (2013) to be generally less skewed than pixel

residuals and are approximately Gamma distributed under quite general regularity

conditions.

7 Examples

In the present section we apply some of the residual methods discussed above to

models and seismicity data from the 5-year RELM prediction experiment that ran

from 2006 to 2011. The original experiment called for modelers to estimate the

number of earthquakes above magnitude 4.95 that would occur in many pre-specified

spatial bins in California. During this time period only 23 earthquakes that fit these

criteria were recorded, a fairly small data set from which to assess a model. In order

to better demonstrate the methods available in residual analysis, the models that we

consider were recalibrated using their specified magnitude distributions to forecast
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earthquakes of greater than magnitude 4.0, of which there are 232 on record.

The first model under consideration is one that was submitted to RELM by Helm-

stetter et al. (2007) and is described in section 3. The left panel of Figure 2 shows the

estimated number of earthquakes in every pixel in the greater California region that

were part of the prediction experiment. Pixels shaded very light gray have a forecast

of near zero earthquakes while pixels shaded black forecast much greater seismicity.

The tan circles are the epicenters of the 232 earthquakes in the catalog, many of which

are concentrated just South of the Salton Sea, near the border between California and

Mexico.

The extent to which the observed seismicity is in agreement with the forecast can

be visualized in the raw pixel residual plot (center panel). The pixels are those estab-

lished by the RELM experiment. Pixels where the model predicted more events than

were observed are shaded in red; pixels where there was underprediction are shown in

blue. The degree of color saturation indicates the p-value of the observed residual in

the context of the forecasted Poisson distribution. Thus while the Helmstetter et al.

(2007) model greatly underpredicted the number of events in the Salton Sea trough

(dark blue), it also forecasted a high level of seismicity in several isolated pixels that

experienced no earthquakes (dark red). The majority of the pixels are shaded very

light red, indicating regions where the model forecast a very low rate of seismicity

and no earthquakes were recorded.

The Voronoi residual plot for the Helmstetter et al. (2007) model is shown in the

right panel of Figure 2. The spatial adaptivity of this partition is evidenced by the

small tiles in regions of high point density and larger tiles in low density regions.

The region of consistent underprediction in the Salton Sea trough is easily identified.

Unlike the raw pixel residual plot, the Voronoi plot appears to distinguish between

areas where the high isolated rates can be considered substantial overprediction (dark
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red) and areas where, considered in the context of the larger tile, the overprediction

is less extreme (light red).

In Figure 3 we assess how well the Helmstetter et al. (2007) model performs

relative to another model in RELM using deviance residuals. The Shen et al. (2007)

model is notable for utilizing geodetic strain-rate information from past earthquakes

as a proxy for the density (intensity) of the process. µ() is then an interpolation of

this data catalog. The result is a forecast that is generally much smoother than the

Helmstetter et al. (2007) forecast, as seen in the left panel of Figure 3. The center

panel displays the deviance residuals for the Helmstetter et al. (2007) model relative

to the Shen et al. (2007) model. The color scale is mapped to a measure of the

comparative performance of the two models ranging from 1 (dark blue) indicating

better performance of the Helmstetter et al. (2007) model to -1 (dark red) indicating

better performance of the Shen et al. (2007) model. This deviance residual plot

reveals that the Helmstetter et al. (2007) model’s relative advantage is in broad areas

off of the main fault lines where the forecast was lower and there were no recorded

earthquakes. It appeared to fit worse than the Shen et al. (2007) model, however,

just West of the Salton Sea trough region of high seismicity, in a swath off the coast,

and in isolated pixels in central California.

The Voronoi deviance plot (right panel) identifies the same relative underperfor-

mance of the Helmstetter et al. (2007) model relative to the Shen et al. (2007) model

in the central California region and off the coast and is a bit more informative in

the areas of higher recorded seismicity. In the Salton Sea trough region, just south

of the border of California with Mexico, the Helmstetter et al. (2007) model appears

to outperform the Shen et al. (2007) model in a vertical swath on the Western side

of the seismicity, while the results on the Eastern side are more mixed. While these

regions appear nearly white in the pixel deviance residual plot, suggesting roughly
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equivalent performance of the models, the aggregation of many of those pixels in the

Voronoi plot allows for a stronger comparison of the two models.

The utility of residual methods can be seen by contrasting the residual plots with

the error diagram of these same two models (Figure 1 in section 5). While the error

diagram and other functional summaries collapse the model and the observations into

a new measure (such as the false negative rate), residual methods preserve the spatial

referencing, which can help inform subsequent model generation.
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Figure 2: (a) Estimated rates under the Helmstetter et al. (2007) model, with epicentral
locations of observed earthquakes with M ≥ 4.0 in Southern California between
January 1, 2006 and January 1, 2011 overlaid. (b) Raw pixel residuals for
Helmstetter et al. (2007) with pixels colored according to their corresponding
p-values. (c) Voronol residuals for Helmstetter et al. (2007) with pixels colored
according to their corresponding p-values.
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Figure 3: (a) Estimated rates under the Shen et al. (2007) model, with epicentral locations
of observed earthquakes with M ≥ 4.0 in Southern California between January
1, 2006 and January 1, 2011 overlaid. (b) Pixel deviance plot with blue favoring
model A, Helmstetter et al. (2007), versus model B, Shen et al. (2007). Col-
oration is on a linear scale. (c) Voronoi deviance plot with blue favoring model
A, Helmstetter et al. (2007), versus model B, Shen et al. (2007). Coloration is
on a linear scale.

8 Discussion

The paradigm established by RELM and CSEP is a very promising direction for

earthquake model development. In addition to requiring the full transparent speci-

fication of earthquake forecasts before the beginning of the experiment, the criteria

on which these models would be evaluated, namely, the L, N , and R tests, was also

established. As the first RELM experiment proceeded, it became apparent that these

tests can be useful summaries of the degree to which one model appears to agree with

observed seismicity, but that they leave much to be desired. They are not well-suited

to the purpose of comparing the goodness-of-fit of competing models or to suggest

where models may be improved. It is worth noting that numerical tests such as the

L-test, can be viewed as examples of scoring rules (see Gneiting and Raftery, 2007),

and developing research on scoring rules may result in numerical tests of improved

power and efficiency.
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Future prediction experiments will allow for the implementation of more useful

assessment tools. Residuals methods, including superthinned, pixel, and Voronoi

residuals, seem ideal for comparison and to see where a particular model appears to

overpredict or underpredict seismicity. Deviance residuals are useful for comparing

two competing models and seeing where one appears to outperforms another in terms

of agreement with the observed seismicity. These methods are particularly useful in

the CSEP paradigm, as insight gained during one prediction experiment can inform

the building of models for subsequent experiments.

A note of caution should be made concerning the use of these model assessment

tools. It is common to estimate the intensity function non-parametrically, for example

using a kernel smoother. If the selection of the tuning parameter is done while simul-

taneously assessing the fit of the resulting models, this will likely lead to a model that

is overfitted. A simple way to avoid this danger is to have a clear separation between

the model fitting stage and the model assessment stage, as occurs when models are

developed for prospective experiments.

Although the best fitting models for forecasting earthquake occurrences involve

clustering and are thus highly non-Poissonian, it is unclear whether the Poisson as-

sumption implicit in the evaluation of these models in CSEP or RELM has anything

more than a negligible impact on the results. Since the quadrats used in these forecast

evaluations are rather large, the dependence between the numbers of events occur-

ring in adjacent pixels may be slight after accounting for inhomogeneity. Further, a

departure from the Poisson distribution for the number of events occurring within a

given cell would typically have similar impacts on competing forecast models and thus

have little noticeable effect when it comes to evaluation of the relative performance of

competing models. Nonetheless, further study is needed to clarify the importance of

this assumption in the CSEP model evaluation framework. An alternative approach
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to the Poisson model would be to require that modelers provide not only the expected

number of earthquakes within each bin, but also the joint probability distribution of

counts within the bins.

Although this paper has focused on assessment tools for earthquake models, there

is a wide range of point process models to which these methods can be applied.

Superthinned residuals and the K-function have been useful in assessing models of

invasive species (Balderama et al. 2012). Other recent examples, such as the use of

functional summaries in a study of infectious disease, can be found in Gelfand et al.

(2010).
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