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Abstract We consider model selection and estimation for partial spline models and
propose a new regularization method in the context of smoothing splines. The reg-
ularization method has a simple yet elegant form, consisting of roughness penalty
on the nonparametric component and shrinkage penalty on the parametric compo-
nents, which can achieve function smoothing and sparse estimation simultaneously.
We establish the convergence rate and oracle properties of the estimator under weak
regularity conditions. Remarkably, the estimated parametric components are sparse
and efficient, and the nonparametric component can be estimatedwith the optimal rate.
The procedure also has attractive computational properties. Using the representer the-
ory of smoothing splines, we reformulate the objective function as a LASSO-type
problem, enabling us to use the LARS algorithm to compute the solution path. We
then extend the procedure to situations when the number of predictors increases with
the sample size and investigate its asymptotic properties in that context. Finite-sample
performance is illustrated by simulations.
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1 Introduction

1.1 Background

Partial smoothing splines are an important class of semiparametric regression models.
Developed in a framework of reproducing kernel Hilbert spaces (RKHS), thesemodels
provide a compromise between linear and nonparametric models.
In general, a partial smoothing spline model assumes the data (Xi , Ti , Yi ) follow

Yi = X′iβ + f (Ti )+ εi , i = 1, . . . , n, f ∈ Wm[0, 1], (1)

where Xi ∈ Rd are linear covariates, Ti ∈ [0, 1] is the nonlinear covariate, and εi ’s
are independent errors with mean zero and variance σ 2. The space Wm[0, 1] is the
mth order Sobolev Hilbert space Wm[0, 1] = { f : f, f (1), . . . , f (m−1) are absolutely
continuous, f (m) ∈ L2[0, 1]} form ≥ 1.Here f ( j) denotes the j th derivative of f . The
function f (t) is the nonparametric component of the model. Denote the observations
of (Xi , Ti , Yi ) as (xi , ti , yi ) for i = 1, 2, . . . , n. The standard approach to compute
the partial spline (PS) estimator is minimizing the penalized least squares:

(β̃PS, f̃PS) = arg min
β∈Rd , f ∈Wm

1

n

n∑
i=1

[
yi − xTi β − f (ti )

]2 + λ1 J 2f , (2)

whereλ1 is a smoothing parameter and J 2f =
∫ 1
0

[
f (m)(t)

]2
dt is the roughness penalty

on f ; see Kimeldorf and Wahba (1971), Craven and Wahba (1979), Denby (1984),
Green and Silverman (1994) for details. It is known that the solution f̃PS is a nat-
ural spline (Wahba 1990) of order 2m − 1 on [0, 1] with knots at ti , i = 1, . . . , n.
Asymptotic theory for partial splines has been developed by several authors (Shang
and Cheng 2013; Rice 1986; Heckman 1986; Speckman 1988; Shiau andWahba 1988.
In this paper, wemainly consider partial smoothing splines in the framework ofWahba
(1984).

1.2 Model selection for partial splines

Variable selection is important for data analysis and model building, especially for
high dimensional data, as it helps to improve the model’s prediction accuracy and
interpretability. For linearmodels, various penalization procedures have been proposed
to obtain a sparsemodel, including the non-negative garrote (Breiman 1995; Tibshirani
1996; Fan and Li 2001; Fan and Peng 2004), and the adaptive LASSO (Zou 2006;
Wang et al. 2007). Contemporary research frequently deals with problems where the
input dimension d diverges to infinity as the data sample size increases (Fan and
Peng 2004). There is also active research going on for linear model selection in these
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Sparse partial spline 95

situations (Fan and Peng 2004; Zou and Zhang 2009; Fan and Lv 2008; Huang et al.
2008a, b).
In this paper, we propose and study a new approach to variable selection for partially

linear models in the framework of smoothing splines. The procedure leads to a regu-
larization problem in the RKHS, whose unified formulation can facilitate numerical
computation and asymptotic inferences of the estimator. To conduct variable selection,
we employ the adaptive LASSO penalty on linear parameters. One advantage of this
procedure is its easy implementation. We show that, by using the representer theory
(Wahba 1990), the optimization problem can be reformulated as a LASSO-type prob-
lem so that the entire solution path can be computed by the LARS algorithm (Efron et
al. 2004). We show that the new procedure can asymptotically (1) correctly identify
the sparse model structure; (2) estimate the nonzero β j ’s consistently and achieve the
semiparametric efficiency; and (3) estimate the nonparametric component f at the
optimal nonparametric rate. We also investigate the property of the new procedure
with a diverging number of predictors (Fan and Peng 2004).
From now on, we regard (Yi , Xi ) as i.i.d realizations from some probability distri-

bution. We assume that the xi ’s belong to some compact subset in Rd , and they are
standardized such that

∑n
i=1 xi j/n = 0 and∑n

i=1 x2i j/n = 1 for j = 1, . . . , d, where
xi = (xi1, . . . , xid)′. Also assume ti ∈ [0, 1] for all i . Throughout the paper, we use
the convention that 0/0 = 0. The rest of the article is organized as follows: Sect. 2
introduces our new double-penalty estimation procedure for partial spline models.
Section 3 is devoted to two main theoretical results. We first establish the convergence
rates and oracle properties of the estimators in the standard situation with a fixed d,
and then extend these results to the situations when d diverges with the sample size n.
Section 4 gives the computational algorithm. In particular, we show how to compute
the solution path using the LARS algorithm. The issue of parameter tuning is also
discussed. Section 5 illustrates the performance of the procedure via simulations and
real examples. Discussions and technical proofs are presented in Sects. 6 and 7.

2 Method

We assume that 0 ≤ t1 < t2 < · · · < tn ≤ 1. In order to achieve a smooth estimate
for the nonparametric component and sparse estimates for the parametric components
simultaneously, we consider the following regularization problem:

min
β∈Rd , f ∈Wm

1

n

n∑
i=1

[
yi − xTi β − f (ti )

]2 + λ1

∫ 1

0

[
f (m)(t)

]2
dt + λ2

d∑
j=1

w j |β j |. (3)

The penalty term in (3) is naturally formed as a combination of roughness penalty on
f and the weighted LASSO penalty on β. Here, λ1 controls the smoothness of the
estimated nonlinear function while λ2 controls the degree of shrinkage on β’s. The
weightw j ’s are pre-specified. For convenience, we will refer to this procedure as PSA
(the Partial Splines with Adaptive penalty).
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96 G. Cheng et al.

Note that w j ’s should be adaptively chosen such that they take large values for
unimportant covariates and small values for important covariates. In particular, we
propose using w j = 1/|β̃ j |γ , where β̃ = (β̃1, . . . , β̃d)′ is some consistent estimate
for β in the model (1), and γ is a fixed positive constant. For example, the standard
partial smoothing spline β̃PS can be used to construct the weights. Therefore, we get
the following optimization problem:

(β̂PSA, f̂PSA) = arg min
β∈Rd , f ∈Wm

1

n

n∑
i=1

[
yi − x′iβ − f (ti )

]2 + λ1

∫ 1

0

[
f (m)(t)

]2
dt

+λ2

d∑
j=1

|β j |
|β̃ j |γ

. (4)

When β is fixed, the standard smoothing spline theory suggests that the solution
to (4) is linear in the residual (y − Xβ), i.e., f̂(β) = A(λ1)(y − Xβ), where y =
(y1, . . . , yn)′, X = (x1, . . . , xn)′ and the matrix A(λ1) is the smoother or influence
matrix (Wahba 1984). The expression of A(λ1)will be given in Sect. 4. Plugging f̂(β)

into (4), we can obtain an equivalent objective function for β:

Q(β) = 1

n
(y− Xβ)′[I − A(λ1)](y− Xβ)+ λ2

d∑
j=1

|β j |
|β̃ j |γ

, (5)

where I is the identity matrix of size n. The PSA solution can be computed as

β̂PSA = arg min
β

Q(β),

f̂PSA = A(λ1)(y− Xβ̂PSA).

Special software like Quadratic Programming (QP) or LARS (Efron et al. 2004) is
needed to obtain the solution.

3 Statistical theory

We can write the true coefficient vector as β0 = (β01, . . . , β0d)′ = (β ′1,β ′2)′, where
β1 consists of all q nonzero components and β2 consists of the rest (d − q) zero
elements, and write the true function of f as f0. We also write the estimated vector

β̂PSA = (β̂1, . . . , β̂d) =
(
β̂
′
PSA,1, β̂

′
PSA,2

)′
. In addition, assume thatXi has zeromean

and strictly positive definite covariance matrix R. The observations ti ’s satisfy∫ ti

0
u(w)dw = i/n for i = 1, . . . , n, (6)

where u(·) is a continuous and strictly positive function independent of n.
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Sparse partial spline 97

3.1 Asymptotic results for fixed d

We show that, for any fixed γ > 0, if λ1 and λ2 converge to zero at proper rates, then
both the parametric and nonparametric components can be estimated at their optimal
rates. Moreover, our estimation procedure produces the nonparametric estimate f̂PSA
with desired smoothness, i.e., ***(10).Meanwhile, we conclude that our double penal-
ization procedure can estimate the nonparametric function well enough to achieve the
oracle properties of the weighted Lasso estimates.
In the following we use ‖ · ‖, ‖ · ‖2 to represent the Euclidean norm, L2- norm, and

use ‖ · ‖n to denote the empirical L2-norm, i.e., ‖F‖2n =
∑n

i=1 F2(si )/n.
We derive our convergence rate results under the following regularity conditions:

R1. ε is assumed to be independent of X , and has a sub-exponential tail, i.e.,
E(exp(|ε|/C0)) ≤ C0 for some 0 < C0 < ∞, see Mammen and van de Geer
(1997);

R2.
∑

k φkφ
′
k/n converges to some non-singular matrix with φk = [1, tk, . . . , tm−1

k ,

xk1, . . . , xkd ]′ in probability.
Theorem 1 Consider the minimization problem (4), where γ > 0 is a fixed constant.
Assume the initial estimate β̃ is consistent. If n2m/(2m+1)λ1 → λ10 > 0,

√
nλ2 → 0

and

n
2m−1
2(2m+1) λ2
|β̃ j |γ

P−→ λ20 > 0 for j = q + 1, . . . , d (7)

as n →∞, then we have

1. there exists a local minimizer β̂PSA of (4) such that

‖β̂PSA − β0‖ = OP (n−1/2). (8)

2. the nonparametric estimate f̂PSA satisfies

‖ f̂PSA − f0‖n = OP (λ
1/2
1 ), (9)

J f̂PSA
= OP (1). (10)

3. the local minimizer β̂PSA = (β̂
′
PSA,1, β̂

′
PSA,2)

′ satisfies
(a) Sparsity: P(β̂PSA,2 = 0)→ 1.
(b) Asymptotic Normality:

√
n(β̂PSA,1 − β1)

d→ N (0, σ 2R−111 ),

where R11 is the q × q upper-left sub matrix of covariance matrix of Xi .

Remark Note that t is assumed to be nonrandom and satisfy the condition (6), and
that EX = 0. In this case, the semiparametric efficiency bound for β̂PSA,1 in the partly
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linear model under sparsity is just σ 2R−111 , see Vaart and Wellner (1996). Thus, we
can claim that β̂PSA,1 is semiparametric efficient.

If we use the partial spline solutions to construct the weights in (4) and choose
γ = 1 and n2m/(2m+1)λi → λi0 > 0 for i = 1, 2, the above Theorem 1 implies
that the double penalized estimators achieve the optimal rates for both parametric and
nonparametric estimation, i.e., (8)–(9), and that β̂PSA possesses the oracle properties,
i.e., the asymptotic normality of β̂PSA,1 and sparsity of β̂PSA,2.

3.2 Asymptotic results for diverging dn

Let β = (β ′1,β ′2)′ ∈ Rqn × Rmn = Rdn . Let xi = (w′i , z′i )′ where wi consists of the
first qn covariates, and zi consists of the remaining mn covariates. Thus we can define
the matrix X1 = (w1, . . . , wn)′ and X2 = (z1, . . . , zn)′. For any matrix K we denote
its smallest and largest eigenvalue as λmin(K) and λmax (K), respectively.
Now, we give the additional regularity conditions required to establish the large-

sample theory for the increasing dimensional case:

R1D. There exist constants 0 < b0 < b1 <∞ such that

b0 ≤ min{|β j |, 1 ≤ j ≤ qn} ≤ max{|β j |, 1 ≤ j ≤ qn} ≤ b1.

R2D. λmin(
∑

k φkφ
′
k/n) ≥ c3 > 0 for any n.

R3D. Let R be the covariance matrix for the vector Xi . We assume that

0 < c1 ≤ λmin(R) ≤ λmax (R) ≤ c2 <∞ for any n.

Conditions R2D and R3D are equivalent to Condition R2 when dn is assumed to be
fixed.

3.2.1 Convergence Rate of β̂PSA and f̂PSA

We first present a Lemma concerning about the convergence rate of the initial estimate
β̃PS given the increasing dimension dn . For two deterministic sequences pn, qn =
o(1), we use the symbol pn 
 qn to indicate that pn = O(qn) and p−1n = O(q−1n ).
Define x ∨ y (x ∧ y) to be the maximum (minimum) value of x and y.

Lemma 1 Suppose that β̃PS is a partial smoothing spline estimate, then we have

‖β̃PS − β0‖ = OP (
√

dn/n) given dn = n1/2 ∧ nλ
1/2m
1 . (11)

Our next theorem gives the convergence rates for β̂PSA and f̂PSA when dimension
of β0 diverges to infinity. In this increasing dimension set-up, we find three results:
(i) the convergence rate for β̂PSA coincides with that for the estimator in the linear
regressionmodelwith increasing dimension (Portnoy 1984); thuswe can conclude that
the presence of nonparametric function and sparsity of β0 does not affect the overall
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Sparse partial spline 99

convergence rate of β̂PSA; (ii) the convergence rate for f̂PSA is slower than the regular
partial smoothing spline, i.e., OP (n−m/(2m+1)), and is controlled by the dimension of
important components of β, i.e., qn ; and (iii) the nonparametric estimator f̂PSA always
satisfies the desired smoothness condition, i.e., J f̂PSA

= OP (1), even under increasing
dimension of β.

Theorem 2 Suppose that dn = o(n1/2 ∧ nλ
1/2m
1 ), nλ

1/2m
1 →∞ and

√
n/dnλ2 → 0,

we have

‖β̂PSA − β0‖ = OP (
√

dn/n). (12)

If we further assume that λ1/qn 
 n−2m/(2m+1) and

max
j=qn+1,...,dn

√
n/dn(λ2/qn)

|β̃ j |γ
= OP (n1/(2m+1)d−3/2n ), (13)

then we have

‖ f̂PSA − f0‖n = OP (
√

dn/n ∨ (n−m/(2m+1)qn)), (14)

J f̂PSA
= OP (1). (15)

It seems nontrivial to improve the rate of convergence for the parametric estimate
to the minimax optimal rate

√
qn log dn/n proven in Bickel et al. (2009). The main

reason is that the above rate result is proven in the (finite) dictionary learning framework
which requires that the nonparametric function can bewell approximated by amember
of the span of a finite dictionary of (basis) functions. This key assumption does not
straightforwardly hold in our smoothing spline setup. In addition, it is also unclear
how to relax the Gaussian error condition assumed in Bickel et al. (2009) to the fairly
weak sub-exponential tail condition assumed in our paper.

3.2.2 Oracle Properties

In this subsection, we show that the desired oracle properties can also be achieved
even in the increasing dimension case. In particular, when showing the asymptotic
normality of β̂PSA,1, we consider an arbitrary linear combination of β1, say Gnβ1,
where Gn is an arbitrary l × qn matrix with a finite l.

Theorem 3 Given the following conditions:

D1. dn = o(n1/3 ∧ (n2/3λ1/3m1 )) and qn = o(n−1λ−22 );
S1. λ1 satisfies: λ1/qn 
 n−2m/(2m+1) and nm/(2m+1)λ1→ 0;
S2. λ2 satisfies:

min
j=qn+1,...,dn

√
n/dnλ2

|β̃ j |γ
P−→∞, (16)

we have
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100 G. Cheng et al.

(a) Sparsity: P(β̂PSA,2 = 0)→ 1
(b) Asymptotic Normality:

√
nGnR1/211 (β̂PSA,1 − β1)

d→ N (0, σ 2G), (17)

where Gn be a non-random l×qn matrix with full row rank such that GnG′n → G.

In Corollary 1, we give the fastest possible increasing rates for the dimensions of
β0 and its important components to guarantee the estimation efficiency and selection
consistency. The range of the smoothing and shrinkage parameters are also given.

Corollary 1 Let γ = 1. Suppose that β̃ is the partial smoothing spline solution. Then,
we have

1. ‖β̂PSA−β0‖ = OP (
√

dn/n) and ‖ f̂PSA− f0‖n = OP (
√

dn/n∨(n−m/(2m+1)qn));

2. β̂PSA possesses the oracle properties.

if the following dimension and smoothing parameter conditions hold:

dn = o(n1/3) and qn = o(n1/3), (18)

nλ
1/2m
1 →∞, nm/(2m+1)λ1→ 0 and λ1/qn 
 n−2m/(2m+1), (19)√

n/dnλ2 → 0, (n/dn)λ2 →∞ and
√

dn(n/qn)λ2 = O(n1/(2m+1)). (20)

Define dn 
 nd̃ and qn 
 nq̃ , where 0 ≤ q̃ ≤ d̃ < 1/3 according to (18). For
the usual case that m ≥ 2, we can give a set of sufficient conditions for (19)–(20) as:
λ1 
 n−r1 and λ2 
 n−r2 for r1 = 2m/(2m+1)−q̃ , r2 = d̃/2+2m/(2m+1)−q̃ and
(1− d̃)/2 < r2 < 1− d̃ . The above conditions are very easy to check. For example,
if m = 2, we can set λ1 
 n−0.55 and λ2 
 n−0.675 when dn 
 n1/4, qn 
 n1/4.
In Ni et al. (2009), the authors considered variable selection in partly linear models

when dimension is increasing. Under m = 2, they applied SCAD penalty on the
parametric part and proved oracle property together with asymptotic normality. In this
paper, we considered general m and applied adaptive LASSO for the parametric part.
Besides oracle property, we also derived rate of convergence for the nonparametric
estimate. The technical proof relies on nontrivial applications of RKHS theory and
model empirical processes theory. Therefore, our results are substantially different
fromNi et al. (2009). Thenumerical results provided inSect. 5 demonstrate satisfactory
selection accuracy. Furthermore, we are able to report the estimation accuracy of the
nonparametric estimate, which is also satisfactory.

4 Computation and tuning

4.1 Algorithm

We propose a two-step procedure to obtain the PSA estimator: first compute β̂PSA,
then compute f̂PSA. As shown in Sect. 2, we need tominimize (5) to estimate β. Define
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Sparse partial spline 101

the square root matrix of I − A(λ1) as T , i.e., I − A(λ1) = T ′T . Then (5) can be
reformulated into a LASSO-type problem

min
1

n
(y∗ − X∗β∗)′(y∗ − X∗β∗)+ λ2

d∑
j=1
|β∗j |, (21)

where the transformed variables are y∗ = T y, X∗ = T XW, and β∗j = β j/|β̃ j |γ , j =
1, . . . , d, withW = diag{|β̃ j |γ }. Therefore, (21) can be conveniently solved with the
LARS algorithm (Efron et al. 2004).
Now assume β̂PSA has been obtained. Using the standard smoothing spline theory,

it is easy to show that f̂PSA = A(λ1)(y−Xβ̂PSA), where A is the influence matrix. By
the reproducing kernel Hilbert space theory (Kimeldorf and Wahba 1971), Wm[0, 1]
is an RKHS when equipped with the inner product

( f, g) =
m−1∑
ν=0

[∫ 1

0
f (ν)(t)dt

] [∫ 1

0
g(ν)(t)dt

]
+
∫ 1

0
f (m)g(m)dt.

We can decompose Wm[0, 1] = H0 ⊕H1 as a direct sum of two RKHS subspaces.
In particular, H0 = { f : f (m) = 0} = span{kν(t), ν = 0, . . . , m − 1}, where
kν(t) = Bν(t)/ν! and Bν(t) are Bernoulli polynomials (Abramowitz and Stegun
1964). H1 = { f : ∫ 10 f (ν)(t) = 0, ν = 0, . . . , m − 1; f (m) ∈ L2[0, 1]}, associated
with the reproducing kernel K (t, s) = km(t)km(s)+ (−1)m−1k2m([s− t]), where [τ ]
is the fractional part of τ . Let S be a n × n square matrix with si,ν = kν−1(ti ) and 


be a square matrix with the (i, j)-th entry K (ti , t j ). Let the QR decomposition of S

be S = (F1, F2)

(
U
0

)
, where F = [F1, F2] is orthogonal and U is upper triangular

with S′F2 = 0. As shown in Wahba (1984) and Gu (2002), the influence matrix A can
be expressed as

A(λ1) = I − nλ1F2(F ′2V F2)
−1F ′2,

where V = 
+nλ1 I . Using the representer theorem (Wahba 1990), we can compute
the nonparametric estimator as

f̂PSA(t) =
m−1∑
ν=0

b̂νkν(t)+
n∑

i=1
ĉi K (t, ti ),

where ĉ = F2(F ′2V F2)−1F ′2y and b̂ = U−1F ′1(y−
ĉ). We summarize the algorithm
in the following:

Step 1. Fit the standard smoothing spline and construct the weights w j ’s. Compute
y∗ and X∗.

Step 2. Solve (21) using the LARS algorithm. Denote the solution as β̂
∗ =

(β̂∗1 , . . . , β̂∗d )′.
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102 G. Cheng et al.

Step 3. Calculate β̂PSA = (β̂1, · · · , β̂d)′ by β̂ j = β̂∗j |β̃ j |γ for j = 1, . . . , d.

Step 4. Obtain the nonparametric fit by f̂ = Sb̂ + 
ĉ, where the coefficients are
computed as ĉ = F2(F ′2V F2)−1F ′2y and β̂ = U−1F ′1(y−
ĉ).

4.2 Parameter tuning

One possible tuning approach for the double penalized estimator is to choose
(λ1, λ2) jointly by minimizing some scores. Following the local quadratic approx-
imation (LQA) technique used in Tibshirani (1996) and Fan and Li (2001), we
can derive the GCV score as a function of (λ1, λ2). Define the diagonal matrix
D(β) = diag{1/|β̃1β1|, . . . , 1/|β̃dβd |}. The solution β̂PSA can be approximated by[

X′{I − A(λ1)}X+ nλ2D(β̂PSA)
]−1

X′{I − A(λ1)}y ≡ Hy.

Correspondingly, f̂PSA = A(λ1)(y − Xβ̂PSA) = A(λ1)[I − XH ]y. Therefore, the
predicted response can be approximated as ŷ = X β̂PSA+ f̂PSA = M(λ1, λ2)y, where

M(λ1, λ2) = XH + A(λ1)[I − XH ].

Therefore, the number of effective parameters in the double penalized fit (β̂PSA, f̂PSA)

may be approximated by tr (M(λ1, λ2)). The GCV score can be constructed as

GCV(λ1, λ2) = n−1
∑n

i=1(yi − ŷi )
2

[1− n−1tr (M(λ1, λ2))]2 .

The two-dimensional search is computationally expensive in practice. In the fol-
lowing, we suggest an alternative two-stage tuning procedure. Since λ1 controls the
partial spline fit (β̃, b̃, c̃), we first select λ1 using the GCV at Step 1 of the computation
algorithm:

GCV(λ1) = n−1
∑n

i=1(yi − ỹi )
2

[1− n−1tr{ Ã(λ1)}]2
,

where ỹ = (ỹ1, . . . , ỹn)′ is the partial spline prediction and Ã(λ1) is the influence
matrix for the partial spline solution. Let λ∗1 = argminλ1 GCV(λ1). We can also
select λ∗1 using GCV in the smoothing spline problem: Yi −X′i β̃ = f (ti )+ εi , where
β̃ is the

√
n-consistent difference-based estimator (Yatchew 1997). This substitution

approach is theoretically valid for selection λ1 since the convergence rate of β̃ is
faster than the nonparametric rate for estimating f , and thus β̃ can be treated as
the true value. At the successive steps, we fix λ1 at λ∗1 and only select λ2 for the
optimal variable selection. Wang et al. (2007); Zhang and Lu (2007); Wang et al.
(2009) suggested that BIC works better in terms of consistent model selection than
the GCV when tuning λ2 for the adaptive LASSO in the context of linear models
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Sparse partial spline 103

even with diverging dimension. Therefore, we propose to choose λ2 by minimiz-
ing

BIC(λ2) = (y− Xβ̂PSA − f̂PSA)′(y− Xβ̂PSA − f̂PSA)/σ̂ 2 + log(n) · r,

where r is the number of nonzero coefficients in β̂, and the estimated residual vari-
ance σ̂ 2 can obtained from the standard partial spline model, i.e., σ̂ 2 = (y−Xβ̃PS −
f̃PS)′(y− Xβ̃PS − f̃P S)/(n − tr( Ã(λ1))− d).

5 Numerical studies

5.1 Simulation 1

We compare the standard partial smoothing splinemodelwith the newprocedure under
the LASSO (with w j = 1 in (3)) and adaptive (ALASSO) penalty. In the following,
these three methods are, respectively, referred to as “PS”, “PSL”, and “PSA”. We
also include the “Oracle model” fit assuming the true model were known. In all the
examples, we use γ = 1 for PSA and consider two sample sizes n = 100 and n = 200.
The smoothness parameter m was chosen to be 2 in all the numerical experiments.
In each setting, a total of 500 Monte Carlo (MC) simulations are carried out. We

report the MC sample mean and standard deviation (given in the parentheses) for
the MSEs. Following Fan and Li (2004), we use mean squared error M SE(β̂) =
E‖β̂−β‖2 and mean integrated squared error M I SE( f̂ ) = E

[∫ 1
0 { f̂ (t)− f (t)}2dt

]
to evaluate goodness-of-fit for parametric and nonparametric estimation, respectively,
and compute them by averaging over data knots in the simulations.
To evaluate the variable selection performance of each method, we report the num-

ber of correct zero (“correct 0”) coefficients, the number of coefficients incorrectly
set to 0 (“incorrect 0”), model size, and the empirical probability of capturing the true
model.
We generate data from a model Yi = X′iβ+ f (Ti )+ εi and consider two following

model settings:

• Model 1: β = (3, 2.5, 2, 1.5, 0, . . . , 0)′, d = 15 and q = 4. And f1(t) =
1.5 sin(2π t).

• Model 2: Let β = (3, . . . , 3, 0, . . . , 0)′, d = 20 and q = 10. The nonparametric
function f2(t) = t10(1 − t)4/(3B(11, 5)) + 4t4(1 − t)10/(15B(5, 11)), where
the beta function B(u, v) = ∫ 10 tu−1(1 − t)v−1dt . Two model coefficient vectors
β1 = β and β2 = β/3 were considered. The Euclidean norms of β1 and β2 are
‖β1‖ = 9.49 and ‖β2‖ = 3.16 respectively. The supnorm of f is ‖ f ‖sup = 1.16.
So the ratios ‖β1‖/‖ f ‖sup = 8.18 and ‖β2‖/‖ f ‖sup = 2.72, denoted as the
parametric-to-nonparametric signal ratios (PNSR). The two settings represent high
and low PNSR’s, respectively.

Two possible distributions for the covariates X and T

• Model 1: X1, . . . , X15, T are i.i.d. generated from Unif(0, 1).
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Table 1 Variable selection and fitting results for Model 1

σ n Method MSE(β̂PSA) MISE( f̂PSA) Size Number of zeros

Correct 0 Incorrect 0

0.5 100 PS 0.578 (0.010) 0.015 (0.000) 15 (0) 0 (0) 0 (0)

PSL 0.316 (0.008) 0.015 (0.000) 7.34 (0.09) 7.66 (0.09) 0.00 (0.00)

PSA 0.234 (0.008) 0.014 (0.000) 4.53 (0.04) 10.47 (0.04) 0.00 (0.00)

Oracle 0.129 (0.004) 0.014 (0.001) 4 (0) 11 (0) 0 (0)

200 PS 0.249 (0.004) 0.008 (0.000) 15 (0) 0 (0) 0 (0)

PSL 0.147 (0.004) 0.008 (0.000) 7.16 (0.09) 7.84 (0.09) 0.00 (0.00)

PSA 0.111 (0.004) 0.008 (0.000) 4.36 (0.04) 10.64 (0.04) 0.00 (0.00)

Oracle 0.063 (0.000) 0.007 (0.000) 4 (0) 11 (0) 0 (0)

1 100 PS 2.293 (0.040) 0.055 (0.002) 15 (0) 0 (0) 0 (0)

PSL 1.256 (0.032) 0.051 (0.002) 7.36 (0.09) 7.64 (0.09) 0.00 (0.00)

PSA 1.110 (0.036) 0.051 (0.002) 4.72 (0.05) 10.25 (0.05) 0.02 (0.00)

Oracle 0.511 (0.017) 0.048 (0.002) 4 (0) 11 (0) 0 (0)

200 PS 0.989 (0.017) 0.028 (0.001) 15 (0) 0 (0) 0 (0)

PSL 0.587 (0.016) 0.027 (0.001) 7.20 (0.09) 7.80 (0.09) 0.00 (0.00)

PSA 0.479 (0.014) 0.026 (0.001) 4.42 (0.04) 10.58 (0.04) 0.00 (0.00)

Oracle 0.252 (0.008) 0.026 (0.001) 4 (0) 11 (0) 0

• Model 2: X = (X1, . . . , X20)′ are standard normal with AR(1) correlation, i.e.,
corr(Xi , X j ) = ρ|i− j |. T follows Unif(0, 1) and is independent with Xi ’s. We
consider ρ = 0.3 and ρ = 0.6.

Two possible error distributions are used in these two settings:

• Model 1: (normal error) ε1 ∼ N (0, σ 2), with σ = 0.5 and σ = 1, respectively.
• Model 2: (non-normal error) ε2 ∼ t10, t-distribution with degrees of freedom 10.

Table 1 compares the model fitting and variable selection performance of various
procedures in different settings for Model 1. It is evident that the PSA procedure
outperforms both the PS and PSL in terms of both theMSE and variable selection. The
three procedures give similar performance in estimating the nonparametric function.
Table 2 shows that the PSAworksmuch better in distinguishing important variables

from unimportant variables than PSL. For example, when σ = 0.5, the PSA identifies
the correct model 500 × 0.70 = 350 times out of 500 times when n = 100 and
500 × 0.78 = 390 times when n = 200, while the PSL identifies the correct model
only 500×0.09 = 45 times when n = 100 and 500×0.10 = 50 times when n = 200.
To present the performance of our nonparametric estimation procedure, we plot the

estimated functions for Model 1 in the below Fig. 1. The top row of Fig. 1 depicts the
typical estimated curves corresponding to the 10th best, the 50th best (median), and the
90th best according toMISE among 100 simulationswhen n = 200 andσ = 0.5. It can
be seen that the fitted curves are overall able to capture the shape of the true function
very well. In order to describe the sampling variability of the estimated nonparametric
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Model 1: Fitted confidence envelope fit for f (n=200, σ=0.5)
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Fig. 1 The estimated nonlinear functions given by the PSA in Model 1. The estimated nonlinear function,
confidence envelop, and 95% point-wise confidence interval for Model 2 with n = 200 and σ = 0.5. In the
top plot, the dashed line is for the 10th best fit, the dotted line is for the 50th best fit, and the dashed-dotted
line is for the 90th best among 500 simulations. The bottom plot is a 95% pointwise confidence interval

function at each point, we also depict a 95% pointwise confidence interval for f in
the bottom row of Fig. 1. The upper and lower bound of the confidence intervals are
respectively given by the 2.5th and 97.5th percentiles of the estimated function at each
grid point among 100 simulations. The results show that the function f is estimated
with very good accuracy.
Tables 3 and 4, 5 and 6 summarize the simulation results when the true parametric

components are β1 and β2, respectively. Tables 3 and 5 compare the model fitting and
variable selection performance in the correlated setting Model 2. The case ρ = 0.3
represents a weak correlation among X ’s and ρ = 0.6 represents a moderate situation.
Again, we observe that the PSA performs best in terms of both MSE and variable
selection in all settings. In particular, when n = 200, the PSA is very close to the
“Oracle” results in this example.
Tables 4 and 6 compare the variable selection results of PSL and PSA in four

scenarios if the covariates are correlated. Since neither of the methods misses any
important variable over 500 runs, we only report the selection relative frequencies

123

Author's personal copy



Sparse partial spline 107

Table 3 Model selection and fitting results for Model 2 when the true parameter vector is β1 = β

ρ n Method MSE(β̂PSA) MISE( f̂PSA) Size Number of zeros

Correct 0 Incorrect 0

0.3 100 PS 0.416 (0.008) 0.451 (0.002) 20 (0) 0 (0) 0 (0)

PSL 0.299 (0.006) 0.447 (0.002) 12.99 (0.09) 7.01 (0.09) 0.00 (0.00)

PSA 0.204 (0.005) 0.443 (0.002) 10.29 (0.03) 9.71 (0.03) 0.00 (0.00)

Oracle 0.181 (0.004) 0.444 (0.002) 10 (0) 10 (0) 0 (0)

200 PS 0.179 (0.003) 0.408 (0.001) 20 (0) 0 (0) 0 (0)

PSL 0.125 (0.003) 0.406 (0.001) 13.22 (0.08) 6.78 (0.8) 0.00 (0.00)

PSA 0.087 (0.002) 0.404 (0.001) 10.12 (0.02) 9.88 (0.02) 0.00 (0.00)

Oracle 0.082 (0.002) 0.405 (0.001) 10 (0) 10 (0) 0 (0)

0.6 100 PS 0.721 (0.013) 0.448 (0.002) 20 (0) 0 (0) 0 (0)

PSL 0.401 (0.009) 0.440 (0.002) 11.91 (0.07) 8.09 (0.07) 0.00 (0.00)

PSA 0.349 (0.008) 0.438 (0.002) 10.22 (0.03) 9.78 (0.03) 0.00 (0.00)

Oracle 0.310 (0.004) 0.439 (0.002) 10 (0) 10 (0) 0 (0)

200 PS 0.311 (0.005) 0.408 (0.001) 20 (0) 0 (0) 0 (0)

PSL 0.170 (0.004) 0.405 (0.001) 12.47 (0.07) 7.53 (0.07) 0.00 (0.00)

PSA 0.147 (0.004) 0.404 (0.001) 10.12 (0.02) 9.88 (0.02) 0.00 (0.00)

Oracle 0.139 (0.004) 0.405 (0.001) 10 (0) 10 (0) 0 (0)

PNSR ≈ 8.18

Table 4 Relative frequency of variables selected in 500 runs for Model 2 when the true parameter vector
is β1 = β

ρ n Method Unimportant variable index P(correct)

11 12 13 14 15 16 17 18 19 20

0.3 100 PSL 0.35 0.34 0.34 0.34 0.35 0.33 0.34 0.35 0.34 0.36 0.11

PSA 0.05 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.02 0.04 0.82

200 PSL 0.34 0.32 0.30 0.32 0.29 0.30 0.30 0.31 0.30 0.30 0.14

PSA 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.91

0.6 100 PSL 0.32 0.26 0.24 0.25 0.25 0.23 0.22 0.25 0.24 0.26 0.20

PSA 0.06 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.87

200 PSL 0.29 0.23 0.20 0.18 0.19 0.20 0.18 0.17 0.19 0.20 0.25

PSA 0.02 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.96

for the unimportant variables. Overall, the PSA results in a more sparse model and
identifies the true model with a much higher frequency. For example, when the true
parametric component isβ1, n = 100 and the correlation ismoderatewithρ = 0.6, the
PSA identifies the correct model with relative frequency 0.87 (about 500×0.87 = 435
times) while the PSL identifies the correct model only 500×0.20 = 100 times. When
the true parametric component is β2, PSA and PSL identify the correct model 405 and
90 times, respectively.
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Table 5 Model selection and fitting results for Model 2 when the true parameter vector is β2 = β/3

ρ n Method MSE(β̂PSA) MISE( f̂PSA) Size Number of zeros

Correct 0 Incorrect 0

0.3 100 PS 0.520 (0.008) 0.432 (0.002) 20 (0) 0 (0) 0 (0)

PSL 0.321 (0.005) 0.430 (0.002) 13.32 (0.08) 6.68 (0.08) 0.00 (0.00)

PSA 0.269 (0.005) 0.425 (0.002) 10.44 (0.05) 9.56 (0.05) 0.00 (0.00)

Oracle 0.230 (0.004) 0.422 (0.002) 10 (0) 10 (0) 0 (0)

200 PS 0.226 (0.003) 0.390 (0.001) 20 (0) 0 (0) 0 (0)

PSL 0.141 (0.003) 0.390 (0.001) 13.11 (0.08) 6.89 (0.08) 0.00 (0.00)

PSA 0.116 (0.002) 0.387 (0.001) 10.38 (0.04) 9.62 (0.04) 0.00 (0.00)

Oracle 0.110 (0.002) 0.386 (0.001) 10 (0) 10 (0) 0 (0)

0.6 100 PS 0.901 (0.013) 0.432 (0.002) 20 (0) 0 (0) 0 (0)

PSL 0.420 (0.007) 0.425 (0.002) 12.50 (0.08) 7.95 (0.08) 0.00 (0.00)

PSA 0.382 (0.007) 0.419 (0.002) 10.30 (0.04) 9.70 (0.04) 0.00 (0.00)

Oracle 0.350 (0.005) 0.407 (0.002) 10 (0) 10 (0) 0 (0)

200 PS 0.382 (0.005) 0.388 (0.001) 20 (0) 0 (0) 0 (0)

PSL 0.192 (0.003) 0.387 (0.001) 12.20 (0.07) 7.80 (0.07) 0.00 (0.00)

PSA 0.181 (0.004) 0.386 (0.001) 10.17 (0.02) 9.83 (0.02) 0.00 (0.00)

Oracle 0.174 (0.003) 0.385 (0.001) 10 (0) 10 (0) 0 (0)

PNSR ≈ 2.72

Table 6 Relative frequency of variables selected in 500 runs for Model 2 when the true parameter vector
is β2 = β/3

ρ n Method Unimportant variable index P(correct)

11 12 13 14 15 16 17 18 19 20

0.3 100 PSL 0.36 0.33 0.35 0.34 0.37 0.33 0.34 0.35 0.32 0.37 0.09

PSA 0.06 0.04 0.05 0.05 0.03 0.04 0.05 0.05 0.05 0.05 0.78

200 PSL 0.34 0.32 0.31 0.35 0.32 0.32 0.32 0.30 0.31 0.33 0.11

PSA 0.04 0.04 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.03 0.87

0.6 100 PSL 0.34 0.28 0.25 0.23 0.25 0.23 0.24 0.25 0.24 0.28 0.18

PSA 0.08 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.81

200 PSL 0.29 0.25 0.21 0.15 0.19 0.20 0.16 0.18 0.19 0.19 0.22

PSA 0.04 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.92

The top rows of Figs. 2 and 3 depict the typical estimated functions corresponding
to the 10th best, the 50th best (median), and the 90th best fits according to MISE
among 100 simulations when n = 200, ρ = 0.3, and the true Euclidean parameters
are β1 and β2, respectively. It is evident that the estimated curves are able to capture
the shape of the true function very well. The bottom rows of Figs. 2 and 3 depict
the 95% pointwise confidence intervals for f . The results show that, when the true
Euclidean parameters are β1 and β2, respectively, the function f is estimated with
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Model 2: Fitted confidence envelope fit for f when the true parameter vector is β1 (n=200, ρ=0.3)
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Fig. 2 The estimated nonlinear functions given by the PSA in Model 2. The estimated nonlinear function,
confidence envelop, and 95% point-wise confidence interval for Model 2, n = 200, ρ = 0.3, and the true
Euclidean parameter is β1. In the top plot, the dashed line is 10th best fit, the dotted line is 50th best fit,
and the dashed-dotted line is 90th best of 500 simulations. The bottom plot is a 95% pointwise confidence
interval

reasonably good accuracy. Interestingly, in this simulation setting, the choice of β1
and β2 does not affect much on the estimation accuracy of f .

5.2 Simulation 2: large dimensional setting

We consider an example involving a larger number of linear variables:

• Model 3: Let d = 60, q = 15. We considered two parameter vectors β1 =
β and β2 = 0.3β, and two nonparametric functions f1(t) = f (t) and
f2(t) = 0.5 f (t), with different magnitudes on the (non)parametric compo-
nent representing “weak” and “strong” (non)parametric signals, where β =
(4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 0, . . . , 0)′ and f (t) = 0.2t29(1 − t)16

/B(30, 17)+ 0.8t2(1− t)10/B(3, 11). In particular, the maximum absolute values
of f1 and f2 are ‖ f1‖sup = 3.08 and ‖ f2‖sup = 1.54, respectively, and the �2-norms
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Model 2: Fitted confidence envelope fit for f when the true parameter vector is β2 (n=200, ρ=0.3)
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Fig. 3 The estimated nonlinear functions given by the PSA in Model 2. The estimated nonlinear function,
confidence envelop, and 95% point-wise confidence interval for Model 2, n = 200, ρ = 0.3, and the true
Euclidean parameter is β2. In the top plot, the dashed line is 10th best fit, the dotted line is 50th best fit,
and the dashed-dotted line is 90th best of 500 simulations. The bottom plot is a 95% pointwise confidence
interval

of the β1 and β2 are ‖β1‖ = 12.04 and ‖β2‖ = 3.61, respectively. So the ratio of
‖β2‖ to ‖ f1‖sup and ‖β1‖ to ‖ f2‖sup, i.e., the PNSR’s, are ‖β2‖/‖ f1‖sup = 1.17
and ‖β1‖/‖ f2‖sup = 7.82, representing the lower to higher PNSRs. The corre-
lated covariates (X1, . . . , X60)′ are generated from marginally standard normal
with AR(1) correlation with ρ = 0.5. Consider two settings for the normal error
ε1 ∼ N (0, σ 2), with σ = 0.5 and σ = 1.5, respectively.
Tables 7 and 8 compare the model fitting and variable selection performance of

various procedures in different settings for Model 3. In particular, in Table 7, the true
Euclidean parameter and nonparametric function are β2 and f1, while in Table 8 they
are β1 and f2. So the PNSR’s in Tables 7 and 8 are 1.17 and 7.82, respectively. To
better illustrate the performance, we considered σ = 0.5 and 1.5 in each table. The
corresponding signal-to-noise ratios, defined as the ratios of ‖β1‖ (‖β2‖) to σ ’s, are
24.08, 8.03, 7.22, and 2.41 in the four settings. It is evident that the PSA procedure
outperforms both the PS and PSL in terms of both theMSE and variable selection accu-
racy. The three procedures give similar performance in estimating the nonparametric
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Table 7 Variable selection and fitting results for Model 3 when the true parameter vector is β2 and the
true function is f1

σ n Method MSE(β̂) MISE( f̂ ) Size Number of zeros

Correct 0 Incorrect 0

0.5 100 PS 4.194 (0.059) 1.139 (0.020) 60 (0) 0 (0) 0 (0)

PSL 0.526 (0.017) 0.641 (0.011) 27.86 (0.30) 32.14 (0.30) 0.00 (0.00)

PSA 0.304 (0.011) 0.601 (0.011) 21.43 (0.29) 38.56 (0.29) 0.00 (0.00)

Oracle 0.225 (0.010) 0.522 (0.011) 15 (0) 45 (0) 0 (0)

200 PS 0.905 (0.010) 0.851 (0.013) 60 (0) 0 (0) 0 (0)

PSL 0.223 (0.007) 0.618 (0.011) 26.12 (0.22) 33.88 (0.22) 0.00 (0.00)

PSA 0.134 (0.004) 0.548 (0.010) 18.78 (0.20) 41.22 (0.20) 0.00 (0.00)

Oracle 0.102 (0.002) 0.478 (0.009) 15 (0) 45 (0) 0 (0)

1.5 100 PS 10.014 (0.131) 1.500 (0.027) 60 (0) 0 (0) 0 (0)

PSL 2.702 (0.066) 1.256 (0.014) 27.90 (0.35) 32.10 (0.35) 0.00 (0.00)

PSA 1.410 (0.040) 1.220 (0.012) 21.70 (0.22) 38.30 (0.22) 0.00 (0.00)

Oracle 1.038 (0.015) 1.128 (0.009) 15 (0) 45 (0) 0 (0)

200 PS 2.440 (0.020) 1.091 (0.030) 60 (0) 0 (0) 0 (0)

PSL 0.688 (0.011) 1.063 (0.003) 26.00 (0.25) 35.00 (0.25) 0.00 (0.00)

PSA 0.471 (0.008) 1.052 (0.002) 21.05 (0.20) 38.95 (0.20) 0.00 (0.00)

Oracle 0.448 (0.006) 1.042 (0.002) 15 (0) 45 (0) 0 (0)

PNSR ≈ 1.17. SNRs ≈ 7.22 and 2.41 for σ = 0.5 and 1.5 respectively

function. In Figs. 4 and 5, we plotted the confidence envelop and the 95% confidence
band of f1 and f2 when n = 200, σ = 0.5, and the true Euclidean parameters are
β2 and β1, respectively. All the figures demonstrate satisfactory coverage of the true
unknown nonparametric function by confidence envelops and pointwise confidence
bands. We also conclude that, at least in this simulation setup, for the two settings with
different PNSR’s, the estimates of f1 and f2 are satisfactory.

5.3 Real example 1: ragweed pollen data

We apply the proposed method to the Ragweed Pollen data analyzed in Ruppert et
al. (2003). The data consist of 87 daily observations of ragweed pollen level and
relevant information collected in Kalamazoo, Michigan during the 1993 ragweed sea-
son. The main purpose of this analysis is to develop an accurate model for fore-
casting daily ragweed pollen level based on some climate factors. The raw response
ragweed is the daily ragweed pollen level (grains/m3). There are four explanatory
variables:

X1 = rain: the indicator of significant rain for the following day (1 = at least 3h of
steady or brief but intense rain, 0 = otherwise);
X2 = temperature: temperature of the following day (o F);
X3 = wind: wind speed forecast for the following day (knots);
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Table 8 Variable selection and fitting results for Model 3 when the true parameter vector is β1 and the
true function is f2

σ n Method MSE(β̂PSA) MISE( f̂PSA) Size Number of zeros

Correct 0 Incorrect 0

0.5 100 PS 1.599 (0.034) 0.321 (0.003) 60 (0) 0 (0) 0 (0)

PSL 0.334 (0.019) 0.241 (0.002) 18.44 (0.06) 41.56 (0.06) 0.00 (0.00)

PSA 0.203 (0.011) 0.232 (0.002) 15.30 (0.03) 44.70 (0.06) 0.00 (0.00)

Oracle 0.163 (0.002) 0.220 (0.002) 15 (0) 45 (0) 0 (0)

200 PS 0.379 (0.003) 0.254 (0.001) 60 (0) 0 (0) 0 (0)

PSL 0.112 (0.002) 0.236 (0.001) 17.19 (0.03) 42.81 (0.03) 0.00 (0.00)

PSA 0.094 (0.001) 0.230 (0.001) 15.02 (0.01) 44.98 (0.01) 0.00 (0.00)

Oracle 0.068 (0.000) 0.208 (0.001) 15 (0) 45 (0) 0 (0)

1.5 100 PS 7.271 (0.083) 0.539 (0.013) 60 (0) 0 (0) 0 (0)

PSL 1.588 (0.035) 0.459 (0.009) 27.69 (0.22) 32.31 (0.22) 0.00 (0.00)

PSA 1.285 (0.028) 0.434 (0.007) 21.12 (0.19) 38.88 (0.19) 0.00 (0.00)

Oracle 0.785 (0.011) 0.395 (0.004) 15 (0) 45 (0) 0 (0)

200 PS 1.886 (0.014) 0.351 (0.003) 60 (0) 0 (0) 0 (0)

PSL 0.571 (0.010) 0.339 (0.002) 26.35 (0.19) 33.65 (0.19) 0.00 (0.00)

PSA 0.472 (0.006) 0.334 (0.002) 19.08 (0.14) 40.92 (0.14) 0.00 (0.00)

Oracle 0.342 (0.005) 0.325 (0.002) 15 (0) 45 (0) 0 (0)

PNSR ≈ 7.82. SNRs ≈ 24.08 and 8.03 for σ = 0.5 and 1.5 respectively

X4 = day: the number of days in the current ragweed pollen season.
We first standardize X -covariates. Since the raw response is rather skewed, Ruppert
et al. (2003) suggested a square root transformation Y = √ragweed. Marginal plots
suggest a strong nonlinear relationship between Y and the day number. Consequently,
a partial linear model with a nonparametric baseline f (day) is reasonable. Ruppert
et al. (2003) fitted a semiparametric model with three linear effects X1, X2, and X3,
and a nonlinear effect of X4. For the variable selection purpose, we add the quadratic
terms in the model and fit an enlarged model:

y = f (day)+ β1x1 + β2x2 + β3x3 + β4x22 + β4x23 + ε.

Table 9 gives the estimated regression coefficients. We observe that PSL and PSA end
up with the same model, and all the estimated coefficients are positive, suggesting
that the ragweed pollen level increases as any covariate increases. The shrinkage in
parametric terms from the partial spline models that resulted from the PSA procedure
is overall smaller than that resulted from the PSL procedure.
Figure 6 depicts the estimated nonparametric function f̂ (day) and its 95% point-

wise confidence intervals given by the PSA. The plot indicates that f̂ (day) increases
rapidly to the peak on around day 25, plunges until day 60, and decreases steadily
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Model 3: Fitted confidence envelope fit for f1 when the true parameter vector is β2 (n=200, σ=0.5)
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Fig. 4 The estimated nonlinear functions given by the PSA in Model 3. The estimated nonlinear function,
confidence envelop, and 95% point-wise confidence interval for Model 3 with true nonparametric function
f1 and true Euclidean parameter β2, n = 200 and σ = 0.5. In the top plot, the dashed line is for the 10th
best fit, the dotted line is for the 50th best fit, and the dashed-dotted line is for the 90th best among 500
simulations. The bottom plot is a 95% pointwise confidence interval

thereafter. The nonparametric fits given by the other two procedures are similar and
hence omitted in the paper.
We examined the prediction accuracy for PS, PSL and PSA, in terms of the mean

squared prediction errors (MSPE) based the leave-one-out strategy. We also fit linear
models for the above data using LASSO. Our analysis shows that the MSPEs for PS,
PSL, and PSA are 5.63, 5.61, and 5.47, respectively, while the MSPE for LASSO
based on linear models is 12.40. Roughly speaking, the MSPEs using PS, PSL, and
PSA are similar, though they provide different model selection results summarized in
Table 9. Notice that the PS method keeps more variables in the model than the PSL
and PSA; however, the MSPEs are not much different. Thus, using PSL or PSA one
can select a subgroup of significant variables to explain the model. Furthermore, the
large MSPE based on linear models demonstrates invalidity of simply using linear
models for such data.
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Model 3: Fitted confidence envelope fit for f2 when the true parameter vector is β1 (n=200, σ=0.5)
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Fig. 5 The estimated nonlinear functions given by the PSA in Model 3. The estimated nonlinear function,
confidence envelop, and 95% point-wise confidence interval for Model 3 with true nonparametric function
f2 and true Euclidean parameter β1, n = 200 and σ = 0.5. In the top plot, the dashed line is for the 10th
best fit, the dotted line is for the 50th best fit, and the dashed-dotted line is for the 90th best among 500
simulations. The bottom plot is a 95% pointwise confidence interval

5.4 Real example 2: prostate cancer data

We analyze the Prostate Cancer data (Stamey et al. 1989). The goal is to predict the
log level of prostate-specific antigen using a number of clinical measures. The data
consist of 97 men who were about to receive a radical prostatectomy. There are eight
predictors: X1 = log cancer volume (lcavol), X2 = log prostate weight (lweight),
X3 = age, X4 = log of benign prostatic hyperplasia amount (lbph), X5 = seminal
vesicle invasion (svi), X6 = log of capsular penetration (lcp), X7 = Gleason score
(gleason), and X8 = percent of Gleason scores of 4 or 5 (pgg45).
A variable selection analysis was conducted in Tibshirani (1996) using a lin-

ear regression model with LASSO, and it selected three important variables lcavol,
lweight, svi as important variables to predict the prostate specific antigen. We fitted
partially linear models by treating lweight as a nonlinear term. Table 10 gives the
estimated coefficients for different methods. Interestingly, both PSL and PSA select
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Table 9 Estimated coefficients
for Ragweed Pollen data

Covariate PS PSL PSA

Rain 1.3834 1.3620 1.3816

Temperature 0.1053 0.1045 0.1053

Wind 0.2407 0.2384 0.2409

Temp×temp 0.0042 0.0041 0.0041

Wind×wind −0.0004 0 0

Fig. 6 The estimated nonlinear
function f̂ (day) with its 95%
pointwise confidence interval
(dotted lines) given by the PSA
for the ragweed pollen data
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Table 10 Estimated coefficients
for prostate cancer data

Covariate PS PSL PSA

lcavol 0.587 0.443 0.562

Age −0.020 0 0

lbph 0.107 0 0

svi 0.766 0.346 0.498

lcp −0.105 0 0

Gleason 0.045 0 0

pgg45 0.005 0 0
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lcavol and svi as important linear variables, which is consistent to the analysis by
Tibshirani (1996).

6 Discussion

We propose a new regularization method for simultaneous variable selection for linear
terms and component estimation for the nonlinear term in partial spline models. The
oracle properties of the newprocedure for variable selection are established.Moreover,
we have shown that the new estimator can achieve the optimal convergence rates for
both the parametric and nonparametric components. All the above conclusions are
also proven to hold in the increasing dimensional situation.
The proposed method sets up a basic framework to implement variable selection

for partial spline models, and it can be generalized to other types of data analysis.
In our future research, we will generalize the results in this paper to the generalized
semiparametric models, robust linear regression, or survival data analysis. In this
paper, we assume the errors are i.i.d. with constant variance, and the smoothness order
of the Sobolev space is fixed as m, though in practice we used m = 2 to facilitate
computation. In practice, the problem of heteroscedastic error, i.e., the variance of ε

is some non-constant function of (X, T ), is often encountered. Meanwhile, the order
m may not be always available which needs to be approximated. We will examine the
latter two issues in the future.

7 Proofs

For simplicity, we use β̂, β̂1 (β̂2) and f̂ to represent β̂PSA, β̂PSA,1 (β̂PSA,2) and f̂PSA,
in the proofs.

Definition Let A be a subset of a (pseudo-) metric space (L, d) of real-valued
functions. The δ-covering number N (δ,A, d) of A is the smallest N for which
there exist functions a1, . . . , aN in L, such that for each a ∈ A, d(a, a j ) ≤ δ

for some j ∈ {1, . . . , N }. The δ-bracketing number NB(δ,A, d) is the smallest N
for which there exist pairs of functions {[aL

j , aU
j ]}Nj=1 ⊂ L, with d(aL

j , aU
j ) ≤ δ,

j = 1, . . . , N , such that for each a ∈ A there is a j ∈ {1, . . . , N } such that
aL

j ≤ a ≤ aU
j . The δ-entropy number (δ-bracketing entropy number) is defined

as H(δ,A, d) = log N (δ,A, d) (HB(δ,A, d) = log NB(δ,A, d)).

Entropy Calculations: For each 0 < C <∞ and δ > 0, we have

HB(δ, {η : ‖η‖∞ ≤ C, Jη ≤ C}, ‖ · ‖∞) ≤ M

(
C

δ

)1/m

, (22)

H(δ, {η : ‖η‖∞ ≤ C, Jη ≤ C}, ‖ · ‖∞) ≤ M

(
C

δ

)1/m

, (23)

where ‖ · ‖∞ represents the uniform norm and M is some positive number.
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Proof of Theorem 1 In the proof of (8), we will first show for any given ε > 0, there
exists a large constant M such that

P

{
inf‖s‖=M

�(s) > 0

}
≥ 1− ε, (24)

where�(s) ≡ Q(β0+n−1/2s)−Q(β0). This implies with probability at least (1−ε)

that there exists a local minimum in the ball {β0 + n−1/2s : ‖s‖ ≤ M}. Thus, we can
conclude that there exists a local minimizer such that ‖β̂n−β0‖ = OP (n−1/2) if (24)
holds. Denote the quadratic part of Q(β) as L(β), i.e.,

L(β) = 1

n
(y− Xβ)′[I − A(λ1)](y− Xβ).

Then we can obtain the below inequality:

�(s) ≥ L(β0 + n−1/2s)− L(β0)+ λ2

q∑
j=1

|β0 j + n−1/2s j | − |β0 j |
|β̃ j |γ

,

where s j is the j-th element of vector s. Note that L(β) is a quadratic function of β.
Hence, by the Taylor expansion of L(β), we can show that

�(s) ≥ n−1/2s′ L̇(β0)+
1

2
s′[n−1 L̈(β0)]s+ λ2

q∑
j=1

|β0 j + n−1/2s j | − |β0 j |
|β̃ j |γ

, (25)

where L̇(β0) and L̈(β0) are the first and second derivative of L(β) at β0, respectively.
Based on (5), we know that −L̇(β0) = (2/n)X′[I − A(λ1)](y− Xβ0) and L̈(β0) =
(2/n)X′[I − A(λ1)]X. Combing the proof of Theorem 1 and its four propositions in
Heckman (1986), we can show that

n−1/2X′[I − A(λ1)]( f0 + ε)
d−→ N (0, σ 2R),

n−1/2X′A(λ1)ε
P−→ 0.

provided that λ1 → 0 and nλ
1/2m
1 → ∞. Therefore, the Slutsky’s theorem implies

that

L̇(β0) = OP (n−1/2), (26)

L̈(β0) = OP (1) (27)

given the above conditions on λ1. Based on (26) and (27), we know the first two
terms in the right-hand side of (25) are of the same order, i.e., OP (n−1). And the
second term, which converges to some positive constant, dominates the first one by
choosing sufficiently large M . The third term is bounded by n−1/2λ2M0 for some

123

Author's personal copy



118 G. Cheng et al.

positive constant M0 since β̃ j is the consistent estimate for the nonzero coefficient for
j = 1, . . . , q. Considering that

√
nλ2 → 0, we have completed the proof of (8).

We next show the convergence rate for f̂ in terms of ‖ · ‖n-norm, i.e., (9). Let
g0(x, t) = x′β0 + f0(t), and ĝ(x, t) = x′β̂ + f̂ (t). Then, by the definition of (β̂, f̂ ),
we have

‖ĝ − g0‖2n + λ1 J 2
f̂
+ λ2 J

β̂
≤ 2

n

n∑
i=1

εi (ĝ − g0)(Xi , ti )+ λ1 J 2f0 + λ2 Jβ0 ,

‖ĝ − g0‖2n ≤ 2‖ε‖n‖ĝ − g0‖n + λ1 J 2f0 + λ2 Jβ0 ,

‖ĝ − g0‖2n ≤ ‖ĝ − g0‖n OP (1)+ oP (1), (28)

where Jβ ≡ ∑d
j=1 |β j |/|β̃ j |γ . The second inequality follows from the Cauchy-

Schwartz inequality. The last inequality holds since ε has sub-exponential tail, and
λ1, λ2 → 0. Then the above inequality implies that ‖ĝ − g0‖n = OP (1), so that
‖ĝ‖n = OP (1). By Sobolev embedding theorem, we can decompose g(x, t) as
g1(x, t) + g2(x, t), where g1(x, t) = x ′β + ∑m

j=1 α j t j−1 and g2(x, t) = f2(t)
with ‖g2(x, t)‖∞ ≤ Jg2 = J f . Similarly, we can write ĝ = ĝ1 + ĝ2, where
ĝ1 = x ′β̂ + ∑m

j=1 α̂ j t j−1 = δ̂′φ and ‖ĝ2‖∞ ≤ Jĝ . We shall now show that
‖ĝ‖∞/(1+ Jĝ) = OP (1) via the above Sobolev decomposition. Then

‖ĝ1‖n

1+ Jĝ
≤ ‖ĝ‖n

1+ Jĝ
+ ‖ĝ2‖n

1+ Jĝ
= OP (1). (29)

Based on the assumption about
∑

k φkφ
′
k/n, (29) implies that ‖δ̂‖/(1+ Jĝ) = OP (1).

Since (X, t) is in a bounded set, ‖ĝ1‖∞/(1+ Jĝ) = OP (1). So we have proved that
‖ĝ‖∞/(1+ Jĝ) = OP (1). Thus, the entropy calculation (22) implies that

HB

(
δ,

{
g − g0
1+ Jg

: g ∈ G,
‖g‖∞
1+ Jg

≤ C

}
, ‖ · ‖∞

)
≤ M1δ

−1/m,

where M1 is some positive constant, and G = {g(x, t) = x ′β + f (t) : β ∈ Rd , J f <

∞}. Based on Theorem 2.2 in Mammen and van de Geer (1997) about the continuity
modulus of the empirical processes {∑n

i=1 εi (g− g0)(zi )} indexed by g and (28), we
can establish the following set of inequalities:

λ1 J 2
f̂
≤
[
‖ĝ − g0‖1−1/2m

n (1+ J f̂ )
1/2m ∨ (1+ J f̂ )n

− 2m−1
2(2m+1)

]
OP

(
n−1/2

)
+λ1 J 2f0 + λ2(Jβ0 − J

β̂
), (30)
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and

‖ĝ − g0‖2n ≤
[
‖ĝ − g0‖1−1/2m

n (1+ J f̂ )
1/2m ∨ (1+ J f̂ )n

− 2m−1
2(2m+1)

]
OP

(
n−1/2

)
+λ1 J 2f0 + λ2(Jβ0 − J

β̂
).

(31)

Note that

λ2(Jβ0 − J
β̂
) ≤ λ2

q∑
j=1

|β0 j − β̂ j |
|β̃ j |γ

+ λ2

d∑
j=q+1

|β0 j − β̂ j |
|β̃ j |γ

≤ OP

(
n−2m/(2m+1)) . (32)

(32) in the above follows from ‖β̂−β0‖ = OP (n−1/2) and (7). Thus, solving the above
two inequalities gives ‖ĝ−g0‖n = OP (λ

1/2
1 ) and J f̂ = OP (1)when n2m/(2m+1)λ1→

λ10 > 0. Note that

‖X ′(β̂ − β0)‖n=
√√√√(β̂−β0)

′
(

n∑
i=1

Xi X ′i/n

)
(β̂ − β0)

<∼ ‖β̂ − β0‖ = OP

(
n−1/2

)

by (8). Applying the triangle inequality to ‖ĝ − g0‖n = OP (λ
1/2
1 ), we have proved

that ‖ f̂ − f0‖n = OP (λ
1/2
1 ).

We next prove 3(a). It suffices to show that

Q{(β̄1, 0)} = min
‖β̄2‖≤Cn−1/2

Q{(β̄1, β̄2)} with probability approaching to 1 (33)

for any β̄1 satisfying ‖β̄1 − β1‖ = OP (n−1/2) based on (8). To show (33), we need
to show that ∂ Q(β)/∂β j < 0 for β j ∈ (−Cn−1/2, 0), and ∂ Q(β)/∂β j > 0 for
β j ∈ (0, Cn−1/2), for j = q + 1, . . . , d, holds with probability tending to 1. By two
term Taylor expansion of L(β) at β0, ∂ Q(β)/∂β j can be expressed in the following
form for j = q + 1, . . . , d:

∂ Q(β)

∂β j
= ∂L(β0)

∂β j
+

d∑
k=1

∂2L(β0)

∂β j∂βk
(βk − β0k)+ λ2

1× sgn(β j )

|β̃ j |γ
,

where βk is the kth element of vector β. Note that ‖β − β0‖ = OP (n−1/2) by the
above constructions. Hence , we have

∂ Q(β)

∂β j
= OP (n−1/2)+ sgn(β j )

λ2

|β̃ j |γ
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by (26) and (27) in the above. The assumption (7) implies that
√

nλ2/|β̃ j |γ → ∞
for j = q + 1, . . . , d. Thus, the sign of β j determines that of ∂ Q(β)/∂β j for j =
q + 1, . . . , d. This completes the proof of 3(a).
Now we prove 3(b). Following similar proof of (8), we can show that there exists

a
√

n consistent local minimizer of Q(β1, 0), i.e., β̂1, and satisfies

∂ Q(β)

∂β j
|
β=(β̂1,0)

= 0

for j = 1, . . . , q. By similar analysis in the above, we can establish the equation:

0 = ∂L(β0)

∂β j
+

q∑
k=1

{
∂2L(β0)

∂β j∂βk

}
(β̂k − β0k)+ λ2

1× sgn(β̂ j )

|β̃ j |γ
,

for j = 1, . . . , q. Note that the assumption
√

nλ2 → 0 implies that the third term in
the right-hand side of the above equation is oP (n−1/2). By the form of L(β) and the
Slutsky’s theorem, we conclude the proof of 3(b). ��

Important Lemmas. We provide three useful matrix inequalities and two lemmas for
preparing the proofs of Theorems 2 and 3. Given any n ×m matrix A and symmetric
strictly positive definite matrix B, n × 1 vector s and z, and m × 1 vector w, we have

|s′Aw| ≤ ‖s‖‖A‖‖w‖ (34)

|s′Bz| ≤ |s′Bs|1/2|z′Bz|1/2 (35)

|s′z| ≤ ‖s‖‖z‖, (36)

where ‖A‖2 =∑ j
∑

i a2i j . (35) follows from the Cauchy-Schwartz inequality.

Lemma 2 Given that λ1→ 0, we have

n−k/2
n∑

l=1
|[(I − A)f0(t)]l |k = O(λ

k/2
1 ) for k = 2, 3, . . . (37)

Proof For the case of k = 2, it has been proved in Lemma 2 of Heckman (1986).
Next we apply the principle of mathematical induction to prove the cases for arbitrary
k > 2. We first assume that

n−(k−1)/2
n∑

l=1
|[(I − A)f0(t)]l |k−1 = O(λ

(k−1)/2
1 ) (38)
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for k = 3. Then we can write

n−k/2
n∑

l=1
|[(I − A)f0(t)]l |k

≤ n−1/2 max
l=1,...,n |[(I − A)f0(t)]l | × n−(k−1)/2

n∑
l=1
|[(I − A)f0(t)]l |k−1

≤ n−1/2
[

n∑
l=1
[(I − A)f0(t)]2l

]1/2
× O(λ

(k−1)/2
1 ) = O(λ

k/2
1 ).

The last step follows from (38) and the case for k = 2. ��

Lemma 3 Given that dn ≤ n1/2 ∧ nλ
1/2m
1 , we have

[
X′A(λ1)ε

]
i = OP (λ

−1/4m
1 ), (39)[

X′((I − A(λ1))f0 + ε)
]

i = OP (n1/2), (40)[
X′(I − A(λ1))X/n

]
i j = Ri j + OP (n−1/2 ∨ n−1λ−1/2m

1 ), (41)

‖X′(I − A(λ1))X/n − R‖ = oP (1). (42)

Proof We first state the Lemma 4.1 and 4.3 in Craven and Wahba (1979):

n−1
∑

j

[
(I − A)f0

]2
j ≤ λ1

∫ 1

0

(
f (m)
0 (t)

)2
dt, (43)

tr(A) = O(λ
−1/2m
1 ) and tr(A2) = O(λ

−1/2m
1 ). (44)

By the fact that V ar [(X′Aε)i ] = σ 2Rii tr(A2), we can show that [X′Aε]i =
OP (λ

−1/4m
1 ) based on (44), thus proved (39). We first write the left hand side of

(40) as
√

n
∑n

j=1 Wi j , where

Wi j = n−1/2Xi j (ε j + ((I − A)f0) j ) and Xi j is the ( j, i)− th element of X

for i = 1, . . . , dn . We next apply the Lindeberg’s theorem to
∑

j Wi j . It is easy

to show that V ar(
∑

j Wi j ) = Ri iσ
2 + Ri i n−1

∑
j [(I − A)f0]2j . By (43), we have

V ar(
∑

j Wi j )→ Ri iσ
2. We next verify the Liapounov’s condition:

∑
j

E |Wi j |3 = n−3/2E |Xi j |3
∑

j

E |ε j + [(I − A)f0] j |3

≤ 3n−3/2
⎡⎣nE |ε|3 +

∑
j

|[(I − A)f0] j |3
⎤⎦→ 0
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by the sub-exponential tail of ε and (37). Then theLindeberg’s theorem implies (40).As
for (41),wefirstwrite (41) as the sumofRi j , [X′X/n]i j−Ri j and [−X′AX/n]i j . By the
central limit theorem, the second term in the above decomposition is OP (n−1/2). For
the last term, we have E{(X′AX)i j }2 = (Ri j )

2(tr(A))2+ (Ri i R j j + (Ri j )
2)tr(A2)+

(E(X1i X1 j )
2 − 2(Ri j )

2 − Ri i R j j )
∑

r A2rr for i �= j . When i = j , we have
E |(X′AX)i i | = Ri i tr(A). By considering (44) we have proved (41). (41) implies that

‖X′(I − A)X/n − R‖ = OP (dnn−1/2 ∨ dnn−1λ−1/2m
1 ). (45)

Thus (42) follows from the dimension condition D1. ��
Proof of Lemma 1 Based on the definition on β̃ P S , we have the following inequality:

1

n
(β̃ P S − β0)

′X′(I − A)X(β̃ P S − β0)−
2

n
(β̃ P S − β0)

′X′(I − A)(f0 + ε) ≤ 0.

Let δn = n−1/2[X′(I − A)X]1/2(β̃ P S−β0) and ωn = n−1/2[X′(I − A)X]−1/2X′(I −
A)(f0 + ε). Then the above inequality can be rewritten as ‖δn‖2 − 2ω′nδn ≤ 0, i.e.,
‖δn − ωn‖2 ≤ ‖ωn‖2. By Cauchy-Schwartz inequality, we have ‖δn‖2 ≤ 2(‖δn −
ωn‖2 + ‖ωn‖2) ≤ 4‖ωn‖2. Examine ‖ωn‖2 = K1n + K2n + K3n , with

K1n = n−1ε′(I − A)X[X′(I − A)X]−1X′(I − A)ε

K2n = 2n−1ε′(I − A)X[X′(I − A)X]−1X′(I − A)f0(t)

K3n = n−1f0(T )′(I − A)X[X′(I − A)X]−1X′(I − A)f0(t).

Applying (39), (40) and (41) to the above three terms, we can conclude that all of them
are of the order OP (dnn−1) by considering the matrix inequalities (34)–(36). Thus we
have proved (11) by considering (42). ��
Proof of Theorem 2 The proof proceeds in several parts. First we show the rate con-
vergence of the PSA parametric estimate, i.e., (12). Second, we derive the rate of
convergence for f̂ .
Let αn = √dn/n. Similar as (25), we have

Q(β0 + αns)− Q(β0) ≥ αns′ L̇(β0)+
1

2
s′[α2n L̈(β0)]s

+λ2

qn∑
j=1

|β0 j + αns j | − |β0 j |
|β̃ j |γ

, (46)

where the forms of L̇(β0) and L̈(β0) are specified in the proof of Theorem 1. By
considering the lemma 3, (34) and (36) in the appendix, we have

αns′ L̇(β0) = ‖s‖OP (dn/n) (47)
1

2
s′[α2n L̈(β0)]s = (dn/n)s′Rs+ OP (d2n n−3/2 ∨ d2n n−2λ−1/2m

1 ) (48)
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given any ‖s‖ = C independent of n. Thus the first two terms in the right-hand side
of (46) are of the same order OP (dn/n) due to dn = o(n1/2 ∧ nλ

1/2m
1 ). The second

term, which is positive, dominates the first one by allowing sufficiently large C . The
last term is bounded by λ2αn‖s‖. Thus, we assume √nλ2/

√
dn → 0 so that the last

term of (46) is oP (dn/n). This completes the proof of (12).
We next show the nonparametric rate for f̂ using similar analysis for the fixed

dimensional case. Recall that g(x, t) = x ′β + f (t). Similarly, we can show ‖ĝ −
g0‖n = OP (1). Combining the fact that ‖g0‖∞ = OP (qn), we have ‖ĝ‖n = OP (qn).
By assuming that λmin(

∑
k φkφ

′
k/n) ≥ c3 > 0, we can obtain

‖ĝ‖∞
1+ Jĝ

= OP

(
qn

1+ Jĝ

)
by similar analysis. Thus, by applying Theorem 2.2 in Mammen and van de Geer
(1997), we have established the following inequalities:

λ1 J 2
f̂
≤
[
‖ĝ−g0‖1−1/2m

n (1+ J f̂ )
1/2mq1/2m

n ∨ (1+ J f̂ )qnn−
2m−1
2(2m+1)

]
OP (n−1/2)

+λ1 J 2f0 + λ2(Jβ0 − Jβ̂), (49)

‖ĝ−g0‖2n ≤
[
‖ĝ−g0‖1−1/2m

n (1+ J f̂ )
1/2mq1/2m

n ∨ (1+ J f̂ )qnn−
2m−1
2(2m+1)

]
OP (n−1/2)

+λ1 J 2f0 + λ2(Jβ0 − Jβ̂). (50)

Let an = ‖ĝ − g0‖n/[(1+ J f̂ )qn]; then from (1+ J f̂ )qn ≥ 1, (50) becomes

a2n ≤ a2n(1+ J f̂ )qn

≤ OP (n−1/2)a1−1/2m
n ∨ OP (n−2m/(2m+1)) ∨ OP (λ1/qn) ∨ λ2(Jβ0 − Jβ̂)

qn

≤ OP (n−1/2)a1−1/2m
n ∨ OP (n−2m/(2m+1)) ∨ λ2(Jβ0 − Jβ̂)

qn

≤ OP (n−1/2)a1−1/2m
n ∨ OP (n−2m/(2m+1)). (51)

In view of the condition λ1/qn 
 n−2m/(2m+1), the second inequality as shown above
follows. The last inequality follows from the below analysis. Note that

λ2(Jβ0 − Jβ̂)

qn
≤
⎛⎝λ2

qn∑
j=1

|β0 j − β̂ j |
|β̃ j |γ

+ λ2

dn∑
j=qn+1

|β0 j − β̂ j |
|β̃ j |γ

⎞⎠ q−1n

<∼
⎛⎝λ2

qn∑
j=1
|β0 j − β̂ j | + max

j=qn+1,...,dn

λ2

|β̃ j |γ
dn∑

j=qn+1
|β0 j − β̂ j |

⎞⎠ q−1n

<∼
[

max
j=qn+1,...,dn

λ2/qn

|β̃ j |γ
]

OP (
√

dn/n)
√

dn
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= OP (n1/(2m+1)d−3/2n

√
dn/n) · OP (

√
dn/n)

√
dn

= OP (n−2m/(2m+1))

since ‖β̂ − β0‖ = OP (
√

dn/n) and (13). Therefore (51) implies that an =
OP (n−m/(2m+1)). We next analyze (49) which can be rewritten as

λ1

qn
(J f̂ − 1) ≤ OP (n−1/2)a1−1/2m

n ∨ OP (n−2m/(2m+1))

(J f̂ − 1) ≤
qn

λ1
OP (n−2m/(2m+1))

J f̂ ≤ OP (1).

in view of the condition that λ1/qn 
 n2m/(2m+1). Finally, we have proved that ‖ĝ −
g0‖n = OP (n−m/(2m+1)qn). Combining the triangle inequality and ‖β̂ − β0‖ =
OP (

√
dn/n), we complete the whole proof of (14). ��

Proof of Theorem 3 Proof of part (a) is similar as that in the fixed dimension case,
i.e., 3(a) in Theorem 1. It follows from the regular condition λ1/qn 
 n−2m/(2m+1),
Lemma 3 and assumption (16).
We next prove the asymptotic normality of β̂1. Similar as the proof for 3(b) in

Theorem 1, we can establish that

β̂1 − β10 =
[
X′1(I − A)X1

]−1 [X′1(I − A)(f0(t)+ ε)− nλ2

2
Pe(β̂1)

]
, (52)

where Pe(β̂1) = (sign(β̂1)/|β̃1|γ , . . . , sign(β̂qn )/|β̃qn |γ )′. Note that the invertibility
of X1(I − A)X1 follows from (42) and the asymptotic invertibility of R, i.e., the
condition R3D. Thus, we have

√
nGnR−1/211 (X′1(I − A)X1/n)(β̂1 − β10)

= √nGnR−1/211

[
X′1(I − A)(f0(t)+ ε)

n
− λ2

2
Pe(β̂1)

]
= M1n + M2n + M3n, (53)

where

M1n = n−1/2GnR−1/211 X′1[(I − A)f0(t)+ ε],
M2n = −n−1/2GnR−1/211 X′1Aε,

M3n = −(
√

nλ2/2)GnR−1/211 Pe(β̂1).

In order to derive the asymptotic distribution of M1n + M2n + M3n , we apply the
Cramer–Wold device. Let v be a l-vector. We first show that v′M2n = oP (1) and
v′M3n = oP (1). It is easy to show
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|v′M2n| ≤ n−1/2‖v‖‖GnR−1/211 X′1Aε‖ ≤ (nλmin(R11))−1/2‖v‖‖GnX′1Aε‖
≤ OP (n−1/2√qnλ

−1/4m
1 ) = oP (1).

The last inequality follows from GnG′n → G and (39). The conditions that λ1/qn 

n−2m/(2m+1) and nm/(2m+1)λ1 → 0 imply its convergence to zero. As for v′M3n , we
have

|v′M3n| ≤
√

nλ2

2
‖v‖‖GnR−1/211 Pe(β̂1)‖ ≤ OP (

√
nλ2)‖Gn Pe(β̂1)‖

≤ OP (
√

nλ2
√

qn) = oP (1)

by the stated condition qn = o(n−1λ−22 ).
As for v′M1n , we can rewrite it as

v′M1n =
n∑

j=1
n−1/2v′GnR−1/211 w j [(I − A)f0(t)+ ε] j ≡

n∑
j=1

Tj .

and apply Lindeberg’s theorem (Theorem 1.15 in Shao 2003) to show its asymptotic
distribution. First,

V ar(
∑

j

Tj ) =
∑

j

V ar(Tj ) = v′GnG′nv(σ 2 + n−1
n∑

l=1
((I − A)f0)2l )

→ σ 2v′Gv (54)

by GnG′n → G and (37). We next verify the condition that

n∑
j=1

E(T 2j I {|Tj | > δσ
√

v′Gv}) = o(σ 2v′Gv)

for any δ > 0. Note that

n∑
j=1

E(T 2j I {|Tj | > δσ
√

v′Gv}) ≤
n∑

j=1
(ET 4j )1/2(P(|Tj | > δσ

√
v′Gv))1/2

≤
⎛⎝ n∑

j=1
ET 4j

⎞⎠1/2⎛⎝ n∑
j=1

P(|Tj | > δσ
√

v′Gv)

⎞⎠1/2 .

In view of (54), we obtain

n∑
j=1

P(|Tj | > δσ
√

v′Gv) ≤
∑n

j=1 ET 2j
δ2σ 2v′Gv

→ 1

δ2
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and

n∑
j=1

ET 4j ≤
‖v‖4∑n

j=1 E‖GnR−1/211 w j‖4E[(I − A)f0 + ε]4j
n2

≤ 8‖v‖4∑n
j=1 E‖GnR−1/211 w j‖4([(I − A)f0]4j + Eε4)

n2
.

Note that

E‖GnR−1/211 w j‖4 ≤ lq2nλ−2min(R11)
l∑

i=1
‖gi‖4 = O(q2n ),

where G′n = (g1, . . . , gl), due to GnG′n → G. Combined with the above analysis we
have

∑
j ET 4j = O(q2nλ21 ∨ q2n n−1) given the sub-exponential tail of ε and (37). By

the conditions that qn ≤ dn = o(n1/3) and λ1/qn 
 n−2m/(2m+1), we have verified the
condition that

∑n
j=1 E(T 2j I {|Tj | > δσ

√
v′Gv}) = o(σ 2v′Gv). Therefore, we have

proved that (53) = N (0, σ 2G)+ oP (1).
Then we have

√
nGnR1/211 (β̂1 − β10)

= √nGnR−1/211 (R11 − X′1(I − A)X1/n)(β̂1 − β10)+ N (0, σ 2G)+ oP (1)

= N (0, σ 2G)+ o(1)+ OP (d3/2n n−1/2 ∨ d3/2n n−1λ−1/2m
1 ) (55)

by the matrix inequality, (45) and (12). The stated condition dn = o(n1/3∧n2/3λ1/3m1 )

implies that the rest of the term in (55) is oP (1). This completes the proof of (17).
��
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