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A tessellation may be defined as a division of a space into convex polyg-

onal regions; divisions of the plane (R2) are most often discussed. While

geometrists centuries ago reserved the term tessellation merely for divisions

of the plane into regular polygons of equal size, most authors now define tes-

sellations very broadly so as to include any arrangements of non-overlapping

shapes covering Rd, as well as partitions of other metric spaces.

Tessellations arise quite naturally in numerous applications. In some sit-

uations, e.g. in geography, cellular biology or crystallography, one may wish

to describe observed structures using models for tessellations. In many other

applications, point process data are observed from which one may wish to

characterize the mosaic of regional patterns. The Voronoi tessellation and its

dual concept, the Delaunay tessellation, are commonly used in such circum-

stances. Chapter 1.2 of [14] provides a survey of the historical development

of Voronoi diagrams and Delaunay tessellations, including early applications
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in diverse fields such as crystallography, ecology, meteorology, epidemiology,

linguistics, economics, archaeology, and astronomy, dating back to Descartes

in the early 17th century. References to numerous further examples are given

in chapter 10.2 of [17], including examples in forestry, communication the-

ory, geology, metallography, and zoology, and chapter 5.3 of [14] summarizes

recent applications in a wide variety of disciplines.

VORONOI TESSELLATIONS

A classic example of a randomly generated tessellation is the Voronoi tes-

sellation (also associated with the names Dirichlet and Thiessen), which sep-

arates a region into cells {Di} using a point process N .

(Figure 1 here)

The Voronoi tessellation is constructed as follows: for each point τi of the

point process, let Di be the area consisting of all locations in the space which
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are closer to τi than to any other point of N . This definition is applicable

to Voronoi tessellations in any metric space. An example in R2 is depicted

in Figure 1. Attention is usually restricted to non-degenerate cases to ensure

that the Voronoi tessellation resulting from a point pattern is well defined.

For example, one typically assumes that there are at least two points, that the

points are all distinct, and that there are only finitely many in any bounded

region.

Green and Sibson [3] provide the following delightfully intuitive descrip-

tion: “One might think of the points as being the locations of the lairs of

competitive predators of equal strength; the region associated with each point

is then the area available to the corresponding predator.” Voronoi tessella-

tions have thus been applied in models for populations of species such as

plants and birds (see e.g. chapter 8.6 of [15]).

Certain geometric properties of the Voronoi tessellation in Rd are imme-

diate. For instance, for any two adjacent cells Di and Dj containing points

τi and τj, the side common to both cells is a perpendicular bisector of the

3



points τi and τj. Another example is that each vertex is the circumcenter of

the points whose cells share the vertex. Further examples of general proper-

ties of Voronoi tessellations are discussed in chapter 2.3 of [14].

A special case is the Poisson-Voronoi tessellation, which is simply a Voronoi

tessellation generated from a Poisson process [see point processes]. The Pois-

son process generating the tessellation is generally assumed to be stationary,

with rate λ. Many properties of the (stationary) Poisson-Voronoi tessellation

have been discovered: in the planar case, the expected number of vertices

(or edges) in an arbitraily-chosen cell (e.g. the cell containing the origin) is

6, and its expected area is 1/λ, for example. An excellent survey of these

and similar results for Poisson-Voronoi tessellations in Rd is given in [10];

also see chapter 10.6 of [17] and chapters 5.2 and 5.5 of [14]. Poisson-Voronoi

tessellations on the sphere are discussed in [1] and [9].

Voronoi tessellations originating from non-Poisson point processes have

also been investigated. For instance the point process N may be modeled as

compound Poisson, clustered, etc. A survey of results on planar and spatial
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tessellations generated by various special non-Poisson point processes is given

in chapter 5.12 of [14].

Green and Sibson [3] provide an efficient computer algorithm for con-

structing a Voronoi tessellation from a point pattern. See chapter 4 of [14]

and references therein for a description and comparison of the Green-Sibson

and alternative construction methods. These algorithms, in conjunction with

efficient routines for simulating point processes (e.g. [6,13]), make simulating

a Voronoi tessellation a simple and speedy task.

DELAUNAY TESSELLATIONS

Given a point process with points {τi}, an alternative type of tessellation

can be formed by joining all neighboring points; by “neighboring” we mean

pairs of points whose cells in the Voronoi tessellation share an edge. The tes-

sellation resulting from this construction is the Delaunay tessellation. Under

general conditions (see chapter 2.3 of [14]), the cells of a planar Delaunay

tessellation are triangular. The Delaunay tessellation is also called the dual
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of the Voronoi tessellation. Note that like the Voronoi tessellation, the def-

inition of the Delaunay tessellation applies not merely to Rd but to general

metric spaces.

When the point process in this construction is a stationary Poisson process,

the result is called a Poisson-Delaunay tessellation. Properties of Poisson-

Delaunay tessellations are very well-known; for instance in the planar case

the density function corresponding to the typical cell, in terms of its size and

angles, has been derived [5,8]. Chapter 5.11 of [14] provides a nice summary

of such properties, including results for Poisson-Delaunay tessellations on Rd.

JOHNSON-MEHL TESSELLATIONS

Another important type of tessellation is the Johnson-Mehl tessellation,

which is derived from a dynamic (e.g. spatial-temporal) point process N .

Suppose that, after it is generated, each point of N is perceived to grow in

every direction, with some constant speed. To a point in the point process,

there corresponds a cell consisting of all spatial locations first hit by the
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growth of this point. The Johnson-Mehl tessellation is the collection of these

cells.

In the special case where the points of N all occur at exactly the same

time, the Johnson-Mehl tessellation reduces to a Voronoi tessellation. In

general, however, Johnson-Mehl tessellations may be quite complex, contain-

ing cells that are not convex, for instance. Okabe et al. [14] note that the

Johnson-Mehl tessellation is a special case of an additively weighted Voronoi

tessellation, in which the weight associated with each point τi is simply the

time ti at which the point occurs.

Well-written treatments of properties of Johnson-Mehl tessellations are

given in [11,12]. For further references on properties and applications in var-

ious fields including crystallography, metallurgy and biology, see page 314 of

[17] or chapter 5.8 of [14].

HYPERPLANE TESSELLATIONS
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An important type of tessellation in Rd is the hyperplane tessellation, i.e.

the tessellation generated by dividing up Rd via (d − 1)-dimensional hyper-

planes. For instance, one may divide the plane up into cells using a random

collection of lines.

An important model for a random collection of lines in the plane is the

(undirected) Poisson line process in R2, which may be defined as a Poisson

point process on the space R×(0, π], with the convention that any point (t, θ)

in R× (0, π] corresponds to the line in R2 whose perpendicular distance from

the origin is t and whose angle with the x-axis, measured counterclockwise,

is θ. Note that the space R× (0, π] represents the half-cylinder of unit radius

in R3; see chapter 8.2 of [17] for elaboration.

The definition of the Poisson line process extends readily to the Poisson

hyperplane processes, which generate the Poisson hyperplane tessellations.

Properties of Poisson line tessellations and Poisson plane tessellations are

summarized in chapter 10.5 of [17] and page 40 of [14]. For examples of other

types of hyperplane processes, see pages 250-255 of [17].
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FURTHER TESSELLATIONS

The definition of the Voronoi tessellation has been extended in various

ways. An important example is the weighted Voronoi tessellation, which is

the tessellation resulting from the construction identical to that of the ordi-

nary Voronoi tessellation except that instead of Euclidean distance, a different

metric (or non-metric function) is used. For example the distance function

used may be a multiple of Euclidean distance, i.e. the distance between an

arbitrary location x and a point τi of the generating point process N may be

given by wid(x, τi), where d denotes Euclidean distance, and wi is a scalar that

depends on i. The resulting tessellation is called a multiplicatively weighted

Voronoi tessellation. Alternatively, one may construct an additively weighted

Voronoi tessellation, using a distance function of the form wi + d(x, τi). For

further examples of such tessellations and their applications, see chapter 3.1

of [14].

Another important generalization of the Voronoi tessellation is the order-k
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Voronoi tessellation, in which a cell consists not of all locations closer to a

single point τi of the point process N than to any other point τj, but of all

locations closer to each of the k points {τi1, . . . , τik} than to any other point

of N . Alternatively one may modify the construction of the Voronoi tessel-

lation by prescribing that cell i consist of locations for which point τi is kth

(rather than first) in the list of distances from the points of N to that loca-

tion, or in the case where N contains finitely many points, that cell i consist

of all locations furthest from (rather than closest to) point τi. For properties

of these and other extensions of the Voronoi tessellation, see chapter 3 of [14].

A construct closely related to the Johnson-Mehl tessellation is the dead

leaves tessellation of Matheron [7], in which random shapes are placed in the

plane (or higher-dimensional space) and centered at points {τi} of a station-

ary spatial-temporal Poisson process, with the convention that if two shapes

overlap, the later shape supercedes the prior one. See [2] and pages 508-511

of [16] for various properties. The case where all the points τi fall simulta-

neously, i.e. where random shapes are placed with their centers at the points

of a stationary spatial Poisson process, is called a Boolean model. Typically
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for the Boolean model, one allows all the shapes to overlap and investigates

the properties of clumps, defined as connected clusters of overlapping shapes.

See [4], chapter 13B of [16] or chapter 3 of [17] for properties and statistics

for the Boolean model.
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Figure 1: Construction of Poisson-Voronoi tessellation
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