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Point processes tempora] is an encyclopedic account of the theory of the

subject.

A temporal point process is a random process whose
realizations consist of the timei;}, 7; € R, j= Examples
0, +£1, +£2, ... of isolated events scattered in time. A Examples of point processes abound in the

int pr is also known nting pr . ; .
POINT Process 1S also kNown as a counting process 0enwronment; we have already mentioned times

a random scatter. The times may correspond to eventgf floods. There are also times of earthquakes

of Is;_averal{ypes. ¢ le of t | .tfires, deaths, accidents, hurricanes, storms (hale,
\gure 1 presents an example of temporal poin ice, thunder), volcanic eruptions, lightning strikes,

process data. The figure qctually pr_ov_ldes three d'f'tornadoes, power outages, chemical spillseg
ferent ways of representing the timing of floods

. . Meteorological extremes; Natural disasters).
on the Amazon River near Manaus, Brazil, dur- 9 )

ing the period 1892-1992sée Hydrological ex-
tremes) [7]. Questions
The formal use of the concept of point process has

a long history going back at least to the life tables The questions that scientists ask involving point

of Graunt [14]. Physicists contributed many ideas inprocess data include the following. Is a point pro-

the first half of the twentieth century; see, for ex- cess associated with another process? Is the associ-

ample, [23]. The book by Daley and Vere-Jones [11]ation between two point processes actually causal?
Is there a change or trend in timeseg Trend,
detecting)? Does the structure changseé Change,

20 detecting)? Are the times clustered? Are the times
15 repelled from each other? What is the predicted
10 behavior? What is the risk (probability) of some
event of negative consequence occurring at some
5 future time 6ee Risk assessment, probabilistic)?
. How does one learn or describe the relationship of
(@ 1900 1920 1940 1960 1980 such processes? How does one carry out System
Time (year) identification?
2.0
15 .
1o Representations
05 A number of methods are used for the representation
of point processes and of point process data. The
00 figure shows three types of displays. The represen-
. 1900 1920 1940 1960 1980 9t : ) yp piays. P
(b) Time (year) tations include:
20 e step function
15 NO)=#0<1; <t} 1)
10
5 ' e generalized function(involving the Dirac delta
L ’ 1] ‘ . ; ‘ function)
5 10 15 20 dN ()
© Index e ; 8(t — 1)) )

Figure 1 Floods on the Amazon River near Manaus,

Brazil, during the years 1892-1992. (a) Amazon floods —e counting measure

cumulative count; (b) dates of floods; (c) intervals between

floods NUI)=#rt;el} 3)
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e binary time series functions. In the stationary case these functions
) o will not depend onz. The first two generalize to
dN (1) = {15 if some point in (, 7 + di] (4)  product densitiesp, (), K =1,2,..., giving the
0, otherwise relative probabilities with which the points of interest
are distributed at prespecified locations in time.

ight also writeV(dr) or N(z, t + dr] h i
(one might also writeV (dr) or N(z, ¢ + d] here) Specifically

e interevent intervalgX ;}
Pr{dN(r1) =1,...,dN(g) = 1}

=pK(tl,...,t[()dtl...dtK (10

Xj=1tjy1—7j 5)

assumingz; 1 — 7; are on non-negative. In these

expressions {} refers to the number of elements for thez distinct andk = 1,2, .. ..
in the setA. Under weak conditions, including being orderly,
a point process is characterized by its conditional or
complete intensity functiony(-), as in
Distinctions
PridN(t) = 1|H} = pu(t|H ;) dt (11
There are a variety of distinctions that may be made ) )
concerning types of point processes. A process may'NereH; is the historyH, = {z; < 1}. .
be either deterministic or stochastic. In the determin- Another general way to define an (orderly) point
istic case the values; are fixed. In the latter case ProCcess is via its zero probability function, that is

(see Stochastic process) the process is determined 1) = PHN(I) = 0! for bounded’ 12
by a consistent collection of probabilities such as ) WD } (12)

PAN(I1) = n1, ..., NUg) = nk}, Specific Point Processes

K=12... ©) There are a number of important point processes that

where thel; are Borel sets of the real line. arise in both theory and praciice.
A process may be stationary, i.e. the time or. The renewal processhas the property that the

S intervals between successive points are independent
space origin does not matter. A process may be

- : . and identically distributed positive random variables.
mixing, i.e. distant values are only weakly related : . .
i . The Poisson process has a variety of definitions.
probabilistically. Points of the processes may be : o . . L
. One is that the conditional intensity function is
clumped together, i.e. clustered, or they may be .
. . constant. Another is that the coums$/,), ..., N(Ig)
repelled. In many cases a process is orderly, i.e. thef ; in disioint i | ind q
oints occurring are isolated of points in disjoint intervals/; are independent
P ' Poisson variates with consistent expected vakies
2,3, .... APoisson process is characterized by its rate
function.

For thedoubly stochastic Poisson proceasnon-

A variety of parameters provide useful descriptors ofN€gative random rate process in continuous time is

stochastic point processes. These include momentd'st realized. Then a Poisson process with that rate
such as the rate function is generated.

Parameters

E{dN (1)} - For acluster processhere is a sequence of cluster
dr ) centers{o;}, then further point processds i, k =

the auto-intensity 1,2..) are generated_for eaghThe cluster process
then consists of the timegr; + uj} (see Poisson

E{dN (t + u) dN (r)} cluster process).
dr du ®) The Neyman—Scotand Bartlett—Lewis processes
. are particular cases of the cluster process. In the
and the conditional rate former theu; are independent and identically dis-
PH{dN(z + u) = 1|dN(r) = 1} tributed. In the latter theéu ;} are renewal processes

du © having theo; as points of origin.
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Operations on Point Processes Inference

There is a calculus or algebra for manipulating point There is now a fairly extensive literature concerning
processes. This involves functions of realizations ofinference for point processes. One may refer to the
basic processes. The operations may be applied byarious books listed at the end of this entry.
nature or by an analyst. One might consider, for In particular large sample properties of histogram
example, a linear functional of a point process such agype estimates of product densities are developed
in [4]. Nearest neighbor methods are studied in [13].
/Iog () dN (1) (13)  Inthe case of the conditional cross rate function

PrHdN (s + u) = 1|dM (¢) = 1} 1
for some functiony(-). du an
In the operation ofuperpositiorseveral processes . . . .
are involved. In the superposed process the identitya histogram type estimate is provided by
of each process is ignored and the times retained. If #Hloe —oj —ul < b/2}
there are two processas andN, then the superposed
. . e S bM(T)

process isV + N with the count of points in the set

I given byM () + N(I). where the term3/(T) o; come from the proces¥,

A point process may bthinned In this operation the 7; come fromN, andb is a binwidth parameter.
points are deleted randomly. This estimate may be computed exceedingly rapidly.

Time substitutionsare useful. What is involved Its distribution is approximately proportional to a
is that a process/ is converted to a procesy ~ Poisson when the point procesd (V) is stationary
by writing N(r) = M[A(¢)] for some nondecreasing, and mixing.

(18

possibly random, functionA(-). Through such a There are a variety of usefudtatistical models
substitution, general processes may be derived fron€ may mention the Hawkes process where the
a homogeneous Poisson process. conditional intensity function is given by [16]

Another operation is random translation. Here the 00
points of the process are shifted u(tlHy) = p +/o a(t—uw)dN@) (19

{tj} = {rj + ¢} (14)  There are models containing explanatory variables.

) The latter are useful for dealing with nonstationary

with the {¢;} taken as random. processes for example. One means of constructing

There arepoint process systemwhere a point them is by multiplying an elementary conditional
process input is carried into a point process outputintensity function by a function of some given
The mechanism is typically stochastic; see [5]. Ran-fynctional form.
dom translation as illustrated by (14) provides an  The likelihood may be set down given an
example. Another example is provided by a modelexpression for the conditional intensity function. The
satisfying result is

Pr{dN(t) = 1|M T
% =+ /a(t —u)dMw) (15 L®) = Hu(rjle) exp{—/O w(t|0) dt} (20)
J

when the input point process M. This provides a
point process analog of tHenear model.

The expression (13) is the basis of the probability
generating functional. This is defined as

where the available data values are the pointg
observed in the time interval (@] and whered is
an unknown parameter. Large sample properties of
estimates obtained by maximizidgd) are developed
in [12].
Gly] = Eexp{/log I/f(l)d]\/(t)} (16) There areresidual analyses; see [19] and [20].
There are limit theorems leading to useful approx-

and is a useful tool for developing properties of aimations for the distributions of statistics; e.g. the
process; see [22]. superposition of many processes often leads to the
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Poisson process. There are frequency domain analyi2]
ses [6, 19].

There are point process analogs of many of the
concepts ofime series; see [6]. For example, expres- 3]
sion (8) provides a point process analog of the autor,
covariance function of zero mean time series analysis.
Surprisingly the point process case is often simpler.
The parameters may have more basic interpretations,
e.g. as probabilities. In various circumstances one caifp]
use programs developed fbmary data to (approx-
imately) analyze point process data.

Continuous time series can lead to a point process[.e]
For example, there is the series of times of crossing
a given threshold; see [18]. One can also consider
the process of times of extreme valugséExtreme  [7]
value analysis).

) [8]
Extensions

Aalen [1] (see also [2]) recognized the utility in [9]
survival analysis of considering a vector of point
processes whose components had but one event. Thi0l
idea has been developed extensively.

There are now a variety of extensions of the
concept of point process as discussed above. The
domain of the process may R’ or more general, 15
e.g. elements in a function space. There are marked
point processes whose realizations have the form
{rj, M;}. When the marks are real-valued the process

[11]

may be represented as [13]
> Mt — 1)) (21)

; [14]

There are time serie$Y (t) = [a(t — u)dN(w)}, cre-  [15]

ated by taking a point proceasas a building block.
There are graphical models in which the nodal vari-16]
ables are point processes [8]. There are hybrid pro-
cesses{Y (r;)}, arising by sampling signals.

[17]

Some Books 18]

A number of books have been written on the subject
of point processes. These include: [2], [3], [9]-[11], [19]
[15], [17] and [21].
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