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Point processes, temporal

A temporal point process is a random process whose
realizations consist of the timesf�jg, �j 2 �, j D
0,š1,š2, . . . of isolated events scattered in time. A
point process is also known as a counting process or
a random scatter. The times may correspond to events
of several types.

Figure 1 presents an example of temporal point
process data. The figure actually provides three dif-
ferent ways of representing the timing of floods
on the Amazon River near Manaus, Brazil, dur-
ing the period 1892–1992 (see Hydrological ex-
tremes) [7].

The formal use of the concept of point process has
a long history going back at least to the life tables
of Graunt [14]. Physicists contributed many ideas in
the first half of the twentieth century; see, for ex-
ample, [23]. The book by Daley and Vere-Jones [11]
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Figure 1 Floods on the Amazon River near Manaus,
Brazil, during the years 1892–1992. (a) Amazon floods –
cumulative count; (b) dates of floods; (c) intervals between
floods

is an encyclopedic account of the theory of the
subject.

Examples

Examples of point processes abound in the
environment; we have already mentioned times
of floods. There are also times of earthquakes,
fires, deaths, accidents, hurricanes, storms (hale,
ice, thunder), volcanic eruptions, lightning strikes,
tornadoes, power outages, chemical spills (see
Meteorological extremes; Natural disasters).

Questions

The questions that scientists ask involving point
process data include the following. Is a point pro-
cess associated with another process? Is the associ-
ation between two point processes actually causal?
Is there a change or trend in time (see Trend,
detecting)? Does the structure change (seeChange,
detecting)? Are the times clustered? Are the times
repelled from each other? What is the predicted
behavior? What is the risk (probability) of some
event of negative consequence occurring at some
future time (see Risk assessment, probabilistic)?
How does one learn or describe the relationship of
such processes? How does one carry out system
identification?

Representations

A number of methods are used for the representation
of point processes and of point process data. The
figure shows three types of displays. The represen-
tations include:

ž step function

N�t� D #f0< �j � tg �1�

ž generalized function(involving the Dirac delta
function)

dN�t�

dt
D

∑
j

υ�t � �j� �2�

ž counting measure

N�I� D #f�j 2 Ig �3�
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ž binary time series

dN�t� D
{

1, if some point in (t, tC dt]
0, otherwise

�4�

(one might also writeN�dt� or N�t, t C dt] here)
ž interevent intervalsfXjg

Xj D �jC1 � �j �5�

assuming�jC1 � �j are on non-negative. In these
expressions #fAg refers to the number of elements
in the setA.

Distinctions

There are a variety of distinctions that may be made
concerning types of point processes. A process may
be either deterministic or stochastic. In the determin-
istic case the values�j are fixed. In the latter case
(see Stochastic process) the process is determined
by a consistent collection of probabilities such as

PrfN�I1� D n1, . . . , N�IK� D nKg,
K D 1, 2, . . . �6�

where theIk are Borel sets of the real line.
A process may be stationary, i.e. the time or

space origin does not matter. A process may be
mixing, i.e. distant values are only weakly related
probabilistically. Points of the processes may be
clumped together, i.e. clustered, or they may be
repelled. In many cases a process is orderly, i.e. the
points occurring are isolated.

Parameters

A variety of parameters provide useful descriptors of
stochastic point processes. These include moments
such as the rate

EfdN�t�g
dt

�7�

the auto-intensity

EfdN�t C u�dN�t�g
dt du

�8�

and the conditional rate

PrfdN�t C u� D 1jdN�t� D 1g
du

�9�

functions. In the stationary case these functions
will not depend ont. The first two generalize to
product densitiespK�Ð�, K D 1, 2, . . ., giving the
relative probabilities with which the points of interest
are distributed at prespecified locations in time.
Specifically

PrfdN�t1� D 1, . . . , dN�tK� D 1g
D pK�t1, . . . , tK�dt1 . . .dtK �10�

for the tk distinct andK D 1, 2, . . ..
Under weak conditions, including being orderly,

a point process is characterized by its conditional or
complete intensity function,��Ð�, as in

PrfdN�t� D 1jHtg D ��tjHt�dt �11�

whereHt is the historyHt D f�j � tg.
Another general way to define an (orderly) point

process is via its zero probability function, that is

��I� D PrfN�I� D 0g for boundedI �12�

Specific Point Processes

There are a number of important point processes that
arise in both theory and practice.

The renewal processhas the property that the
intervals between successive points are independent
and identically distributed positive random variables.

The Poisson process has a variety of definitions.
One is that the conditional intensity function is
constant. Another is that the countsN�I1�, . . . , N�IK�
of points in disjoint intervalsIk are independent
Poisson variates with consistent expected valuesK D
2, 3, . . .. A Poisson process is characterized by its rate
function.

For thedoubly stochastic Poisson processa non-
negative random rate process in continuous time is
first realized. Then a Poisson process with that rate
function is generated.

For acluster processthere is a sequence of cluster
centersf�jg, then further point processesfujk, k D
1, 2, . . .g are generated for eachj. The cluster process
then consists of the timesf�j C ujkg (see Poisson
cluster process).

The Neyman–ScottandBartlett–Lewis processes
are particular cases of the cluster process. In the
former theujk are independent and identically dis-
tributed. In the latter thefujkg are renewal processes
having the�j as points of origin.
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Operations on Point Processes

There is a calculus or algebra for manipulating point
processes. This involves functions of realizations of
basic processes. The operations may be applied by
nature or by an analyst. One might consider, for
example, a linear functional of a point process such as

∫
log �t�dN�t� �13�

for some function �Ð�.
In the operation ofsuperpositionseveral processes

are involved. In the superposed process the identity
of each process is ignored and the times retained. If
there are two processesM andN, then the superposed
process isMCN with the count of points in the set
I given byM�I�CN�I�.

A point process may bethinned. In this operation
points are deleted randomly.

Time substitutionsare useful. What is involved
is that a processM is converted to a processN
by writing N�t� D M[�t�] for some nondecreasing,
possibly random, function�Ð�. Through such a
substitution, general processes may be derived from
a homogeneous Poisson process.

Another operation is random translation. Here the
points of the process are shifted

f�jg ! f�j C εjg �14�

with the fεjg taken as random.
There arepoint process systemswhere a point

process input is carried into a point process output.
The mechanism is typically stochastic; see [5]. Ran-
dom translation as illustrated by (14) provides an
example. Another example is provided by a model
satisfying

PrfdN�t� D 1jMg
dt

D �C
∫
a�t � u�dM�u� �15�

when the input point process isM. This provides a
point process analog of thelinear model.

The expression (13) is the basis of the probability
generating functional. This is defined as

G[ ] D E exp
{∫

log �t�dN�t�
}

�16�

and is a useful tool for developing properties of a
process; see [22].

Inference

There is now a fairly extensive literature concerning
inference for point processes. One may refer to the
various books listed at the end of this entry.

In particular large sample properties of histogram
type estimates of product densities are developed
in [4]. Nearest neighbor methods are studied in [13].
In the case of the conditional cross rate function

PrfdN�t C u� D 1jdM�t� D 1g
du

�17�

a histogram type estimate is provided by

#fj�k � �j � uj < b/2g
bM�T�

�18�

where the termsM�T� �j come from the processM,
the �j come fromN, andb is a binwidth parameter.
This estimate may be computed exceedingly rapidly.
Its distribution is approximately proportional to a
Poisson when the point process (M, N) is stationary
and mixing.

There are a variety of usefulstatistical models.
One may mention the Hawkes process where the
conditional intensity function is given by [16]

��tjHt� D �C
∫ 1

0
a�t � u�dN�u� �19�

There are models containing explanatory variables.
The latter are useful for dealing with nonstationary
processes for example. One means of constructing
them is by multiplying an elementary conditional
intensity function by a function of some given
functional form.

The likelihood may be set down given an
expression for the conditional intensity function. The
result is

L�!� D
∏
j

���jj!�exp
{

�
∫ T

0
��tj!�dt

}
�20�

where the available data values are the pointsf�jg
observed in the time interval (0,T] and where! is
an unknown parameter. Large sample properties of
estimates obtained by maximizingL�!� are developed
in [12].

There areresidual analyses; see [19] and [20].
There are limit theorems leading to useful approx-

imations for the distributions of statistics; e.g. the
superposition of many processes often leads to the
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Poisson process. There are frequency domain analy-
ses [6, 19].

There are point process analogs of many of the
concepts oftime series; see [6]. For example, expres-
sion (8) provides a point process analog of the auto-
covariance function of zero mean time series analysis.
Surprisingly the point process case is often simpler.
The parameters may have more basic interpretations,
e.g. as probabilities. In various circumstances one can
use programs developed forbinary data to (approx-
imately) analyze point process data.

Continuous time series can lead to a point process.
For example, there is the series of times of crossing
a given threshold; see [18]. One can also consider
the process of times of extreme values (seeExtreme
value analysis).

Extensions

Aalen [1] (see also [2]) recognized the utility in
survival analysis of considering a vector of point
processes whose components had but one event. This
idea has been developed extensively.

There are now a variety of extensions of the
concept of point process as discussed above. The
domain of the process may be�p or more general,
e.g. elements in a function space. There are marked
point processes whose realizations have the form
f�j,Mjg. When the marks are real-valued the process
may be represented as∑

j

Mjυ�t � �j� �21�

There are time series,fY�t� D ∫
a�t � u�dN�u�g, cre-

ated by taking a point processN as a building block.
There are graphical models in which the nodal vari-
ables are point processes [8]. There are hybrid pro-
cesses,fY��j�g, arising by sampling signals.

Some Books

A number of books have been written on the subject
of point processes. These include: [2], [3], [9]–[11],
[15], [17] and [21].
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(See alsoPoint processes, dynamic; Point pro-
cesses, spatial; Point processes, spatial–temporal;
Waiting time).
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