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BOOTSTRAP CONSISTENCY FOR GENERAL SEMIPARAMETRIC
M-ESTIMATION

BY GUANG CHENG1 AND JIANHUA Z. HUANG2

Purdue University and Texas A&M University

Consider M-estimation in a semiparametric model that is characterized
by a Euclidean parameter of interest and an infinite-dimensional nuisance pa-
rameter. As a general purpose approach to statistical inferences, the bootstrap
has found wide applications in semiparametric M-estimation and, because
of its simplicity, provides an attractive alternative to the inference approach
based on the asymptotic distribution theory. The purpose of this paper is to
provide theoretical justifications for the use of bootstrap as a semiparamet-
ric inferential tool. We show that, under general conditions, the bootstrap is
asymptotically consistent in estimating the distribution of the M-estimate of
Euclidean parameter; that is, the bootstrap distribution asymptotically imi-
tates the distribution of the M-estimate. We also show that the bootstrap con-
fidence set has the asymptotically correct coverage probability. These general
conclusions hold, in particular, when the nuisance parameter is not estimable
at root-n rate, and apply to a broad class of bootstrap methods with exchange-
able bootstrap weights. This paper provides a first general theoretical study
of the bootstrap in semiparametric models.

1. Introduction. Due to its flexibility, semiparametric modeling has provided
a powerful statistical modeling framework for complex data, and proven to be
useful in a variety of contexts, see [2, 7, 20, 44, 45]. Semiparametric models
are indexed by a Euclidean parameter of interest θ ∈ � ⊂ Rd and an infinite-
dimensional nuisance function η belonging to a Banach space H with a norm ‖ · ‖.
M-estimation, including the maximum likelihood estimation as a special case,
refers to a general method of estimation, where the estimates are obtained by op-
timizing some objective functions [10, 28, 42]. The asymptotic theories and in-
ference procedures for semiparametric maximum likelihood estimation, or more
generally M-estimation, have been extensively studied in [4, 11, 22, 24, 28, 32].

It is well known that the asymptotic inferences of semiparametric models of-
ten face practical challenges. In particular, the confidence set construction and the
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asymptotic variance estimation of the estimator for the Euclidean parameter both
involve estimating and inverting a hard-to-estimate infinite-dimensional operator.
The difficulty in dealing with such an infinite-dimensional operator motivated the
development of the profile sampler [8, 9, 24], where the inference of the Euclidean
parameter is based on sampling from the posterior of the profile likelihood [24].
However, because of the way it is designed, the profile sampler method has the
typical caveats of the Bayesian methods. First, one needs to specify a prior distrib-
ution. Second, since the Markov chain Monte Carlo (McMC) is used for sampling
from the posterior distribution, there are a number of controversial issues in gen-
erating the stationary Markov chain. For example, it is considerably difficult to
determine the burn-in period and stopping time of the chain [16]. In particular, it
may take a long time to run the Markov chain in order to give accurate inferences
for θ when η is estimable at a slow convergence rate [8, 9]. Moreover, when the
sample size is small, the profile likelihood may become nonsmooth or may not
approximate well the desired parabolic form, violating the main theoretical basis
of the profile sampler.

On the other hand, as a general data-resampling based statistical inference tool,
the bootstrap method does not have the drawbacks of the profile sampler; see [6,
19, 21, 28, 37, 43] for its application in semiparametric models. In fact, the boot-
strap method has several methodological advantages over the profile sampler: it is
straightforward to implement; there is no need to specify a prior distribution and
to check Markov chain convergence. In addition, the finite sample performance of
the bootstrap can be controlled by choosing from a rich pool of resampling tech-
niques; see Section 3 of [33]. Moreover, unlike the profile sampler which focuses
on θ , one can make bootstrap inferences for both θ and η.

Unfortunately, a systematic theoretical study on the bootstrap inference in semi-
parametric models is almost nonexistent, especially when the nuisance function
parameter η is not

√
n estimable, despite the rich literature on the bootstrap theory

for parametric models [3, 18, 30, 36]. The current literature only considered the
bootstrap consistency for the joint estimator of (θ, η) in some special case of semi-
parametric models where η is

√
n-estimable, that is, [21]. In a recent monograph,

Kosorok pointed out that “convergence rate and asymptotic normality results are
quite difficult to establish for the nonparametric bootstrap (based on multinomial
weights), especially for models with parameters not estimable at the

√
n rate” [22].

In fact, the lack of theoretical justifications of the bootstrap in the semiparametric
context is one of the main motivations for developing the profile sampler. The pur-
pose of this paper is to develop a general theory on bootstrap consistency in semi-
parametric models, for a broad class of bootstrap methods including Efron’s (non-
parametric) bootstrap as a special case. We focus on the inference of the Euclidean
parameter and leave study of the bootstrap inference of the nuisance parameter
for future research, although we give some useful convergence rate results (see
Section 5).
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Our main results are summarized as follows. The semiparametric M-estimator
(θ̂ , η̂) and the bootstrap M-estimator (θ̂∗, η̂∗) are obtained by optimizing the ob-
jective function m(θ,η) based on the i.i.d. observations (X1, . . . ,Xn) and the boot-
strap sample (X∗

1, . . . ,X∗
n), respectively:

(θ̂ , η̂) = arg sup
θ∈�,η∈H

n∑
i=1

m(θ,η)(Xi),(1)

(θ̂∗, η̂∗) = arg sup
θ∈�,η∈H

n∑
i=1

m(θ,η)(X∗
i ),(2)

where (X∗
1, . . . ,X∗

n) are independent draws with replacement from the original
sample. Note that we can express

(θ̂∗, η̂∗) = arg sup
θ∈�,η∈H

n∑
i=1

Wnim(θ, η)(Xi),(3)

and the bootstrap weights (Wn1, . . . ,Wnn) ∼ Multinomial(n, (n−1, . . . , n−1)). In
this paper, we consider the more general exchangeable bootstrap weighting scheme
that includes Efron’s bootstrap and its smooth alternative [27], for example,
Bayesian bootstrap, as special cases. The general resampling scheme was first pro-
posed in [34], and extensively studied by [1], who suggested the name “weighted
bootstrap,” and in [30, 33]. Note that other variations of Efron’s bootstrap are also
studied in [5] using the term “generalized bootstrap.” The practical usefulness of
the more general scheme is well-documented in the literature. For example, in
semiparametric survival models, for example, Cox regression model, the nonpara-
metric bootstrap often gives many ties when it is applied to censored survival data
due to its “discreteness” and the general weighting scheme comes to the rescue. As
one main contribution of the paper, we show that the nonparametric bootstrap dis-
tribution of

√
n(θ̂∗ − θ̂ ), conditional on the observed data, asymptotically imitates

the distribution of
√

n(θ̂ − θ0), where θ0 is the true value of θ . As a consequence,
we also establish the consistency of the bootstrap confidence set of θ , which means
that the coverage probability converges to the nominal level. Our results hold when
the estimate of the nuisance function has either root-n or slower than root-n con-
vergence rate. This paper can also be viewed as a nontrivial extension of [5] to
account for the presence of an infinite-dimensional nuisance parameter.

In a related paper, Ma and Kosorok [28] obtained some theoretical results when
the bootstrap weights are assumed to be i.i.d. There is a crucial difference between
their work and ours: They treated the bootstrap estimator as the regular weighted
estimator and used the unconditional arguments rather than the usual conditional
arguments as we employ in this paper. Note that the i.i.d. assumption rules out
all interesting bootstrap schemes considered in this paper, and their theoretical ap-
proach cannot be extended to obtain our results. Indeed, they stated in the paper
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that the independence assumption makes their proofs easier and the relaxation to
the dependent weights appears to be quite difficult. Another related work is the
piggyback bootstrap [11], which is invented solely to draw inferences for the func-
tional parameter η when it is

√
n-estimable. The piggyback bootstrap is not the

standard bootstrap and relies on a valid random draw from the asymptotic distrib-
ution of the estimate of θ , which is hard to estimate in general. Other related work
includes interesting results on bootstrap (in)-consistency in nonparametric estima-
tion; see [23, 35, 41]. An m out of n bootstrap was developed for nonstandard
M-estimation with nuisance parameters in parametric models [25].

Section 2 provides the necessary background of M-estimation in semiparamet-
ric models. Our main results, including the bootstrap consistency theorem, are
presented in Section 3. Sections 4 and 5 discuss how to verify various technical
conditions needed for the main results. Section 6 illustrates the applications of our
main results in three examples. Section 7 contains the proof of the main results in
Section 3. Some useful lemmas and additional proofs are postponed to Appendix.

2. Background. We first introduce a paradigm for the semiparametric M-
estimation [28, 42], which parallels the efficient influence function paradigm used
for the MLEs [where m(θ,η) is the log likelihood]. Next, we present the model
assumptions needed for the remainder of the paper, and, finally, we review some
known results on the asymptotic distribution of semiparametric M-estimators,
which are needed in studying the asymptotic properties of the bootstrap.

Let

m1(θ, η) = ∂

∂θ
m(θ, η) and m2(θ, η)[h] = ∂

∂t
m(θ, η(t))

∣∣∣
t=0

,

where h is a “direction” along which η(t) ∈ H approaches η as t → 0, running
through some index set H ⊆ L0

2(Pθ,η). Similarly, we also define

m11(θ, η) = ∂

∂θ
m1(θ, η) and m12(θ, η)[h] = ∂

∂t
m1(θ, η(t))

∣∣∣
t=0

,

m21(θ, η)[h] = ∂

∂θ
m2(θ, η)[h] and m22(θ, η)[h,g] = ∂

∂t
m2(θ, η2(t))[h]

∣∣∣
t=0

,

where h,g ∈ H and (∂/∂t)η2(t)|t=0 = g. Define

m2(θ, η)[H ] = (m2(θ, η)[h1], . . . ,m2(θ, η)[hd])′,
m22[H,h] = (m22(θ, η)[h1, h], . . . ,m22(θ, η)[hd,h])′,

where H = (h1, . . . , hd) and hj ∈ H for j = 1, . . . , d . Assume there exists an

H †(θ, η) = (h
†
1(θ, η), . . . , h

†
d(θ, η))′,

where each h
†
j (θ, η) ∈ H, such that for any h ∈ H

Eθ,η{m12(θ, η)[h] − m22(θ, η)[H †, h]} = 0.(4)
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Following the idea of the efficient score function, we define the function

m̃(θ, η) = m1(θ, η) − m2(θ, η)[H †(θ, η)].
We assume that the observed data are from the probability space (X , A,PX), and
that

PXm̃(θ0, η0) = 0,(5)

where PXf is the customary operator notation defined as
∫

f dPX . The assump-
tion (5) is common in semiparametric M-estimation [28, 42] and usually holds
by the model specifications, for example, the semiparametric regression models
with “panel count data” [42]. In particular, when m(θ,η) = log lik(θ, η), (5) triv-
ially holds and m̃(θ, η) becomes the well studied efficient score function for θ in
semiparametric models, see [4]. Since (θ̂ , η̂) is assumed to be the maximizer of∑n

i=1 m(θ,η)(Xi), (θ̂ , η̂) satisfies

Pnm̃(θ̂ , η̂) = 0,(6)

where Pnf denotes
∑n

i=1 f (Xi)/n. The theory developed in this paper is general
enough to deal with the case that (θ̂ , η̂) is not the exact maximizer. Instead of (6),
we only assume the following “nearly-maximizing” condition

Pnm̃(θ̂ , η̂) = oo
PX

(n−1/2),(7)

where the superscript “o” denotes the outer probability.
Throughout the rest of the paper, we use the shortened notation H

†
0 =

H †(θ0, η0), m̃0 = m̃(θ0, η0) and m̂ = m̃(θ̂ , η̂). For a probability space (�, A,P )

and a map T :� �→ R̄ that need not be measurable, the notation EoT , Oo
P (1), and

oo
P (1) represent the outer expectation of T w.r.t. P , bounded and converging to

zero in outer probability, respectively. More precise definitions can be found on
page 6 of [38]. Let V ⊗2 represent V V ′ for any vector V . Define x ∨ y (x ∧ y) to
be the maximum (minimum) value of x and y.

We now state some general conditions that will be used throughout the whole
paper. We assume that the true value θ0 of the Euclidean parameter is an interior
point of the compact set �. Define

A = PX{(∂/∂θ)|θ=θ0m̃(θ, η0)} = PX{m11(θ0, η0) − m21(θ0, η0)[H †
0 ]},(8)

B = Var{m̃0(X)} = PX

[{m1(θ0, η0) − m2(θ0, η0)[H †
0 ]}⊗2]

.(9)

I. Positive information condition: the matrices A and B are both nonsingular.

Condition I above is used to ensure the nonsingularity of the asymptotic vari-
ance of θ̂ , which will be shown to be A−1B(A−1)′; see Proposition 1.

For the empirical process Gn = √
n(Pn − PX), denote its norm with respect to

a function class Fn as ‖Gn‖Fn = supf ∈Fn
|Gnf |. For any fixed δn > 0, define a

class of functions Sn as

Sn ≡ Sn(δn) =
{
m̃(θ0, η) − m̃(θ0, η0)

‖η − η0‖ :‖η − η0‖ ≤ δn

}
(10)
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and a shrinking neighborhood of (θ0, η0) as

Cn ≡ Cn(δn) = {(θ, η) :‖θ − θ0‖ ≤ δn,‖η − η0‖ ≤ δn}.(11)

The next two conditions S1 and S2 imply that the empirical processes indexed by
m̃(θ, η) are well behaved and m̃(θ, η) is smooth enough around (θ0, η0).

S1. Stochastic equicontinuity condition: for any δn → 0,

‖Gn‖Sn = Oo
PX

(1)(12)

and

Gn

(
m̃(θ, η) − m̃(θ0, η)

) = Oo
PX

(‖θ − θ0‖) for (θ, η) ∈ Cn.(13)

S2. Smoothness condition:

PX

(
m̃(θ, η) − m̃0

) = A(θ − θ0) + O(‖θ − θ0‖2 ∨ ‖η − η0‖2)(14)

for (θ, η) in some neighborhood of (θ0, η0).

For any fixed θ , define

η̂θ = arg sup
η∈H

Pnm(θ, η).

The next condition says that η̂θ should be close to η0 if θ is close to θ0.

S3. Convergence rate condition: there exists a γ ∈ (1/4,1/2] such that

‖η̂θ̃ − η0‖ = Oo
PX

(‖θ̃ − θ0‖ ∨ n−γ )(15)

for any consistent θ̃ .

The above range requirement of γ is always satisfied for regular semiparametric
models; see Section 3.4 of [38]. Verifications of conditions S1–S3 will be discussed
in Sections 4 and 5, and illustrated with examples in Section 6.

The following proposition summarizes a known result on the the asymptotic
normality of the semiparametric M-estimator θ̂ [22, 28, 42], which plays an im-
portant role in proving bootstrap consistency in next section.

PROPOSITION 1. Suppose that conditions I, S1–S3 hold and that (θ̂ , η̂) satis-
fies (7). If θ̂ is consistent, then

√
n(θ̂ − θ0) = −√

nA−1
Pnm̃0 + oo

PX
(1).(16)

Consequently,

√
n(θ̂ − θ0)

d−→ N(0,	),(17)

where 	 ≡ A−1B(A−1)′, A and B are given in (8) and (9), respectively.
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We assume consistency of θ̂ in Proposition 1. The consistency can usually be
guaranteed under the following “well-separated” condition

PXm(θ0, η0) > sup
(θ,η)/∈G

PXm(θ, η)(18)

for any open set G ⊂ � × H containing (θ0, η0), see Theorem 5.7 in [39]. For
maximum likelihood estimation, that is, m(θ,η) = log lik(θ, η), it is easy to see
that A = −B and 	 = B−1, and thus 	−1 becomes the efficient information ma-
trix.

REMARK 1. Given any consistent estimator 	̂ of 	, we have
√

n	̂−1/2(θ̂ − θ0)
d−→ N(0, I )(19)

by Proposition 1 and Slutsky’s theorem. In practice, a consistent 	̂ can be obtained
via either the observed profile information approach [31] or the profile sampler
approach [24].

3. Main results: Bootstrap consistency. In this section, we establish the con-
sistency of bootstrapping θ under general conditions in the framework of semipara-
metric M-estimation. Define

P
∗
nf = (1/n)

n∑
i=1

Wnif (Xi),

where Wni’s are the bootstrap weights defined on the probability space (W,�,
PW). In view of (3), the bootstrap estimator can be rewritten as

(θ̂∗, η̂∗) = arg sup
θ∈�,η∈H

P
∗
nm(θ, η).(20)

The definition of (θ̂∗, η̂∗), that is, (20), implies that

P
∗
nm̃(θ̂∗, η̂∗) = 0.(21)

Similar to (7), we weaken (21) to the following “nearly-maximizing” condition

P
∗
nm̃(θ̂∗, η̂∗) = oo

PXW
(n−1/2),(22)

where PXW is a probability measure on a product space that we will formally define
later.

The bootstrap weights Wni ’s are assumed to belong to the class of exchangeable
bootstrap weights introduced in [33]. Specifically, they satisfy:

W1. The vector Wn = (Wn1, . . . ,Wnn)
′ is exchangeable for all n = 1,2, . . . , that

is, for any permutation π = (π1, . . . , πn) of (1,2, . . . , n), the joint distribu-
tion of π(Wn) = (Wnπ1, . . . ,Wnπn)

′ is the same as that of Wn.
W2. Wni ≥ 0 for all n, i and

∑n
i=1 Wni = n for all n.
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W3. For some positive constant C < ∞, lim supn→∞ ‖Wn1‖2,1 ≤ C, where
‖Wn1‖2,1 = ∫ ∞

0
√

PW(Wn1 ≥ u)du.
W4. limλ→∞ lim supn→∞ supt≥λ t2PW(Wn1 > t) = 0.

W5. (1/n)
∑n

i=1(Wni − 1)2 PW−→ c2 > 0.

The bootstrap weights corresponding to Efron’s nonparametric bootstrap satisfy
W1–W5. Another important class of bootstrap whose weights satisfy W1–W5 is
the multiplier bootstrap in which Wni = ωi/ω̄n and (ω1, . . . ,ωn) are i.i.d. pos-

itive r.v.s with ‖ω1‖2,1 < ∞. By taking ωi
i.i.d.∼ Exp(1), we obtain the Bayesian

bootstrap of [34]. The multiplier bootstrap is often thought to be a smooth alterna-
tive to the nonparametric bootstrap [27]. In general, conditions W3–W5 are easily
satisfied under some moment conditions on Wni ; see Lemma 3.1 of [33]. The sam-
pling schemes that satisfy conditions W1–W5 include the double bootstrap, the
urn bootstrap and the grouped or delete-h Jackknife [13]; see [33]. The value of
c in W5 is independent of n and depends on the resampling method, for example,
c = 1 for the nonparametric bootstrap and Bayesian bootstrap, and c = √

2 for the
double bootstrap.

There exist two sources of randomness for the bootstrapped quantity, for ex-
ample, θ̂∗ and η̂∗: one comes from the observed data; another comes from the
resampling done by the bootstrap, that is, randomness in Wni ’s. Therefore, in or-
der to rigorously state our theoretical results for the bootstrap, we need to specify
relevant probability spaces and define the related stochastic orders.

We view Xi as the ith coordinate projection from the canonical probability
space (X ∞, A∞,P ∞

X ) onto the ith copy of X . For the joint randomness involved,
the product probability space is defined as

(X ∞, A∞,P ∞
X ) × (W ,�,PW) = (X ∞ × W, A∞ × �,PXW).

In this paper, we assume that the bootstrap weights Wni’s are independent of the
data Xi’s, thus PXW = P ∞

X × PW . We write P ∞
X as PX for simplicity thereafter.

Define Eo
XW as the outer expectation w.r.t. PXW . The notation Eo

W |X , Eo
X and EW

are defined similarly.
Given a real-valued function n defined on the above product probability space,

for example, θ̂∗, we say that n is of an order oo
PW

(1) in P o
X-probability if for any

ε, δ > 0,

P o
X{P o

W |X(|n| > ε) > δ} −→ 0 as n → ∞,(23)

and that n is of an order Oo
PW

(1) in P o
X-probability if for any δ > 0, there exists

a 0 < M < ∞ such that

P o
X{P o

W |X(|n| ≥ M) > δ} −→ 0 as n → ∞.(24)

Given a function �n defined only on (X ∞, A∞,P ∞
X ), if it is of an order oo

PX
(1)

[Oo
PX

(1)], then it is also of an order oo
PXW

(1) [Oo
PXW

(1)] based on the following
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argument:

P o
XW(|�n| > ε) = Eo

XW1{|�n| > ε} = EXEW |X1{|�n| > ε}o
= EX1{|�n| > ε}o = P o

X{|�n| > ε},
where the third equation holds since �n does not depend on the bootstrap weight.
More results on transition of various stochastic orders are given in Lemma 3 of the
Appendix. Such results are used repeatedly in proving our bootstrap consistency
theorem.

To establish the bootstrap consistency, we need some additional conditions. The
first condition is the measurability condition, denoted as M(PX). We say a class
of functions F ∈ M(PX) if F possesses enough measurability so that Pn can be
randomized, that is, we can replace (δXi

− PX) by (Wni − 1)δXi
, and Fubini’s

theorem can be used freely. The detailed description for M(PX) is spelled out in
[17] and also given in the Appendix of this paper. Define T = {m̃(θ, η) :‖θ −θ0‖+
‖η − η0‖ ≤ R} for some R > 0. For the rest of the paper, we assume T ∈ M(PX).

The second class of conditions parallels conditions S1–S3 used for obtaining
asymptotic normality of θ̂ and is only slightly stronger. Thus, the bootstrap con-
sistency for θ is almost automatically guaranteed once θ̂ is shown to be asymptot-
ically normal. Let Sn(x) be the envelop function of the class Sn = Sn(δn) defined
in (10), that is,

Sn(x) = sup
‖η−η0‖≤δn

∣∣∣∣m̃(θ0, η) − m̃0

‖η − η0‖
∣∣∣∣.

The next condition controls the tail of this envelop function.

SB1. Tail probability condition:

lim
λ→∞ lim sup

n→∞
sup
t≥λ

t2P o
X

(
Sn(X1) > t

) = 0(25)

for any sequence δn → 0.

Let Ṫ = {∂m̃(θ, η)/∂θ : (θ, η) ∈ Cn}, where Cn = Cn(δn) is defined in (11).

SB2. We assume that Ṫ ∈ M(PX) ∩ L2(PX) and that Ṫ is P -Donsker.

Condition SB2 ensures that the size of the function class Ṫ is reasonable so
that the bootstrapped empirical processes G

∗
n ≡ √

n(P∗
n − Pn) indexed by Ṫ has a

limiting process conditional on the observations; see Theorem 2.2 in [33].
For any fixed θ , define

η̂∗
θ = arg max

η∈H
P

∗
nm(θ, η).

The next condition says that η̂∗
θ should be close to η0 if θ is close to θ0.
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SB3. Bootstrap convergence rate condition: there exists a γ ∈ (1/4,1/2] such
that

‖η̂∗̃
θ
− η0‖ = Oo

PW
(‖θ̃ − θ0‖ ∨ n−γ ) in P o

X-probability(26)

for any θ̃
P o

XW−→ θ0.

Verifications of conditions SB1–SB2 will be discussed in Section 4. Two gen-
eral theorems are given in Section 5 to aid verification of condition SB3.

Now we are ready to present our main results. Theorem 1 below says that the
bootstrap distribution of (

√
n/c)(θ̂∗ − θ̂ ), conditional on the observations, asymp-

totically imitates the unconditional distribution of
√

n(θ̂ − θ0). Let PW |Xn denote
the conditional distribution given the observed data Xn.

THEOREM 1. Suppose that θ̂ and θ̂∗ satisfy (7) and (22), respectively. As-

sume that θ̂
PX−→ θ0 and θ̂∗ P o

W−→ θ0 in P o
X-probability. In addition, assume that

conditions I, S1–S3, SB1–SB3 and W1–W5 hold. We have that

‖θ̂∗ − θ0‖ = Oo
PW

(n−1/2)(27)

in P o
X-probability. Furthermore,

√
n(θ̂∗ − θ̂ ) = −A−1

G
∗
nm̃0 + oo

PW
(1)(28)

in P o
X-probability. Consequently,

sup
x∈Rd

∣∣PW |Xn

((√
n/c

)
(θ̂∗ − θ̂ ) ≤ x

) − P
(
N(0,	) ≤ x

)∣∣ = oo
PX

(1),(29)

where “≤” is taken componentwise, c is given in W5 and 	 ≡ A−1B(A−1)′ with
A and B given in (8) and (9), respectively. Thus, we have

sup
x∈Rd

∣∣PW |Xn

((√
n/c

)
(θ̂∗ − θ̂ ) ≤ x

) − PX

(√
n(θ̂ − θ0) ≤ x

)∣∣ P o
X−→ 0.(30)

The consistency assumption for θ̂∗ can be established by adapting the Argmax
theorem, that is, Corollary 3.2.3 in [38]. Briefly, we need two conditions for ac-
complishing this. The first one is the “well-separated” condition (18). The second
one is

sup
(θ,η)∈�×H

|P∗
nm(θ, η) − PXm(θ, η)| P o

XW−→ 0.(31)

By the multiplier Glivenko–Cantelli theorem, that is, Lemma 3.6.16 in [38], and
(69) in the Appendix, we know that (31) holds if {m(θ,η) : θ ∈ �,η ∈ H} is shown
to be P -Glivenko–Cantelli.
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REMARK 2. For any consistent 	̂∗ P o
XW−→ 	 and 	̂

PX−→ 	, we have

sup
x∈Rd

∣∣PW |Xn

((√
n/c

)
(	̂∗)−1/2(θ̂∗ − θ̂ ) ≤ x

)
(32)

− PX

(√
n	̂−1/2(θ̂ − θ0) ≤ x

)∣∣ P o
X−→ 0

by the arguments in proving Theorem 1, Slutsky’s theorem and Lemma 3. A pos-
sible candidate for the consistent 	̂∗ is the block jackknife proposed in [29].

REMARK 3. Our arguments in proving Theorem 1 can also be used to improve
the remainder term in (28) from “oo

PW
(1) in P o

X-probability” to “Oo
PW

(n−2γ+1/2)

in P o
X-probability” if we strengthen the “nearly maximizing” condition (22) to the

exactly maximizing condition (21). A similar result holds in Proposition 1 where
the remainder term oo

PX
(1) in (16) can be improved to OPX

(n−2γ+1/2) if (7) is
strengthened to (6). It is interesting to note that the rate of convergence of the
remainder term depends on how accurately the nuisance function parameter η can
be estimated. In particular, if η is

√
n-estimable, then the remainder is of the order

of O(n−1/2).

The distribution consistency result of the bootstrap estimator θ̂∗ proven in (30)
can be used to prove the consistency of a variety of bootstrap confidence sets, that
is, percentile, hybrid and t types.

A lower αth quantile of bootstrap distribution is any quantity τ ∗
nα ∈ R

d satis-
fying τ ∗

nα = inf{ε :PW |Xn(θ̂
∗ ≤ ε) ≥ α}, where ε is an infimum over the given set

only if there does not exist a ε1 < ε in R
d such that PW |Xn(θ̂

∗ ≤ ε1) ≥ α. Because
of the assumed smoothness of the criterion function m(θ,η) in our setting, we can,
without loss of generality, assume PW |Xn(θ̂

∗ ≤ τ ∗
nα) = α. Due to the distribution

consistency result proven in (30), we can approximate the αth quantile of the dis-
tribution of (θ̂ − θ0) by (τ ∗

nα − θ̂ )/c. Thus, we define the percentile-type bootstrap
confidence set as

BCp(α) =
[
θ̂ + τ ∗

n(α/2) − θ̂

c
, θ̂ + τ ∗

n(1−α/2) − θ̂

c

]
.

Similarly, we can approximate the αth quantile of
√

n(θ̂ −θ0) by κ∗
nα , where κ∗

nα is
the αth quantile of the hybrid quantity (

√
n/c)(θ̂∗ − θ̂ ), that is, PW |Xn((

√
n/c) ×

(θ̂∗ − θ̂ ) ≤ κ∗
nα) = α. Thus, we define the hybrid-type bootstrap confidence set as

BCh(α) =
[
θ̂ − κ∗

n(1−α/2)√
n

, θ̂ − κ∗
n(α/2)√

n

]
.

Note that τ ∗
nα and κ∗

nα are not unique since θ is assumed to be a vector.
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We now prove the consistency of the above bootstrap confidence sets by using
the arguments in Lemma 23.3 of [39]. First, it follows from (17) and (29) that, for
any x ∈ R

d ,

PX

(√
n(θ̂ − θ0) ≤ x

) −→ �(x),(33)

PW |Xn

((√
n/c

)
(θ̂∗ − θ̂ ) ≤ x

) P o
X−→ �(x),(34)

where �(x) = P(N(0,	) ≤ x). The quantile convergence theorem, that is,
Lemma 21.1 in [39], applied to (34) implies that κ∗

nα → �−1(α) almost surely.
When applying quantile convergence theorem, we use the almost sure repre-
sentation Theorem 2.19 in [39] and argue along subsequences. Then the Slut-
sky’s lemma implies that

√
n(θ̂ − θ0) − κ∗

n(α/2) weakly converges to N(0,	) −
�−1(α/2). Thus,

PXW

(
θ0 ≤ θ̂ − κ∗

n(α/2)√
n

)
= PXW

(√
n(θ̂ − θ0) ≥ κ∗

n(α/2)

)
→ PXW

(
N(0,	) ≥ �−1(α/2)

)
= 1 − α/2.

This argument yields the consistency of the hybrid-type bootstrap confidence set,
that is, (36) below, and can also be applied to justify the percentile-type boot-
strap confidence set, that is, (35) below. The following Corollary 1 summarizes the
above discussion.

COROLLARY 1. Under the conditions in Theorem 1, we have

PXW
(
θ0 ∈ BCp(α)

) −→ 1 − α,(35)

PXW
(
θ0 ∈ BCh(α)

) −→ 1 − α(36)

as n → ∞.

It is well known that the above bootstrap confidence sets can be computed easily
through routine bootstrap sampling.

Investigating the consistency of the bootstrap variance estimator is also of great
interest. However, the usual sufficient condition for moment consistency, that is,
uniform integrability condition, becomes very hard to verify due to the existence of
an infinite-dimensional parameter η. An alternative resampling method to obtain
the variance estimator in semiparametric models is the block jackknife approach,
which was proposed and theoretically justified in [29]. We do not pursue this topic
further in this paper.
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REMARK 4. Provided consistent variance estimators 	̂∗ and 	̂ are available,
we can define the t-type bootstrap confidence set as

BCt (α) =
[
θ̂ − 	̂1/2ω∗

n(1−α/2)√
n

, θ̂ − 	̂1/2ω∗
n(α/2)√
n

]
,

where ω∗
nα satisfies PW |Xn((

√
n/c)(	̂∗)−1/2(θ̂∗ − θ̂ ) ≤ ω∗

nα) = α. By applying
again the arguments in Lemma 23.3 of [39] to (19) and (32), we can prove that

PXW
(
θ0 ∈ BCt (α)

) −→ 1 − α

as n → ∞.

4. Verifications of conditions S1, S2 and SB1, SB2.

4.1. Verifications of conditions S1 and S2. The continuity modulus condi-
tion (12) in S1 can be checked via one of the following two approaches. The
first approach is to show the boundedness of Eo

X‖Gn‖Sn by using Lemma 3.4.2
in [38]. The second approach is to calculate the bracketing entropy number of
Sn and apply Lemma 5.13 in [40] if L2-norm is used on the nuisance parame-
ter. As for (13), we can verify it easily if we can show that the class of functions
{(∂/∂θ)m̃(θ, η) : (θ, η) ∈ Cn} is P -Donsker.

Next, we discuss how to verify the smoothness condition S2. We first write
PX(m̃(θ, η) − m̃0) as the sum of PX(m̃(θ, η) − m̃(θ0, η)) and PX(m̃(θ0, η) − m̃0).
We apply the Taylor expansion to obtain

PX

(
m̃(θ, η) − m̃(θ0, η)

)
= PX{m11(θ0, η) − m21(θ0, η)[H †(θ0, η)]}(θ − θ0) + O(‖θ − θ0‖2)

= A(θ − θ0) + (θ − θ0)O(‖η − η0‖) + O(‖θ − θ0‖2),

where A is defined in (8), the first and second equality follows from the Taylor
expansion of θ �→ PXm̃(θ, η) around θ0 and

η �→ PX{m11(θ0, η) − m21(θ0, η)[H †(θ0, η)]}
around η0, respectively. By applying the second-order Taylor expansion to η �→
PXm̃(θ0, η) around η0 and considering (4), we can show that P(m̃(θ0, η) −
m̃0) = O(‖η − η0‖2). In summary, condition S2 usually holds in models where
the map η �→ m̃(θ0, η) is smooth in the sense that the Fréchet derivative of
η �→ PX((∂/∂θ)m̃(θ0, η)) around η0 and the second order Fréchet derivative of
η �→ PXm̃(θ0, η) around η0 are bounded as discussed above.
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4.2. Verifications of conditions SB1 and SB2. We can verify condition SB1
by showing either Sn(x) is uniformly bounded, that is, lim supn→∞ Sn(x) ≤ M <

∞ for every x ∈ X , or more generally, lim supn→∞ E[{Sn(X1)}2+δ] < ∞ for
some δ > 0. That the moment condition implies condition SB1 follows from the
Chebyshev’s inequality. In our examples in Section 6, the uniformly boundedness
condition is usually satisfied. Hence, we focus on how to show Sn(x) is uni-
formly bounded here. By the Taylor expansion in a Banach space, we can write
m̃(θ0, η) − m̃0 = Dη̃[η − η0], where η̃ lies on the line segment between η and η0,
and Dξ [h] is the Fréchet derivative of η �→ m̃(θ0, η) at ξ along the direction h.
Since we require ‖η − η0‖ ≤ δn → 0, the bounded Fréchet derivative at η0 will
imply that Sn(x) is uniformly bounded. The method in verifying (13) of condi-
tion S1 can be applied to check condition SB2; see the discussion in the previous
subsection.

5. Convergence rates of bootstrap estimate of functional parameter. In
this section, we present two general theorems for calculating the convergence rate
of the bootstrap estimate of the functional parameter. These results can be applied
to verify condition SB3. Condition S3 can also be verified based on these theo-
rems by assuming the weights Wni = 1. Note that both theorems extend general
results on M-estimators [31, 38] to bootstrap M-estimators and are also of inde-
pendent interest. Separate treatments are given to the cases that the estimate η has√

n convergence rate, that is, Section 5.1, and has slower than
√

n rate, that is,
Section 5.2.

5.1. Root-n rate. We consider a collection of measurable objective functions
x �→ k(θ, η)[g](x) indexed by the parameter (θ, η) ∈ �× H and an arbitrary index
set g ∈ G. For example, k(θ, η)[g] can be the score function for η given any fixed
θ indexed by g ∈ G. Define

U∗
n (θ, η)[g] = P

∗
nk(θ, η)[g],

Un(θ, η)[g] = Pnk(θ, η)[g],
U(θ, η)[g] = PXk(θ, η)[g].

We assume that the maps g �→ U∗
n (θ, η)[g], g �→ Un(θ, η)[g] and g �→ U(θ, η)[g]

are uniformly bounded, so that U∗
n , Un and U are viewed as maps from the para-

meter set �× H into �∞(G). The following conditions are assumed in Theorem 2
below:

{k(θ, η)[g] :‖θ − θ0‖ + ‖η − η0‖ ≤ δ, g ∈ G} ∈ M(PX) ∩ L2(PX)(37)

and is P -Donsker for some δ > 0,

sup
g∈G

PX{k(θ, η)[g] − k(θ0, η0)[g]}2 → 0 as ‖θ − θ0‖ + ‖η − η0‖ → 0.(38)
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Let

Dn =
{

k(θ, η)[g] − k(θ0, η0)[g]
1 + √

n‖θ − θ0‖ + √
n‖η − η0‖ :g ∈ G,‖θ − θ0‖ + ‖η − η0‖ ≤ δn

}
and Dn(X) be the envelop function of the class of functions Dn. For any sequence
δn → 0, we assume that Dn(X) satisfies

lim
λ→∞ lim sup

n→∞
sup
t≥λ

t2P o
X

(
Dn(X1) > t

) = 0.(39)

Now we consider the convergence rate of η̂∗̃
θ

satisfying:

U∗
n (θ̃ , η̂∗̃

θ
)[g] = Oo

PXW
(n−1/2)(40)

for any θ̃
P o

XW−→ θ0 and g ranging over G. In Theorem 2 below, we will show that η̂∗̃
θ

has the root-n convergence rate under conditions (37)–(39).

THEOREM 2. Suppose that U :� × H �→ �∞(G) is Fréchet differentiable
at (θ0, η0) with bounded derivative U̇ : Rd × lin H �→ �∞(G) such that the map
U̇ (0, ·) : lin H �→ �∞(G) is invertible with an inverse that is continuous on its
range. Furthermore, assume that (37)–(39) hold, and that U(θ0, η0) = 0, then

‖η̂∗̃
θ
− η0‖ = Oo

PW
(‖θ̃ − θ0‖ ∨ n−1/2)(41)

in P o
X-probability, given that θ̃

P o
XW−→ θ0 and η̂∗̃

θ

P o
XW−→ η0.

The proof of Theorem 2 is given in Appendix A.4.

5.2. Slower than root-n rate. We next present a result that deals with slower
than

√
n convergence rate for the bootstrap M-estimate of the functional parame-

ter. This result is so general that it can be applied to the sieve estimate of nuisance
parameter [15]. The essence of the sieve method is that a sequence of increasing
spaces (sieves), that is, Hn, is employed to approximate the large parameter space,
for example, H. In other words, for any η ∈ H, there exists a πnη ∈ Hn such that
‖η − πnη‖ → 0 as n → ∞.

Now, we consider the M-estimate η̂∗
θ ∈ Hn satisfying

P
∗
nv(θ, η̂∗

θ ) ≥ P
∗
nv(θ, ηn) for any θ ∈ � and some ηn ∈ Hn,(42)

where x �→ v(θ, η)(x) is a measurable objective function. Let “�” and “�” denote
greater than or smaller than, up to an universal constant. We assume the following
conditions hold for every δ > 0:

EX

(
v(θ, η) − v(θ, ηn)

)
� −d2(η, ηn) + ‖θ − θ0‖2,(43)

Eo
X sup

θ∈�,η∈Hn,‖θ−θ0‖≤δ,d(η,ηn)≤δ

∣∣Gn

(
v(θ, η) − v(θ, ηn)

)∣∣ � ψn(δ),(44)

Eo
XW sup

θ∈�,η∈Hn,‖θ−θ0‖≤δ,d(η,ηn)≤δ

∣∣G∗
n

(
v(θ, η) − v(θ, ηn)

)∣∣ � ψ∗
n(δ).(45)
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Here d2(η, ηn) may be thought of as the square of a distance, for example, ‖η −
ηn‖2, but our theorem is also true for any arbitrary function η �→ d2(η, ηn).

THEOREM 3. Suppose that conditions (43)–(45) hold. We assume (44) [and
(45)] is valid for functions ψn (ψ∗

n) such that δ �→ ψn(δ)/δ
α [δ �→ ψ∗

n(δ)/δα] is
decreasing for some 0 < α < 2. Then for every (θ̃ , η̂∗̃

θ
) satisfying P(θ̃ ∈ �, η̂∗̃

θ
∈

Hn) → 1, we have

d(η̂∗̃
θ
, ηn) ≤ Oo

PW
(δn ∨ ‖θ̃ − θ0‖)

in P o
X-probability, for any sequence of positive numbers δn satisfying both

ψn(δn) ≤ √
nδ2

n and ψ∗
n(δn) ≤ √

nδ2
n for large n.

The proof of Theorem 3 is given in Appendix A.5.
In application of Theorem 3, the parameter ηn is taken to be some element in

Hn that is very close to η0. When Hn = H, a natural choice for ηn is η0 and we
can directly use Theorem 3 to derive the convergence rate d(η̂∗̃

θ
, η0) as shown in

the examples of Section 6. In general, ηn may be taken as the maximizer of the
mapping η �→ PXv(θ0, η) over Hn, the projection of η0 onto Hn. Then we need to
consider the approximation rate of the sieve space Hn to H, that is, d(ηn, η0), since
d(η̂∗̃

θ
, η0) ≤ d(η̂∗̃

θ
, ηn) + d(ηn, η0). The approximation rate d(ηn, η0) depends on

the choices of sieves and is usually derived in the mathematical literature.
Now we discuss verification of the nontrivial conditions (43)–(45). The smooth-

ness condition for v(θ, η), that is, (43), is implied by

EX

(
v(θ, η) − v(θ0, ηn)

)
� −d2(η, ηn) − ‖θ − θ0‖2,(46)

EX

(
v(θ, ηn) − v(θ0, ηn)

)
� −‖θ − θ0‖2.(47)

The two conditions depict the quadratic behaviors of the criterion functions
(θ, η) �→ EXv(θ, η) and θ �→ EXv(θ, ηn) around the maximum point (θ0, ηn)

and θ0, respectively. We next present one useful lemma for verifying the continuity
modulus of (bootstrapped) empirical processes, that is, (44) and (45). Denote

Vδ = {x �→ [v(θ, η)(x) − v(θ, ηn)(x)] :d(η, ηn) ≤ δ,‖θ − θ0‖ ≤ δ}(48)

and define the bracketing entropy integral of Vδ as

K(δ, Vδ,L2(PX)) =
∫ δ

0

√
1 + logN[·](ε, Vδ,L2(PX)) dε,(49)

where logN[·](δ, A, d) is the δ-bracketing entropy number for the class A under
the distance measure d .

LEMMA 1. Suppose that the functions (x, θ, η) �→ vθ,η(x) are uniformly
bounded for (θ, η) ranging over some neighborhood of (θ0, ηn) and that

EX(vθ,η − vθ,ηn)
2 � d2(η, ηn) + ‖θ − θ0‖2.(50)
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Then condition (44) is satisfied for any functions ψn such that

ψn(δ) ≥ K(δ, Vδ,L2(PX))

(
1 + K(δ, Vδ,L2(PX))

δ2
√

n

)
.(51)

Let Vn(X) be the envelop function of the class Vδn . If we further assume that, for
each sequence δn → 0, the envelop functions Vn satisfies

lim
λ→∞ lim sup

n→∞
sup
t≥λ

t2P o
X

(
Vn(X1) > t

) = 0,(52)

then condition (45) is satisfied for any functions ψ∗
n such that

ψ∗
n(δ) ≥ K(δ, Vδ,L2(PX))

(
1 + K(δ, Vδ,L2(PX))

δ2
√

n

)
.(53)

REMARK 5. Note that the inequalities ψn(δ) � √
nδ2 and ψ∗

n(δ) � √
nδ2 are

equivalent to K(δ, Vδ,L2(PX)) � √
nδ2 when we let ψn and ψ∗

n be equal to the
right-hand side of (51) and (53), respectively. Consequently, the convergence rate
of η̂∗̃

θ
calculated in Theorem 3, that is, δn, is determined by the bracketing entropy

integral of Vδn .

REMARK 6. The assumptions of Lemma 1 are relaxable to great extent. For
example, we can drop the uniform bounded condition on the class of functions
v(θ, η) by using the “Bernstein norm,” that is, ‖f ‖P,B = (2P(e|f | − 1 − |f |))1/2,
instead of the L2-norm. In some cases, the bracketing entropy integral diverges
at zero. Then we can change the limit of the integration in (49) from [0, δ] to
[aδ2 ∧ δ/3, δ] for some small positive constant a, see Lemma 3.4.3 and page 326
in [38].

6. Examples. In this section, we apply the main results in Section 3 to justify
the bootstrap validity of drawing semiparametric inferences in three examples of
semiparametric models. In the Cox regression models with censored data, we use
the log-likelihood as the criterion function, while in the partially linear model, the
least squares criterion is used. The M-estimate of the nuisance functional parame-
ters have different convergence rates in these examples. Indeed, the advantages of
using bootstrap approach in all of the three examples were considered in the liter-
ature, for example, [14, 26]. This section also serves the purpose of illustration on
verification of the technical conditions used in the general results.

6.1. Cox regression model with right censored data. In the Cox regression
model, the hazard function of the survival time T of a subject with covariate Z is
modeled as

λ(t |z) ≡ lim
→0

1


P(t ≤ T < t + |T ≥ t,Z = z) = λ(t) exp(θ ′z),(54)
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where λ is an unspecified baseline hazard function and θ is a regression vector.
In this model, we are usually interested in θ while treating the cumulative hazard
function η(y) = ∫ y

0 λ(t) dt as the nuisance parameter. The MLE for θ is proven
to be semiparametric efficient and widely used in applications. Here we consider
bootstrapping θ̂ , which corresponds to treating log-likelihood as the criterion func-
tion m(θ,η) in our general formulation.

With right censoring of survival time, the data observed is X = (Y, δ,Z), where
Y = T ∧ C, C is a censoring time, δ = I {T ≤ C}, and Z is a regression covari-
ate belonging to a compact set Z ⊂ R

d . We assume that C is independent of T

given Z. The log-likelihood is obtained as

m(θ,η) = δθ ′z − exp(θ ′z)η(y) + δ logη{y},(55)

where η{y} = η(y) − η(y−) is a point mass that denotes the jump of η at point y.
The parameter space H is restricted to a set of nondecreasing cadlag functions
on the interval [0, τ ] with η(τ) ≤ M for some constant M . By some algebra, we
have

m̃(θ, η)(x) = m1(θ, η) − m2(θ, η)[H †(θ, η)]
= [δz − z exp(θ ′z)η(y)]

−
[
δH †(θ, η)(y) − exp(θ ′z)

∫ y

0
H †(θ, η)(u) dη(u)

]
,

where

H †(θ, η)(y) = Eθ,ηZ exp(θ ′Z)1{Y ≥ y}
Eθ,η exp(θ ′Z)1{Y ≥ y} .

Conditions I, S1–S3 in guaranteeing the asymptotic normality of θ̂ have been
verified in [8]. In particular, the convergence rate of the estimated nuisance para-
meter is established in Theorem 3.1 of [31], that is,

‖η̂θ̃n
− η0‖∞ = OPX

(n−1/2 + ‖θ̃n − θ0‖),(56)

where ‖ · ‖∞ denotes the supreme norm. We next verify the bootstrap consis-
tency conditions, that is, SB1–SB3. Condition SB1 trivially holds since it is easy
to show that η �→ m̃(θ0, η) has bounded Fréchet derivative around η0. The P -
Donsker condition SB2 has been verified when verifying (13) in condition S1.
In the end, we will verify the bootstrap convergence rate condition ‖η̂∗̃

θ
− η0‖∞ =

Oo
PXW

(‖θ̃ −θ0‖∨n−1/2) via Theorem 2. Since η̂∗
θ maximizes P

∗
nm(θ, η) for fixed θ ,

we set k(θ, η)[g] = m2(θ, η)[g] and have U∗
n (θ, η̂∗

θ )[g] = P
∗
nm2(θ, η̂∗

θ )[g] = 0.
The invertibility of Ẇ (0, ·), conditions (37) and (38) have been verified in [31]
when they showed (56). Now we only need to consider condition (39): for n so
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large that δn ≤ R

Dn(x) ≡ sup
{ |(m2(θ, η)[g]) − m2(θ0, η0)[g]|

1 + √
n(‖θ − θ0‖ + ‖η − η0‖∞)

, g ∈ G,

‖θ − θ0‖ + ‖η − η0‖∞ ≤ δn

}
≤ 2 sup{|m2(θ, η)[g]|, g ∈ G,‖θ − θ0‖ + ‖η − η0‖∞ ≤ R}
≤ some constant.

The last inequality follows from the assumption that G is a class of functions of
bounded total variation and the inequality that

∫ y
0 g(u)dη(u) ≤ η(τ)‖g‖BV, where

‖g‖BV is the total variation of the function g. Thus, condition (39) holds trivially.

6.2. Cox regression model with current status data. We next consider the cur-
rent status data when each subject is observed at a single examination time C

to determine if an event has occurred. The event time T cannot be known exactly.
Then the observed data are n i.i.d. realizations of X = (C, δ,Z) ∈ R+ ×{0,1}×Z,
where δ = I {T ≤ C}. The corresponding criterion function, that is, the log-
likelihood, is derived as

m(θ,η) = δ log[1 − exp(−η(c) exp(θ ′z))] − (1 − δ) exp(θ ′z)η(c).(57)

We make the following assumptions throughout the rest of this subsection: (i) T

and C are independent given Z; (ii) the covariance of Z − E(Z|C) is posi-
tive definite, which guarantees the efficient information to be positive definite;
(iii) C possesses a Lebesgue density which is continuous and positive on its sup-
port [σ, τ ], for which the true nuisance parameter η0 satisfies η0(σ−) > 0 and
η0(τ ) < M < ∞, and this density is continuously differentiable on [σ, τ ] with
derivative bounded above and bounded below by zero. The form of m̃(θ, η) can be
found in [9] as follows

m̃(θ, η) = m1(θ, η) − m2(θ, η)[H †(θ, η)]
= (

zη(c) − H †(θ, η)(c)
)
Q(x; θ, η),

where

Q(x; θ, η) = eθ ′z
[

δ

exp(eθ ′zη(c)) − 1
− (1 − δ)

]
and the form of H †(θ, η)(c) is given in (4) of [9].

Conditions I and S1–S3 are verified in [9]. Conditions SB1 and SB2 can be
checked similarly as in the previous example. Note that the convergence rate for
the nuisance parameter becomes slower, that is,

‖η̂θ̃n
− η0‖2 = OPX

(‖θ̃n − θ0‖ + n−1/3),(58)
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where ‖ · ‖2 denotes the regular L2-norm, as shown in [31]. By Theorem 3, we
can show that the same convergence rate, that is, n−1/3, also holds for η̂∗

θ . The
assumptions (43) and (44) in Theorem 3 are verified in [31] when showing (58).
We apply Lemma 1 to verify assumption (45). We show that condition (52) on the
envelop function Vn(x) holds: for n so large that δn ≤ R

Vn(x) ≡ sup{|m(θ,η) − m(θ,η0)| :‖η − η0‖2 ≤ δn,‖θ − θ0‖ ≤ δn}
≤ 2 sup{|m(θ,η)| :‖η − η0‖2 ≤ R,‖θ − θ0‖ ≤ R}
≤ some constant.

6.3. Partially linear models. In this example, a continuous outcome vari-
able Y , depending on the covariates (W,Z) ∈ [0,1]2, is modeled as

Y = θW + f (Z) + ξ,

where ξ is independent of (W,Z) and f is an unknown smooth function belong-
ing to H ≡ {f : [0,1] �→ [0,1], ∫ 1

0 (f (k)(u))2 du ≤ M} for a fixed 0 < M < ∞. In
addition, we assume E(Var(W |Z)) is positive definite and E{f (Z)} = 0. We want
to estimate (θ, f ) using the least square criterion:

m(θ,f ) = −(
y − θw − f (z)

)2
.(59)

Note that the above model would be more flexible if we did not require knowledge
of M . A sieve estimator could be obtained if we replaced M with a sequence
Mn → ∞. The theory we develop in this paper will be applicable in this setting,
but, in order to maintain clarity of exposition, we have elected not to pursue this
more complicated situation here. Another approach is to use penalization, the study
of which is beyond the scope of this paper.

Simple calculations give

m̃(θ, η)(x) = m1(θ, η) − m2(θ, η)[H †(θ, η)]
= 2

(
y − θw − f (z)

)(
w − H †(θ, η)(z)

)
,

where

H †(θ, η)(z) = Eθ,η(W(Y − θW − f (Z))2|Z = z)

Eθ,η((Y − θW − f (Z))2|Z = z)
.

The finite variance condition I follows from E[W {W − H †(θ0, η0)(Z)}] > 0. The
distribution of ξ is assumed to have finite second moment and satisfy (5), for ex-
ample, ξ ∼ N(0,1). Conditions S1–S3 and SB2 can be verified using similar argu-
ments in Example 3 of [9], in particular, ‖f̂θ̃ −f0‖2 = OPX

(‖θ̃ −θ0‖∨n−k/(2k+1))

in (15). It is easy to show that the Fréchet derivative of η �→ m̃(θ0, η) is bounded
around η0, and thus the tail condition SB1 holds. To prove ‖f̂ ∗̃

θ
− f0‖2 =

Oo
PXW

(‖θ̃ − θ0‖∨n−k/(2k+1)) via Theorem 3, we proceed as in the previous exam-
ple, checking assumption (52) using similar arguments, that is, Vn(x) is uniformly
bounded.
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7. Proof of Theorem 1 (bootstrap consistency theorem). To prove Theo-
rem 1, we need the following lemma whose proof is given in Appendix A.3.

LEMMA 2. Under the assumptions of Theorem 1, we have

G
∗
n

(
m̃(θ, η) − m̃(θ0, η0)

) = Oo
PW

(‖θ − θ0‖ ∨ ‖η − η0‖)(60)

in P o
X-probability for (θ, η) ∈ Cn.

We shall use repeatedly Lemma 3 in the Appendix, which concerns about the
transition of stochastic orders among different probability spaces.

We first prove (27). Recall that Gn = √
n(Pn − PX) and G

∗
n = √

n(P∗
n − Pn).

Define m̂∗ as m̃(θ̂∗, η̂∗). By some algebra, we have

G
∗
nm̃0 + Gnm̃0 + √

nPX(m̂∗ − m̃0)

= G
∗
n(m̃0 − m̂∗) + Gn(m̃0 − m̂∗) + √

nP
∗
nm̂

∗,
since PXm̃0 = 0. Thus, we have the following inequality:∥∥√nPX(m̂∗ − m̃0)

∥∥ ≤ ‖G
∗
nm̃0‖ + ‖Gnm̃0‖ + ‖G

∗
n(m̃0 − m̂∗)‖

+ ‖Gn(m̃0 − m̂∗)‖ + ∥∥√nP
∗
nm̂

∗∥∥(61)

≡ L1 + L2 + L3 + L4 + L5.

Based on Theorem 2.2 in [33], we have L1 = Oo
PW

(1) in P o
X-probability. The

CLT implies L2 = Oo
PX

(1). We next consider L3 and L4. By condition SB3, we
can show that ‖η̂∗ − η0‖ = oo

PW
(1) in P o

X-probability since θ̂∗ is assumed to be
consistent, that is, ‖θ̂∗ − θ0‖ = oo

PW
(1) in P o

X-probability, and by (69) and (73)
in Lemma 3. Then, we have L3 = oo

PW
(1) in P o

X-probability based on Lemma 2
and (73) in Lemma 3. Next, we obtain that L4 = oo

PW
(1) in P o

X-probability based
on condition S1 and (71) in Lemma 3. Finally, L5 = oo

PXW
(1) based on (22). In

summary, (61) can be rewritten as:∥∥√nPX(m̂∗ − m̃0)
∥∥ ≤ Oo

PW
(1) + Oo

PX
(1)(62)

in P o
X-probability.

Let αn = ‖θ̂∗ − θ0‖. Combining (14) with (62) and noticing (26), we have√
n‖Aαn‖ ≤ Oo

PW
(1) + Oo

PX
(1) + Oo

PW

(√
nα2

n ∨ n−2γ+1/2)
(63)

in P o
X-probability. By considering the consistency of θ̂∗ and condition I, we com-

plete the proof of (27) based on (63).
We next prove (28). Write

I1 = −G
∗
n(m̂

∗ − m̃0) = √
n(P∗

n − Pn)(m̃0 − m̂∗),
I2 = Gn(m̂ − m̃0) = √

n(Pn − PX)(m̂ − m̃0),

I3 = −Gn(m̂
∗ − m̃0) = √

n(Pn − PX)(m̃0 − m̂∗),
I4 = √

nP
∗
nm̂

∗ − √
nPnm̂.
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By some algebra, we obtain that
√

nPX(m̂∗ − m̂) + G
∗
nm̃0 = ∑4

j=1 Ij .
By the definition (24), we can show that An × Bn = Oo

PW
(1) in P o

X-probability
if An and Bn are both of the order Oo

PW
(1) in P o

X-probability. Then the root-n
consistency of θ̂∗ proven in (27) together with SB3 implies

‖η̂∗ − η0‖ ∨ ‖θ̂∗ − θ0‖ = O∗
PW

(n−γ )(64)

in P o
X-probability. Thus, by Lemma 2, we know I1 = Oo

PW
(n−γ ) in P o

X-probability.
Note that (12) and (13) of condition S1 imply

Gn

(
m̃(θ, η) − m̃0

) = Oo
PX

(‖θ − θ0‖ ∨ ‖η − η0‖)(65)

for (θ, η) in the shrinking neighborhood Cn of (θ0, η0). Considering (65), S3 and
Proposition 1, we have I2 = Oo

PX
(n−γ ). By (64), (65) and (72), we know the order

of I3 is Oo
PW

(n−γ ) in P o
X-probability. We also obtain I4 = oo

PX
(1) + oo

PXW
(1) by

using (7) and (22).
Therefore, we have established

√
nPX(m̂∗ − m̂) = −G

∗
nm̃0 + oo

PX
(1) + oo

PW
(1)(66)

in P o
X-probability. To analyze the left-hand side of (66), we rewrite it as√

nPX(m̂∗ − m̃0) − √
nPX(m̂ − m̃0). Applying condition S2, we obtain

√
nPX

(
m11(θ0, η0) − m21(θ0, η0)[H †

0 ])(θ̂∗ − θ̂ )

= −G
∗
nm̃0 + oo

PX
(1) + oo

PW
(1) + Oo

PX
(n1/2−2γ ) + Oo

PW
(n1/2−2γ )(67)

= −G
∗
nm̃0 + oo

PX
(1) + oo

PW
(1)

in P o
X-probability, by considering condition S3, SB3 and the range of γ . Note

that oo
PX

(1) in (67) is also of the order oo
PXW

(1), and thus is of the order oo
PW

(1)

in P o
X-probability by (69). Moreover, according to condition I we have that A =

PX(m11(θ0, η0)−m21(θ0, η0)[H †
0 ]) is nonsingular. We obtain (28) by multiplying

A−1 on both sides of (67).
By applying Lemma 4.6 in [33] under the bootstrap weight conditions, we ob-

tain (29). Proposition 1 together with Lemma 2.11 in [39] implies that

sup
x∈Rd

∣∣PX

(√
n(θ̂ − θ0) ≤ x

) − P
(
N(0,	) ≤ x

)∣∣ = o(1).(68)

Combining (29) and (68), we obtain (30).

APPENDIX

A.1. Measurability and stochastic orders. Measurability condition M(P):
we say that a class of random functions F ∈ M(P) if F is nearly linearly devi-
ation measurable for P and that both F 2 and F ′2 are nearly linearly supremum
measurable for P . Here F 2 and F ′2 denote the classes of squared functions and
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squared differences of functions from F , respectively. It is known that if F is
countable, or if {Pn}∞n=1 are stochastically separable in F , or if F is image admis-
sible Suslin [12], then F ∈ M(P). More precise descriptions can be found in pages
853 and 854 of [17].

The following lemma is very important since it accurately describes the transi-
tion of stochastic orders among different probability spaces. We implicitly assume
the random quantities in Lemma 3 posses enough measurability so that the usual
Fubini theorem can be used freely.

LEMMA 3. Suppose that

Qn = oo
PW

(1) in P o
X-probability,

Rn = Oo
PW

(1) in P o
X-probability.

We have

An = oo
PXW

(1) ⇐⇒ An = oo
PW

(1) in P o
X-probability,(69)

Bn = Oo
PXW

(1) ⇐⇒ Bn = Oo
PW

(1) in P o
X-probability,(70)

Cn = Qn × Oo
PX

(1) �⇒ Cn = oo
PW

(1) in P o
X-probability,(71)

Dn = Rn × Oo
PX

(1) �⇒ Dn = Oo
PW

(1) in P o
X-probability,(72)

En = Qn × Rn �⇒ En = oo
PW

(1) in P o
X-probability.(73)

PROOF. To verify (69), we have for every ε, ν > 0,

P o
X{P o

W |X(|An| ≥ ε) ≥ ν} ≤ 1

ν
Eo

XP o
W |X(|An| ≥ ε)

(74)

≤ 1

ν
Eo

XEo
W |X1{|An| ≥ ε}

by Markov’s inequality. According to Lemmas 6.5 and 6.14 in [22], we have
Eo

XEo
W |X1{|An| ≥ ε} ≤ Eo

XW1{|An| ≥ ε} = P o
XW(|An| ≥ ε), and thus

P o
X{P o

W |X(|An| ≥ ε) ≥ ν} ≤ 1

ν
P o

XW(|An| ≥ ε).(75)

From (75), we can conclude that if An = oo
PXW

(1), then An = oo
PW

(1) in P o
X-

probability. Another direction of (69) follows from the following inequalities: for
any ε, η > 0,

P o
XW(|An| ≥ ε) = Eo

X{P o
W |X(|An| ≥ ε)}

= Eo
X

{
P o

W |X(|An| ≥ ε)1{P o
W |X(|An| ≥ ε) ≥ η}}

+ Eo
X

{
P o

W |X(|An| ≥ ε)1{P o
W |X(|An| ≥ ε) < η}}(76)

≤ Eo
X

{
1{P o

W |X(|An| ≥ ε) ≥ η}} + η

≤ P o
X{P o

W(|An| ≥ ε) ≥ η} + η.
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Note that the first term in (76) can be made arbitrarily small by the assumption that
An = oo

PW
(1) in P o

X-probability. Since η can be chosen arbitrarily small, we can
show limn→∞ P o

XW(|An| ≥ ε) = 0 for any ε > 0. This completes the proof of (69).
(70) can be shown similarly by using the inequalities (74) and (76).

As for (71), we establish the following inequalities:

P o
X

{
P o

W |X
(|Qn × Oo

PX
(1)| ≥ ε

) ≥ ν
}

≤ P o
X

{
P o

W |X
(|Qn| ≥ ε/|Oo

PX
(1)|) ≥ ν

}
≤ P o

X

{
P o

W |X(|Qn| ≥ ε/M) + P o
W |X

(|Oo
PX

(1)| ≥ M
) ≥ ν

}
≤ P o

X{P o
W |X(|Qn| ≥ ε/M) ≥ ν/2} + P o

X

{
P o

W |X
(|Oo

PX
(1)| ≥ M

) ≥ ν/2
}

≤ P o
X{P o

W |X(|Qn| ≥ ε/M) ≥ ν/2} + 2

ν
P o

X

(|Oo
PX

(1)| ≥ M
)

for any ε, ν,M > 0. Since M can be chosen arbitrarily large, we can show (71)
by considering the definition of Oo

PX
(1). The proof of (72) is similar by using

the above set of inequalities. The proof of (71) can be carried over to prove (73).
Similarly, we establish the following inequalities:

P o
X{P o

W |X(|Qn × Rn| ≥ ε) ≥ η}
≤ P o

X{P o
W |X(|Qn| ≥ ε/M) ≥ η/2} + P o

X{P o
W |X(|Rn| ≥ M) ≥ η/2}

for any ε, η,M > 0. Then by selecting sufficiently large M , we can show that

P o
X{P o

W |X(|Qn × Rn| ≥ ε) ≥ η} → 0

as n → ∞ for any ε, η > 0. �

A.2. Two useful inequalities. Here we give two key inequalities used in prov-
ing Lemmas 1 and 2.

Multiplier inequality (Lemma 4.1 of [41]).
Let Wn = (Wn1, . . . ,Wnn)

′ be nonnegative exchangeable random variables
on (W,�,PW) such that, for every n, Rn = ∫ ∞

0
√

PW(Wn1 ≥ u)du < ∞. Let
Zni , i = 1,2, . . . , n, be i.i.d. random elements in (X ∞, A∞,P ∞

X ) with values in
�∞(Fn), and write ‖ · ‖n = supf ∈Fn

|Zni(f )|. It is assumed that Zni ’s are indepen-
dent of Wn. Then for any n0 such that 1 ≤ n0 < ∞ and any n > n0, the following
inequality holds:

Eo
XW

∥∥∥∥∥ 1√
n

n∑
i=1

WniZni

∥∥∥∥∥
n

≤ n0E
o
X‖Zn1‖n · EW(max1≤i≤n Wni)√

n

(77)

+ Rn · max
n0<i≤n

{
Eo

X

1√
i

∥∥∥∥∥
i∑

j=n0+1

Znj

∥∥∥∥∥
n

}
.
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Hoffmann–Jorgensen inequality for moments (Proposition A.1.5 in [38]).
Let 1 ≤ p < ∞ and suppose that V1, . . . , Vn are independent stochastic

processes with mean zero indexed by an arbitrary index set T . Then there exist
constants Kp and 0 < vp < 1 such that

Eo

∥∥∥∥∥
n∑

i=1

Vi

∥∥∥∥∥
p

≤ Kp

{
Eo max

1≤k≤n
‖Vk‖p + [G−1(vp)]p

}
,

where ‖Y‖ = supt |Yt | denotes the supremum of a stochastic process {Yt , t ∈ T },
and G−1(v) = inf{u :P o(‖∑n

i=1 Vi‖ ≤ v) ≥ u}.

A.3. Proof of Lemma 2. We first write G
∗
n(m̃(θ, η) − m̃0) as the sum of

G
∗
n(m̃(θ, η)− m̃(θ0, η)) and G

∗
n(m̃(θ0, η)− m̃0). By the Taylor expansion, the first

term becomes (θ − θ0)
′
G

∗
n(∂/∂θ)m̃(θ̄ , η), where θ̄ is between θ and θ0. By SB2

and Theorem 2.2 in [33], we know that the first term is of the order Oo
PW

(‖θ − θ0‖)
in P o

X-probability. We next consider the second term. Let

n = sup
η∈Un

{‖G
∗
n(m̃(θ0, η) − m̃0)‖

‖η − η0‖
}
,(78)

where Un = {η :‖η − η0‖ ≤ δn} for any δn → 0. Note that we can write n =
‖G

∗
n‖Sn , where ‖G

∗
n‖Sn = supf ∈Sn

|G∗
nf |. By (70), to verify the bootstrap equicon-

tinuity condition that G
∗
n(m̃(θ0, η) − m̃0) = Oo

PW
(‖η − η0‖) in P o

X-probability, it
suffices to show

lim sup
n→∞

Eo
XWn < ∞.(79)

Note that

G
∗
n = 1√

n

n∑
i=1

(Wni − 1)δXi
= 1√

n

n∑
i=1

(Wni − 1)(δXi
− PX)

by condition W2. Let W ′
n = (W ′

n1, . . . ,W
′
nn) be exchangeable bootstrap weights

generated from PW ′ , an independent copy of PW . The bootstrap weight conditions
W1 and W2 imply that EW ′W ′

ni = 1 for i = 1, . . . , n. Let

mn(η, η0) = m̃(θ0, η) − m̃0

‖η − η0‖ .

Then we have

Eo
XWn = Eo

XW sup
η∈Un

‖G
∗
nmn(η, η0)‖

= Eo
XW sup

η∈Un

∥∥∥∥∥ 1√
n

n∑
i=1

(Wni − 1)(δXi
− PX)mn(η, η0)

∥∥∥∥∥
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= Eo
XW sup

η∈Un

∥∥∥∥∥ 1√
n

n∑
i=1

(Wni − EW ′W ′
ni)(δXi

− PX)mn(η, η0)

∥∥∥∥∥
≤ Eo

XWEo
W ′ sup

η∈Un

∥∥∥∥∥ 1√
n

n∑
i=1

(Wni − W ′
ni)(δXi

− PX)mn(η, η0)

∥∥∥∥∥.
To further bound Eo

XWn, we employ the symmetrization argument familiar in the
empirical process literature to obtain

Eo
XWn ≤ Eo

XW sup
η∈Un

∥∥∥∥∥ 1√
n

n∑
i=1

Wni(δXi
− PX)mn(η, η0)

∥∥∥∥∥
+ Eo

XWEo
W ′ sup

η∈Un

∥∥∥∥∥ 1√
n

n∑
i=1

W ′
ni(δXi

− PX)mn(η, η0)

∥∥∥∥∥(80)

= 2Eo
XW sup

η∈Un

∥∥∥∥∥ 1√
n

n∑
i=1

Wni(δXi
− PX)mn(η, η0)

∥∥∥∥∥.
We next apply the multiplier inequality (77) to (80) with Zni = {(δXi

−
PX)mn(η, η0) :η ∈ Un}. Define

‖Zni‖n = sup
η∈Un

‖(δXi
− PX)mn(η, η0)‖.

To show (79), we need only to show

EW

(
max

1≤i≤n
Wni

)/√
n → 0,(81)

lim supn Eo
X‖Zn1‖n < ∞, and

lim sup
n

max
n0<i≤n

Eo
X sup

η∈Un

∥∥∥∥∥ 1√
i

i∑
j=n0+1

Zni

∥∥∥∥∥ < ∞(82)

for some n0 < ∞. The bootstrap weight conditions W3 and W4 together with
Lemma 4.7 in [33] imply (81). Note that

Eo
X‖Zn1‖n = Eo

X sup
η∈Un

‖(δX1 − PX)mn(η, η0)‖

≤ Eo
X sup

η∈Un

‖mn(η, η0)(X1)‖ + Eo
X sup

η∈Un

‖EXmn(η, η0)‖

≤ 2Eo
XSn(X1),

where Sn is the envelop of the class Sn defined in (10), and the first inequality
follows from the Fatou’s lemma. Condition SB1 implies

1√
n
Eo

X max
1≤k≤n

Sn(Xk) −→ 0,(83)

lim sup
n→∞

Eo
XSn(X1) < ∞;(84)
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see page 120 of [38]. The result (84) implies lim supn Eo
X‖Zn1‖n < ∞.

It remains to show (82). We apply the Hoffmann–Jorgensen inequality with
p = 1 in Appendix A.2. First, we establish

Eo
X sup

η∈Un

∥∥∥∥∥ 1√
n

n∑
i=1

Zni

∥∥∥∥∥ ≤ K1

{
1√
n
Eo

X max
1≤k≤n

‖Znk‖n + G−1
n (v1)

}
(85)

≤ I1 + I2,

where K1 and 0 < v1 < 1 are constants and

Gn(t) = P o
X

(
n−1/2

∥∥∥∥∥
n∑

i=1

Zni

∥∥∥∥∥
n

≤ t

)
.

Obviously, (83) implies that I1 → 0. We next consider I2. Note that assumption
S1 implies ‖Gn‖Sn = ‖n−1/2 ∑n

i=1 Zni‖n = Oo
PX

(1). Hence, there exists a finite
constant Mt such that lim infn Gn(Mt) ≥ t for every 1 > t > 0. It follows that
lim supn G−1

n (v1) ≤ Mv1 < ∞ since 0 < v1 < 1. Thus, the left-hand side of (85)
is bounded away from infinity, and therefore (82) holds in light of the following
result from the triangular inequality

max
n0<i≤n

Eo
X sup

η∈Un

∥∥∥∥∥ 1√
i

i∑
j=n0+1

Znj

∥∥∥∥∥ ≤ max
n0<i≤n

Eo
X sup

η∈Un

∥∥∥∥∥ 1√
i

i∑
j=1

Znj

∥∥∥∥∥
+ Eo

X sup
η∈Un

∥∥∥∥∥ 1√
n0

n0∑
j=1

Znj

∥∥∥∥∥.
The proof of Lemma 2 is complete.

A.4. Proof of Theorem 2. Using (40) and the fact that U(θ0, η0) = 0, we
have

U(θ̃, η̂∗̃
θ
) − U(θ0, η0)

= U(θ̃, η̂∗̃
θ
) − U∗

n (θ̃ , η̂∗̃
θ
) + Oo

PXW
(n−1/2)

(86)
= −(U∗

n − Un)(θ̃ , η̂∗̃
θ
) − (Un − U)(θ̃ , η̂∗̃

θ
) + Oo

PXW
(n−1/2)

= L1 + L2 + Oo
PXW

(n−1/2).

Further, based on conditions (37) and (39), we apply Lemma 4.2 in [41] to obtain
that L1 = −(U∗

n −Un)(θ0, η0)+ oo
PXW

(n−1/2 ∨‖θ̃ − θ0‖∨‖η̂∗̃
θ
−η0‖). By Lemma

3.3.5 in [38] given (37) and (38), we have L2 = −(Un−U)(θ0, η0)+oo
PXW

(n−1/2 ∨
‖θ̃ − θ0‖∨‖η̂∗̃

θ
− η0‖). By applying CLT and Theorem 2.2 in [33] under condition

(37) to L1 and L2, we have

U(θ̃, η̂∗̃
θ
) − U(θ0, η0) = Oo

PXW
(n−1/2) + oo

PXW
(‖θ̃ − θ0‖ ∨ ‖η̂∗̃

θ
− η0‖).(87)
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We next apply the Taylor expansion to get

U(θ̃, η̂∗̃
θ
) − U(θ0, η0)

= U̇ (θ̃ − θ0, η̂
∗̃
θ
− η0) + o(‖θ̃ − θ0‖ ∨ ‖η̂∗̃

θ
− η0‖)

= U̇ (θ̃ − θ0,0) + U̇ (0, η̂∗̃
θ
− η0) + o(‖θ̃ − θ0‖ ∨ ‖η̂∗̃

θ
− η0‖)

by the assumed Fréchet differentiability of U and linearity of U̇ . Note that U has
bounded Fréchet derivative and U̇ (0, ·) is continuously invertible. Thus, we can
conclude that

U(θ̃, η̂∗̃
θ
) − U(θ0, η0) ≥ c‖η̂∗̃

θ
− η0‖ + O(‖θ̃ − θ0‖) + o(‖θ̃ − θ0‖ ∨ ‖η̂∗̃

θ
− η0‖)

for some c > 0. Combining the above inequality with (87), we can establish the
following inequality:

‖η̂∗̃
θ
− η0‖ � Oo

PXW
(‖θ̃ − θ0‖ ∨ n−1/2) + oo

PXW
(‖η̂∗̃

θ
− η0‖),

which implies (41).

A.5. Proof of Theorem 3. According to (70), we need only to show that

P o
XW

(
d(η̂∗̃

θ
, ηn) ≥ 2Mn(δn ∨ ‖θ̃ − θ0‖), θ̃ ∈ �, η̂∗̃

θ
∈ Hn

) −→ 0(88)

as n → ∞ and Mn → ∞. The basic idea in proving (88) is first to partition the
whole parameter space into “shells,” and then bound the probability of each shell
under conditions (43)–(45).

For now we fix M = Mn and then allow it to increase to infinity. We first define
the shell Sn,j,M as

Sn,j,M = {(θ, η) ∈ � × Hn : 2j−1δn < d(η, ηn) ≤ 2j δn, d(η, ηn) ≥ 2M‖θ − θ0‖}
with j ranging over the integers and M > 0. Obviously, the event {θ̃ ∈ �, η̂∗̃

θ
∈

Hn :d(η̂∗̃
θ
, ηn) ≥ 2M(δn ∨ ‖θ̃ − θ0‖)} is contained in the union of the events

{(θ̃ , η̂∗̃
θ
) ∈ Sn,j,M} for j ≥ M . Thus, we have

P o
XW

(
d(η̂∗̃

θ
, ηn) ≥ 2M(δn ∨ ‖θ̃ − θ0‖), θ̃ ∈ �, η̂∗̃

θ
∈ Hn

)
≤ ∑

j≥M

P o
XW

(
(θ̃ , η̂∗̃

θ
) ∈ Sn,j,M

)
≤ ∑

j≥M

P o
XW

(
sup

(θ,η)∈Sn,j,M

P
∗
n

(
v(θ, η) − v(θ, ηn)

) ≥ 0
)
.

The second inequality follows from the definition of η̂∗̃
θ
. By the smoothness condi-

tion on v(θ, η), that is, (43), we have the following inequality when (θ, η) ∈ Sj,n,M

for j ≥ M :

PX

(
v(θ, η) − v(θ, ηn)

)
� −d(η, ηn)

2 + ‖θ − θ0‖2 � −22j−2δ2
n(89)
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for sufficiently large M .
Considering (89), we have

P o
XW

(
d(η̂∗̃

θ
, ηn) ≥ 2M(δn ∨ ‖θ̃ − θ0‖), θ̃ ∈ �, η̂∗̃

θ
∈ Hn

)
≤ ∑

j≥M

P o
XW

(
sup

(θ,η)∈Sn,j,M

√
n(P∗

n − PX)
(
v(θ, η) − v(θ, ηn)

)
�

√
n22j−2δ2

n

)
≤ ∑

j≥M

P o
XW

(
sup

(θ,η)∈Sn,j,M

∣∣G∗
n

(
v(θ, η) − v(θ, ηn)

)∣∣ �
√

n22j−3δ2
n

)
+ P o

X

(
sup

(θ,η)∈Sn,j,M

∣∣Gn

(
v(θ, η) − v(θ, ηn)

)∣∣ �
√

n22j−3δ2
n

)

�
∑
j≥M

ψ∗
n(2j δn)√
nδ2

n22j
+ ψn(2j δn)√

nδ2
n22j

�
∑
j≥M

2j (α−2),

where the third inequality follows from the Markov inequality and (44) and (45).
Note that the assumption that δ �→ ψn(δ)/δ

α [δ �→ ψ∗
n(δ)/δα] is decreasing for

some 0 < α < 2 implies that ψn(cδ) ≤ cαψn(δ) for every c > 1. Combining these
with the assumption that ψn(δn) ≤ √

nδ2
n and ψ∗

n(δn) ≤ √
nδ2

n, we obtain the last
inequality in the above display. By letting M = Mn → ∞, we complete the proof
of (88), and thus Theorem 3.

A.6. Proof of Lemma 1. The result (51) is an immediate consequence of
Lemma 3.4.2 in [38]. To show (53), we first apply the symmetrization arguments
used in the proof of Lemma 2. For sufficiently small δ, the left-hand side of (45) is
bounded by

2Eo
XW

∥∥∥∥∥ 1√
n

n∑
i=1

WniYni

∥∥∥∥∥
Vδ

,(90)

where Wni ’s are the assumed bootstrap weights and

Yni = {
(δXi

− PX)
(
v(θ, η) − v(θ, ηn)

)
:d(η, ηn) ≤ δ,‖θ − θ0‖ ≤ δ

}
.

Next, the multiplier inequality (77) is employed to further bound (90). In view
of (77), we need only to figure out the upper bound for

Eo
X‖Yn1‖Vδ(91)

and

max
n0≤i≤n

Eo
X

∥∥∥∥∥ 1√
i

i∑
j0+1

Ynj

∥∥∥∥∥
Vδ

(92)



SEMIPARAMETRIC BOOTSTRAP CONSISTENCY 2913

for some n0 ≥ 1 given assumptions W3 and W4 on the bootstrap weights. By a
similar argument as in the proof of Lemma 2, we know

Eo
X‖Yn1‖Vδ ≤ 2Eo

XVn(X1),

where Vn is the envelop function of the class Vδ defined in (48). The as-
sumption (52), together with the analysis of assumption SB1, implies that
lim supn Eo

X‖Yn1‖Vδ < ∞. Next, Lemma 3.4.2 in [38] implies that

Eo
X‖Gn‖Vδ ≤ K(δ, Vδ,L2(P ))

(
1 + K(δ, Vδ,L2(P ))

δ2
√

n

)
.

By the triangular inequality, we know that (92) has the same upper bound as
Eo

X‖Gn‖Vδ . This concludes the proof of (53).
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