
Inverting Dirichlet Tessellations

Frederic Paik Schoenberg1 Thomas Ferguson1 Cheng Li2

1 Department of Statistics, University of California, Los Angeles, CA 90095–1554, USA.

2 Department of Statistics, Harvard University, Cambridge, MA 02138, USA.

Corresponding author: Frederic Paik Schoenberg

phone: 310-794-5193

fax: 310-472-3984

email: frederic@stat.ucla.edu

Postal address: UCLA Dept. of Statistics

8142 Math-Science Building

Los Angeles, CA 90095–1554, USA.

1

Abstract

Given a collection of points in the plane, one may draw a cell around each point in

such a way that each point’s cell is the portion of the plane consisting of all locations

closer to that point than to any of the other points. The resulting geometric figure is

called a Dirichlet tessellation. An algorithm for obtaining the boundaries of the cells

given the points was derived by Green and Sibson in 1978. Here, methods are described

for obtaining the locations of the points, given only the cell boundaries.

Key words: tessellation, Dirichlet, Voronoi, inversion, detection, recognition.

1 Introduction.

Suppose n points {P1, P2, ..., Pn} are distributed within some metric space S. The Voronoi

tessellation corresponding to these points is constructed simply by dividing up the space S

into n distinct cells, where cell i consists of all locations in S which are closest to point Pi.

That is, cell i is defined via:

Ti := {X : d(X, Pi) < d(X, Pj) for j 6= i}, (1)

where d denotes a distance function (typically Euclidean distance). In the special case

where the space S is the plane R2 or a portion thereof, the tessellation is called a Dirichlet

tessellation. An illustration is provided in Figure 1. The following intuitive description

is provided in [1]: “One might think of the points as being the locations of the lairs of

competitive predators of equal strength; the region associated with each point is then the

area available to the corresponding predator.” Dirichlet tessellations have thus been applied

in describing populations of species; see e.g. chapter 8.6 of [2].

2

Chapter 1.2 of [3] provides a survey of the historical development of Dirichlet tessellations,

including early applications in diverse fields such as crystallography, ecology, meteorology,

epidemiology, linguistics, economics, archaeology and astronomy, dating back to Descartes

in the early 17th century. References to numerous further examples are given in chapter

10.2 of [4], including examples in forestry, communication theory, geology, metallography

and zoology, and chapter 5.3 of [3] summarizes recent applications in a wide assortment of

disciplines.

To distinguish the locations {P1, . . . , Pn} that determine the tessellation from any other

points, in what follows we will call these n points spots.

Given a collection of spots {P1, . . . Pn} in the plane, the algorithm of Green and Sibson

[1] (extended in [5] to the multidimensional case) provides a computationally efficient means

of constructing the resulting Dirichlet tessellation. The problem addressed here is that of

inverting the Green-Sibson algorithm. That is, given the segments demarking the edges of

cells in a planar tessellation, we seek to obtain the spots {P1, ..., Pn}.

Such an inversion may be useful for a variety of problems. In the territorial context,

for instance, one may wish to estimate the locations of the lairs given the borders outlining

each predator’s territory. Another reason one may be interested in inverting a Dirichlet

tessellation is for image compression. A broad range of piecewise constant images may

be roughly approximated by Dirichlet tessellations; in fact several algorithms for image

compression (e.g. [6,7,8]) begin by constructing a Dirichlet tessellation of a purely random

(Poisson) process and subsequently refining the tessellation until it approaches the desired

image. Given an image resembling a Dirichlet tessellation, with each cell colored a certain

3

shade, a parsimonious means of compressing the image is to store merely the coordinates of

the spots {P1, ..., Pn} that give rise to the tessellation, along with the colors associated with

each spot.

The problem of inverting a tessellation known to be Dirichlet is closely related to that of

determining whether a given tessellation is Dirichlet. The latter problem is called Dirichlet

tessellation recognition or detection and is investigated in depth by Ash and Bolker [9], who

list several properties characteristic of such tessellations. Evans and Jones [10] frame the

problem of finding a Dirichlet tessellation (and the corresponding spots) closely approximat-

ing a given tessellation as essentially a regression problem and outline three algorithms for

its solution. Unfortunately, as noted in [10], all three algorithms require the inversion of

poorly-conditioned matrices and may thus be highly unstable. Like the method described

in [10], related methods proposed in [11,12,13], are based solely on the observation that in a

Dirichlet tessellation, the segment joining any two adjacent spots is perpendicularly bisected

by the segment of the tessellation shared by the boundaries of their cells. Okabe et al. [3]

propose repeated use of a result in [9] for finding the spot within each cell based on the angles

the vertices of the cell make with adjacent vertices. Here, we explore methods involving both

inspection of vertex angles and the perpendicular bisector property, with the goal of finding

stable, efficient, and resistant methods for Dirichlet tessellation inversion.

The structure of this paper is as follows. In Section 2, basic geometric properties of

Dirichlet tessellations are discussed. Section 3 describes algorithms for inverting Dirich-

let tessellations. Section 4 reviews performance properties of different algorithms. Some

concluding remarks and directions for further research are presented in Section 5.

4

2 Geometry of Dirichlet tessellations.

Numerous geometric facts about Dirichlet tessellations have been discovered. For instance,

the following result is ubiquitous, and follows immediately from the definition of the Dirichlet

tessellation.

Lemma 2.1. For any two adjacent cells containing spots Pi and Pj, respectively, the

segment common to the boundaries of both cells is a perpendicular bisector of the segment

PiPj.

Examples of other basic geometric properties of Dirichlet tessellations are that each cell

boundary is a convex polygon, each vertex is the circumcenter of the spots whose cells share

the vertex, and the average number of segments per cell may not exceed 6. For derivations

of these and other further geometric properties of the Dirichlet tessellation and its dual

construct, the Delaunay triangulation, see chapters 2.3 and 2.4 of [3].

For a typical Dirichlet tessellation, each vertex is the intersection of exactly three of the

tessellation’s segments. However, this is not always the case. For example, if the spots

giving rise to the tessellation form a complete rectangular lattice, then each vertex of the

tessellation will be the intersection of four segments. More generally, if k ≥ 3 spots lie on

a circle centered at location X and if no other spots are in the interior of this circle, then

the resulting Dirichlet tessellation will have a vertex at X where k segments intersect. Any

vertex in a Dirichlet tessellation which is the intersection of more than three segments is

called degenerate.

A key geometric fact facilitating inversion is provided in the following Theorem, versions

of which appear in page 186 of [9] and page 67 of [3].

5

Theorem 2.2. Let T denote a cell in a planar Dirichlet tessellation. Let P1 denote the

spot in cell T . Suppose T has a nondegenerate vertex B, and let AB and BC denote two of

the segments outlining T . Let BD be the third segment in the tessellation with an endpoint

at B, and let E be any point in the interior of T such that E, B, and D are colinear. Then

6 ABP1 = 6 EBC, (2)

and

6 ABE = 6 P1BC. (3)

Proof.

Let P2 be the orthogonal mirror image of P1 across AB, and let P3 be the orthogonal

mirror image of P1 across BC. From Lemma 2.1, P2 and P3 are the spots of cells adjacent

to cell T .

Let θ1, θ2, and θ3 denote the angles 6 ABP1, 6 P1BE, and 6 EBC, respectively, as in Figure

2. It follows directly from Lemma 2.1 that angle 6 P2BA = θ1 and angle 6 CBP3 = θ2 + θ3.

Since the vertex B is nondegenerate, P2 and P3 are spots of cells sharing the boundary

segment BD. Thus Lemma 2.1 implies that segment BE is a perpendicular bisector of the

segment P2P3 and hence angles 6 P2BE and 6 EBP3 are equivalent. That is,

2θ1 + θ2 = 2θ3 + θ2, (4)

which yields (2).

Adding 6 P1BE to both sides of (2) immediately establishes (3).

6

3 Algorithms.

3.1 Preliminaries

A number of software packages contain routines for performing certain basic tasks involving

tessellations. A tessellation is typically stored as a list of vertex coordinates and its associated

contiguity lists: lists which provide, for each vertex, the indices of the other vertices to which

it is connected. Note that the cells containing the outermost spots of a tessellation are

bounded not just by segments but also by rays extending infinitely in one direction. Such a

ray is handled by storing both its starting point X and an arbitrary other point Y on the

ray as vertices, where Y is labeled a “dummy” vertex and given no adjacency list. In the

input to our programs described in Section 3.2 below, we simply require that the number

of ordinary vertices and the number of dummy vertices be specified, and that the dummy

vertices be placed at the end of the vertex list. In inverting the tessellation, the dummy

vertices are considered degenerate as far as the spot determination algorithms in Section 3.2

are concerned.

The list of vertices and the contiguity lists comprise a condensed means of storing the

tessellation; note that no listing of the n cells is provided. The algorithms proposed in what

follows consider beginning with this information only. We note in passing that, given even

less information, namely a list of segments and rays comprising the tessellation, the contigu-

ity lists may readily be formed in an obvious manner. However, the formation of such lists

cannot be performed in O(n) operations, whereas the algorithms considered below make use

of the contiguity lists to achieve O(n) speed. Note also that our discussion does not apply to

software programs that store tessellations by recording the geometry of the dual construc-

7

tion, the Delaunay tessellation, from which the geometry of the Dirichlet tessellation may

be readily obtained (see e.g. [3]).

3.2 Inversion Algorithms

Several authors have proposed methods for inverting Dirichlet tessellations based on the per-

pendicular bisector property in Lemma 2.1. For instance, Evans and Jones [10] observe that

application of Lemma 2.1 to every pair of adjacent spots yields a system of 2k equations in 2n

unknowns, where n is the number of spots and k the number of edges in the tessellation, and

suggest least-squares solutions (constrained and unconstrained). Hartvigsen [12] modifies

this procedure in forming a polynomial-time algorithm for inverting Voronoi diagrams in Rd

having vertices of arbitrary degree, and Adamatzky [13] discusses how an iterative procedure

for finding the spots based on reflecting across tessellation segments may be implemented

using a massively parallel algorithm and accelerated with the aid of a cellular automata

processor.

As discussed in [10], solution of the linear equations implied by Lemma 2.1 by least squares

involves the inversion of matrices that are poorly conditioned, hence numerical stability may

be jeopardized. In order to increase stability and precision, it may be preferable to employ

methods that use other potentially useful information about the configuration of vertices

rather than rely solely on the direct application of the perpendicular bisector property of

Lemma 2.1. In addition, the above procedures involve estimating the location of a given

spot based on all the vertices in the tessellation, and proceed in such a way that errors

8

in spot determinations can be expected to propagate throughout the inversion. But since

tessellations are locally defined objects (i.e. a given cell is determined solely by nearby spots),

methods for determining spots locally, rather than globally, may be desired. In particular,

one might prefer an algorithm whose solution is resistant in the event that one (or a few) of

the segments defining the tessellation boundary may be recorded in error.

In light of Theorem 2.2, the three segments sharing a vertex B (i.e. AB, BC, and BD

in Figure 2) define a ray through the point B on which the spot P1 of the cell bounded by

AB and BC must fall. That is, given points A, B, C, and D as in Figure 2, one may find a

line on which P1 must lie as follows: i) Find any point E by extending the line segment DB

in the direction away from D, as in Figure 2; ii) Compute the angle 6 EBC = θ3 = θ1; iii)

Rotate the segment AB by the angle θ1, keeping the point B fixed. Thus one constructs a

ray through B making an angle θ1 with AB. By Theorem 2.2, P1 must fall on this ray.

Similarly, if any other nondegenerate vertex V of the cell inhabited by P1 exists, then

the three segments sharing vertex V define a ray through V on which P1 must lie. Hence P1

is simply the intersection of these two rays.

This suggests the following naive algorithm, proposed in [3] for Dirichlet tessellations all

of whose cells contain at least two nondegenerate vertices:

Algorithm A

Step 1. Determine the cells C1, C2, . . . , Cn.

Step 2. For each cell Ci:

a) Find any two nondegenerate vertices outlining Ci.

9

b) For each such vertex V , use the other two vertices connected to V to find the

slope of the ray extending from V through the spot in Ci, as described above.

c) Find the intersection of these two rays.

Note that Step 1 may be achieved in O(n) time quite simply as follows, using the fact

that each cell must be convex. Beginning with a first vertex V1 and one of its adjacent

vertices V2, find the vertex V3 adjacent to V2 such that the path V1 → V2 → V3 proceeds

clockwise. Continue to move clockwise around the cell until returning to vertex V1. Repeat,

beginning with each pair of adjacent vertices, constructing not only a list of vertices in each

cell, but also simultaneously an array which lists, for each vertex, the indices of the cells it

comprises. In order to avoid duplication, each time a pair of adjacent vertices is selected as

a candidate for beginning a new cell, this latter array should be used to verify that the cell

has not already been formed.

One shortcoming of Algorithm A is obvious: the requirement that each cell contain at

least two nondegenerate vertices. Another is that if the two rays in a cell are perfectly paral-

lel then step 2c will not result in a uniquely determined intersection point. Certainly such an

event is highly atypical, and in any event a simple modification is to find an additional ray

emanating from a different nondegenerate vertex in the cell, if one exists, should this problem

arise. However, there is some apparent numerical instability in step 2c stemming from the

fact that only two rays are used to determine the spot in each cell, particularly if these two

rays happen to be nearly parallel, as is often the case when the two vertices selected in Step

2a are very close together. One would suspect that errors in the spot determination could

10

be minimized by using all the available rays rather than just two. Hence an alternative is

the following:

Algorithm B:

Step 1. Find the cells C1, C2, . . . , Cn.

Step 2. For each cell Ci:

a) Find all nondegenerate vertices outlining Ci.

b) Find the slope of the ray associated with each such vertex.

c) Find the intersections of every possible pair of the rays.

d) Average these intersection points.

The reader may find it surprising that the spot location errors using Algorithm B are

in fact typically considerably larger than for Algorithm A, a curious phenomenon which is

explained in Section 4.2 below. Since this increase in error is attributable to the instability

in intersecting certain select pairs of rays, one may modify Step 2d of Algorithm B by com-

puting a weighted average of the intersection points, weighting each point according to an

estimate of its stability, as in the following procedure.

Algorithm C:

Step 1. Find the cells C1, C2, . . . , Cn.

Step 2. For each cell Ci:

a) Find all nondegenerate vertices outlining Ci.

11

b) Find the slope of the ray associated with each such vertex.

c) Find the intersections Sk,l of every possible pair (k,l) of the rays in cell Ci.

d) For each pair (k,l) of rays in cell Ci, estimate the stability of its intersection

by perturbing the slopes of each of the rays by a small amount in either direction and seeing

how much the intersection point changes. Record δk,l = the sum of the sizes of these changes.

e) Compute a weighted average of the intersection points, giving Sk,l the weight

(δk,l)
−1/(

∑
k′,l′

δ−1
k′,l′).

Note that a potential alternative to algorithms B and C is to find the point minimizing

some penalty function such as the sum of squared perpendicular distances to the rays. The

(weighted) averaging in algorithms B and C is equivalent to finding the location minimizing

the (weighted) sum of squared distances to the intersection points of the rays.

Algorithms A, B, and C are all entirely local; each cell is determined solely based on its

own vertices and their neighboring vertices. The accuracy of the algorithms can potentially

be improved by incorporating information from neighboring cells, e.g. by using the perpen-

dicular bisector relation of Lemma 2.1. This suggests modifying Algorithms A, B, and C as

follows, to form Algorithms A’, B’, and C’.

Algorithm X’ (X = A, B, or C):

Perform Steps 1 and 2 of Algorithm X.

Step 3. For each cell Ci:

a) For each segment T outlining cell Ci, find the other cell Cj sharing this segment.

12

Obtain the estimate of the spot in cell Cj computed in Step 2 and find the mirror image of

this spot estimate across the segment T .

b) Average the results from Step 3a together with the estimates from Step 2 to

obtain a refined estimate of the spot in cell Ci.

We note in passing that several types of weighted averages are possible in Step 3b above,

as well as in Step 2e of Algorithm C. One possibility which is particularly simple and which

is shown in Section 4 to work well for each of the algorithms is to assign each of the spot

estimates in Step 3a weight m−1
i , where mi is the total number of estimates for the spot in

cell Ci from Steps 2 and 3a combined.

4 Implementation.

4.1 Availability.

Our programs (called tessinverta, tessinverta2, tessinvertb, tessinvertb2, tessinvertc, and

tessinvertc2) are compiled C++ modules freely available at

http://www.stat.ucla.edu/∼frederic/papers/tess/ . In the same directory are the raw C++

code, and instructions detailing how properly to manipulate the input and output of the

tessinvert programs. The programs take as input the list of vertices and their adjacency lists,

as described in Section 3.1 above. One may easily manipulate the inputs to these programs

into the required form given the output of a standard tessellation construction program such

as the function voronoi.mosaic from the tripack library of the software package R; at the

13

time of submission both R and tripack are freely available at http://cran.r-project.org/ .

4.2 Errors

Table 1. Log (base 10) of RMS errors of spot location estimates

n A A’ B B’ C C’

10 -13.6 -14.0 -13.6 -13.8 -13.9 -14.1

50 -12.2 -12.6 -12.1 -12.3 -12.8 -12.9

100 -11.5 -11.9 -11.5 -11.6 -12.3 -12.4

250 -10.6 -11.0 -10.7 -10.9 -11.6 -11.7

500 -9.94 -10.3 -10.1 -10.3 -11.1 -11.2

1000 -9.24 -9.62 -9.53 -9.67 -10.5 -10.7

2000 -8.52 -8.89 -8.97 -9.09 -10.1 -10.3

3000 -8.13 -8.52 -8.54 -8.66 -9.88 -10.0

4000 -7.94 -8.29 -8.32 -8.44 -9.71 -9.82

5000 -7.71 -8.08 -8.23 -8.33 -9.57 -9.69

Table 1 shows how the root-mean-squared (RMS) errors in the spot locations vary with

the number of spots, n. Each row in Table 1 reports the logarithm of the RMS errors in

spot locations over 1000 realizations each consisting of n spots generated using a uniform

distribution on the square region [0,
√

n]× [0,
√

n]. Thus all the simulations have on average

one spot per unit area. For each simulation, the corresponding Dirichlet tessellation was

constructed using the voronoi.mosaic function in tripack; this tessellation was then inverted

using the algorithms of Section 3.2 and the resulting spot locations compared to the locations

14

of the original spots. In Table 1, by “errors” we mean Euclidean distances between the

original spots and the reconstructed spots. It should be noted that in Table 1, the errors in

the inversion algorithms are confounded with those of the tessellation construction routine,

and may thus be considered an upper bound on the errors in the tessellation inversion

program.

For all the algorithms proposed in Section 3.2, the computational errors are quite small.

In all our simulations there was no single location error larger than 10−5. However, four

main features of Table 1 are worth noting.

First, for each row (and in fact for nearly every single simulation) of Table 1, the errors

decreased when the mirroring modification of Step 3 was used. In other words, the error in

Algorithm X’ < the error in Algorithm X.

Second, the errors in Algorithm B are on average very comparable with (and often larger

than) those in Algorithm A, and similarly for B’ and A’. This result may be surprising, given

that Algorithm B works by averaging over all spot estimates corresponding to all pairs of

rays for each cell, whereas Algorithm A uses just a single pair of rays. However, it turns out

the bulk of the RMS error is attributable to just a few cells, and among those in particular,

the errors result from the use of pairs of rays that are very nearly parallel. Algorithm A

uses the first two non-degenerate vertices found in each cell: these two vertices are typically

contiguous, which means that often the rays stemming from them are rather similar in slope

but never too similar. By contrast, Algorithm B uses all pairs of rays, including pairs of rays

stemming from opposite sides of the cell, which are occasionally very nearly parallel. See

Figure 3 below, for example. Intersecting these pairs of nearly parallel rays introduces some

15

numerical instability, and the errors in spot estimates resulting from such pairs are often

many orders of magnitude greater than typical estimates, hence the errors dominate when

all the pairs are combined by simple averaging as in Algorithm B.

Third, it is apparent from Table 1 that for every value of n, Algorithm C’ has the

least error. The problem of parallel rays does not significantly affect the performance of

Algorithms C and C’, which give the estimates resulting from such pairs of rays very little

weight when computing weighted averages of the estimates.

Fourth, for each of the methods in Table 1, the RMS error increases with n. This may

seem curious, given that all the algorithms are local and that the average number of spots

per unit area is the same for each simulation. Note however that the larger n is, the greater

is the chance of observing a cell that is very long and thin, and the configuration of the

outermost cells (which tend to have few non-degenerate vertices) also varies with n. Such

cells appear to be responsible for the bulk of the errors.

4.3 Stability

As noted above, the errors in the inversion algorithms proposed in Section 3.2 are very small,

especially for Algorithm C’. However, one may inquire about the size of the errors resulting

when one of the vertices is recorded substantially in error.

In Section 3.2 it was claimed that because the algorithms proposed here use only local

information for each cell, one might expect the resulting spot estimates to be more resistant

to errors in a particular vertex location, compared to algorithms based on the perpendicu-

lar bisector property which estimate individual spots using information from distant cells.

16

To verify this, we examined the most recent of these algorithms, that of Adamatzky [13].

Adamatzky’s algorithm estimates the location of the spot in an initial cell using an iterative

algorithm. This initial spot is mirrored across the segments outlining its cell to determine the

spots in neighboring cells, whose spots are mirrored across the segments outlining their cells,

and the process repeats until all spots have been found. Unfortunately Adamatzky provides

no guarantee that the iteration determining the initial spot will converge to arbitrary pre-

cision. Moreover, clearly there is no need to use an iterative algorithm to estimate the spot

location of the initial cell; a technique based on angles such as that in Step 2 of Algorithm

A is generally preferable. We consider an algorithm based on accurate determination of an

initial cell spot (via Step 2 of Algorithm A) followed by mirroring this spot and subsequent

spots over each segment of its cell boundary, and call this algorithm a modified-Adamatzky

algorithm. The use of this algorithm allows us to investigate the propagation of errors in

the Adamatzky algorithm from the mirroring step to determine subsequential spots.

Note that in the Adamatzky (and modified-Adamatzky) algorithms, not all the segments

of the tessellation will be used to determine the spots. At each step in the mirroring process,

cells with spots that have been determined are mirrored across the segments of their cells

to determine subsequent spots. If two neighboring cells have each been determined via

mirroring from other cells’ spots, then the segment joining these two cells will not be used

at all in the algorithm. Thus, if one perturbs a vertex of the Dirichlet tessellation input at

random, occasionally this will have no effect at all on the output of the tessellation inversion

routine, which is an attractive feature.

However, if the perturbed vertex is used by the routine, errors may propagate throughout

17

an entire section of the tessellation, For instance, Figure 4 shows the errors in the modified-

Adamatzky algorithm when a coordinate in a vertex in the initial cell is perturbed by .001.

The perturbed vertex at (11.7, 15.2) is marked with a large asterix. One sees that large

errors result in a broad portion of the tessellation. By contrast, Algorithm C’ appears to

be quite resistant to such a perturbation, as indicated by Figure 5 which shows the errors

resulting from Algorithm C’ for the same input tessellation as that in Figure 4.

One may inquire about the RMS errors when Adamatzky’s algorithm is used on a tes-

sellation that has not been perturbed in this fashion. Adamatzky’s algorithm requires that

the user specify the precision of the initial spot estimate by setting the level at which the

iteration used to determine the initial spot estimate should stop. Based on Table 1, errors

in the modified-Adamatzky algorithm should be similar to those in the original Adamatzky

algorithm when the precision threshold is on the order of the error sizes for Algorithm A in

Table 1. Errors in the modified-Adamatzky algorithm are on par with Algorithm C’; hence

by comparison the main advantage of C’ is not its precision but its resistance to substantial

errors in the input vertices.

4.4 Run times

All of the algorithms proposed in Section 3.2 are extremely fast, requiring just o(n) ob-

servations, where n represents the number of spots to be determined. This o(n) run time

is confirmed by Figure 6 which shows the results for running the tessinvert programs on

a Sun Ultra Enterprise 3500 at the UCLA Statistics Department. For each simulation, n

points were distributed uniformly on a square of area n, as with the simulations described

18

in Sections 4.2 and 4.3.

4.5 Degeneracies and conditions for invertibility.

Although Adamatzky claims (in Lemma 1 of [13]) that all cell spot locations of a Dirichlet

tessellation may be determined uniquely if and only if the tessellation has at least one closed

cell, this result is not correct. For instance, the left panel of Figure 7 shows an example of a

Dirichlet tessellation all four cells of which are open, yet the spots can be uniquely determined

since there are cells with more than one non-degenerate vertex, and the other cells’ spots

may be obtained by mirroring from adjacent cells. Conversely, in cases where every vertex in

the tessellation is degenerate (e.g. the spots all lie on a lattice as in the right panel of Figure

7), the locations of the spots are indeterminate, despite the fact that a closed cell exists.

In such events a sample collection of spots can typically be found by assigning an initial

spot to an arbitrary location and proceeding from there by mirroring across segments of

adjacent cells. A correct version of Adamatzky’s statement is provided by Ash and Bowlker

in Corollary 15 of [9]: If all vertices of a Dirichlet tessellation are non-degenerate and if more

than one vertex exists, then the spots can be uniquely determined.

A requisite for Algorithms A, B, and C is that each cell contain multiple (i.e. at least

two) non-degenerate vertices, since these algorithms are entirely local and do not even use

neighboring cells’ spot estimates in determining each cell’s spot location. However, for

Algorithms A’, B’, and C’ this requirement can be relaxed: all that is required is that every

cell should either have multiple non-degenerate vertices or have at least one neighboring

cell which has multiple non-degenerate vertices. This condition was not violated in any

19

of the simulations we ran. Note also that one way to handle degeneracies in the form of

k-valent vertices for k > 3, is to enter them in the inputs as k − 2 distinct vertices all

with the same coordinates, and provided their adjacency lists are suitably entered no major

difficulties are presented in Algorithm C’. Cell spot estimates based on treating such vertices

as non-degenerate will be highly unstable, but Algorithm C’ treats them as such and gives

them nearly no weight in computing the weighted average of spot estimates, hence such

degenerate vertices do not present a real obstacle to Algorithm C’ provided other, non-

degenerate vertices exist nearby.

5 Summary and proposed extensions.

Algorithm C’ introduced here is shown to be a stable routine for inverting a Dirichlet tessel-

lation in the plane, in order to find the spots given only the segments outlining the cells of

the tessellation. The algorithm is very fast and efficient, requiring only O(n) computations

and obtaining a high level of accuracy.

The present work may be extended in various ways, including generalizing the above

procedure to the problems of inverting higher-dimensional and generalized Dirichlet/Voronoi

tessellations, inversion of tessellations given different distance metrics, and tessellations in

general metric spaces. Further, there are important classes of other types of tessellations

for which stable and efficient methods of inversion do not appear to be currently available,

including Johnson-Mehl tessellations and hyperplane tessellations which are described by

Okabe et al. [3].

20

Acknowledgement.

Thanks to Jose Louis Hales-Garcia for technical support and anonymous referees for very

instructive comments.

21

References.

[1] Green, P. and Sibson, R. (1978) Computing Dirichlet tessellations in the plane. Comp.

J., 21, 168–173.

[2] Ripley, B. (1981) Spatial Statistics. Wiley, NY.

[3] Okabe, A. Boots, B. Sugihara, K. and Chiu, S. (2000) Spatial Tessellations, 2nd ed.

Wiley, Chichester.

[4] Stoyan, D. Kendall, W. and Mecke, J. (1995) Stochastic Geometry and its Applications,

2nd ed. Wiley, Chichester.

[5] Bowyer, A. (1981) Computing Dirichlet tessellations. Comp. J., 24(2), 162–166.

[6] Rom, H. and Peleg, S. (1988) Image representation using Voronoi tessellation: adaptive

and secure. Proc. IEEE Comput. Soc. Conf. Computer Vision and Pattern Recogni-

tion, Ann Arbor, MI, June 5–9, pp. 125–146. Computer Society Press, Los Angeles.

[7] Chassery, J. M. and Montanvert, A. (1989) A segmentation method in a Voronoi diagram

environment. Proc. Sixth Scandinavian Conf. Image Analysis, Oulu, Finland, June

19–22, pp. 408–415. Pattern Recognition Society of Finland, Oulu.

[8] Montanvert, A. Meer, P. and Rosenfeld, A. (1991) Hierarchical image analysis using

irregular tessellations. IEEE Trans. Pattern Analysis and Machine Intelligence, 13(4),

307–316.

22

[9] Ash, P. and Bowlker, E. (1985) Recognizing Dirichlet tessellations. Geometriae Dedicata,

19, 175–206.

[10] Evans, D. and Jones, S. (1987) Detecting Voronoi (area-of-influence) polygons. Mathe-

matical Geology, 19(6), 523–537.

[11] Aurenhammer, F. (1987) Recognising polytopical cell complexes and constructing pro-

jection polyhedra. J. Symbolic Computation, 3, 249-255.

[12] Hartvigsen, D. (1992) Recognizing Voronoi diagrams with linear programming. ORSA

J. on Computing, 4(4), 369–374.

[13] Adamatzky, A. (1993) Massively parellel algorithm for inverting Voronoi diagram. Neu-

ral Network World, 4, 385–392.

23

List of Figures and their Captions:

Figure 1: Dirichlet tessellation.

Figure 2: Diagram for Theorem 2.2.

Figure 3: Cell with two vertices and spot all nearly colinear.

Figure 4: Inversion errors for the modified Adamatzky algorithm.

Figure 5: Inversion errors for Algorithm C’.

Figure 6: Run times for inversions of Dirichlet tessellations with varying numbers of spots.

Figure 7: Counterexamples to Adamatzky’s Lemma 1: a tessellation of open cells whose

spots may be determined; and a tessellation with a closed cell whose spots may not be de-

termined.

24

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

* *

*

*

**

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

A
*

B*

C
*

D*

*E

*P1

*P2

* P3

θ1

θ1

θ2

θ3
θ + θ2 3

*

0 10 20 30 40

0
10

20
30

40

*

0

0.0005

0.001

0 10 20 30 40

0
10

20
30

40

*

0

0.0005

0.001

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of spots

Co
m

pu
ta

tio
n

tim
e

(s
ec

)

A
A’
B
B’
C
C’

*

*

*

*

*

*

*

*

*

*

*

*

*

