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Big Data: and complex

“There were 5 exabytes of information created between the dawn
of civilization through 2003, but that much information is now
created every 2 days.”

— Eric Schmidt, Google CEO (2001 - 2011)
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Big Data: and complex
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Bayesian Aggregation

This generic aggregation procedure applies to both finite
dimensional parameter and infinite dimensional parameter.

Big Data (N)

Super || machine

Roracle ( « )

Divide

Subset 1 (ng) "% Ri(a)

Subset 2 (ng) "5 Ry(w)

Subset s (ny) e Rs(a)
Aggreﬂgate

R(a)

Roracle(@): (1 — ) oracle credible region constructed from the
entire data (computationally prohibitive in practice, though);
Rj(a): (1 — ) credible region constructed from the j-th subset.
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A Series of Theoretical Questions...

e How to define an aggregation rule s.t. R(«) covers (1 — «)
posterior mass, with the same radius as Ropacle(a)?

e How to construct a prior s.t. R(«) covers the true
parameter (generating the data) with probability (1 — «)?

e How fast can we allow s to diverge (“splitotics theory”)?

o The above tasks are particularly challenging when the
parameter in consideration is infinite dimensional, which is
the focus of our talk today.
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Literature Review

o In the Bayesian community, the existing statistical studies
mostly focus on computational or methodological aspects
of MCMC-based distributed methods;

@ Nonetheless, not much effort has been devoted to
theoretically understanding scalable Bayesian procedures
especially in a general nonparametric context;

@ One particular reason is the failure of Bernstein-von Mises
theorem in the nonparametric setting found by Cox (1993)
and Freedman (1999).






What is Bernstein-von Mises (BvM) Theorem?

e BvM theorem? characterizes asymptotic shape of posterior
distribution

d(II(-|Dy), Py(-)) — 0 as n — oo,
where II(-|D,,) represents a posterior measure based on

sample D,, with size n, Py(-) is a limiting probability
measure, and d denotes a distance measure;

2Named after two mathematicians: S. Bernstein and R. von Mises.



What is Bernstein-von Mises (BvM) Theorem?

e BvM theorem? characterizes asymptotic shape of posterior
distribution

d(TI(-|Dy,), Po(-)) — 0 as n — oo,

where II(-|D,,) represents a posterior measure based on
sample D,, with size n, Py(-) is a limiting probability
measure, and d denotes a distance measure;

o For example, in parametric models BvM Theorem says

sup [TI(B|Dy) — N (B, (ndg,) ") (B)| = opy (1),
BeB

where B is the Borel algebra on R

2Named after two mathematicians: S. Bernstein and R. von Mises.



A Graphical Illustration

More importantly, BvM theorem implies the frequentist validity
of Bayesian credible sets, called as BuM phenomenon, as
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Nonparametric BvM: a negative example

o Consider Gaussian sequence models:

1
vn

}/;:902_'_ €5y 7::1727"'7

iid .
where ¢; ~ N(0,1). The “true” mean sequence {fp;}5°; is
square-summable, i.e., Y00 02, < oo;
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Nonparametric BvM: a negative example

o Consider Gaussian sequence models:

1
vn

}/;:902_'_ €5y 7::1727"'7

iid .
where ¢; ~ N(0,1). The “true” mean sequence {fp;}5°; is
square-summable, i.e., Y00 02, < oo;

@ Assign a (very innocent) Gaussian Prior:
PO: 6; ~ N(0,i"?P) for some p > 1/2.
o Freedman (1999) demonstrated the failure of BvM:
Pg (0o € (1 — a) credible set) — 0.

The credible set is based on £2-norm.
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19/1



A Solution: Tuning Prior

@ The power of smoothing spline (Wahba, 1990)!




A Solution: Tuning Prior

@ The power of smoothing spline (Wahba, 1990)!

o We will show that nonparametric BvM theorem can be
rescured under a new class of Gaussian process (GP) priors
motivated by smoothing spline, named as “tuning prior”;




A Solution: Tuning Prior

@ The power of smoothing spline (Wahba, 1990)!

o We will show that nonparametric BvM theorem can be
rescured under a new class of Gaussian process (GP) priors
motivated by smoothing spline, named as “tuning prior”;

o Take Gaussian regression models as an example3:
Y= fo(Xs)+e, i=1,2,...,n,

where ¢; ¢ N(0,1) and f € H™(0,1), a m-th order Sobolev
space. Denote its log-likelihood function as

n

b(f) ==Y (Vi = f(X2))?/2.

=1

30ur nonparametric BvM results hold in a general exponential family.
No conjugacy is needed.

N
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Tuning Prior: A General Framework

o Assume that f follows a probability measure IIy;



Tuning Prior: A General Framework

o Assume that f follows a probability measure IIy;

o Specify Il through its Radon-Nikodym derivative w.r.t. a
base measure II (also on H™(0,1)) as follows:

TR e (<500 (1)

where J(f) is a type of roughness penalty used in
smoothing spline literature.



Tuning Prior: Duality

@ Based on (1.1), we have the posterior as
exp(n(f))dI\(f)
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Tuning Prior: Duality

@ Based on (1.1), we have the posterior as
exp(n(f))dI\(f)

me(071) exp(€n(f))dIT\(f)
exp(ln, ) (f))dII(f)

me(O,l) exp(gn)\(f))dﬂ(f) ’

where £, \(f) = £n(f) —nAJ(f). Smoothing spline estimate

P(f|Dn)

S = arg feglgié,l)en’)\(f)7
@ The name “tuning prior” now makes sense. So, we can
employ GCV to select a proper tuning prior (and we did!);
@ More importantly, we are able to borrow the recent
advances in smoothing spline inference theory (Shang and
C., 2013, AoS) to build a foundation of nonpara. BvM.
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Tuning Prior: Gaussian Process Construction

e To satisfy (1.1), we choose II and II as two Gaussian
measures induced by GP priors as specified below (this can
be verified by applying Héjek’s Lemma);

o Assign a GP prior on f, i.e., I, as follows:
oo
f e GA) =D wan(),
v=1

where (recall that m is the smoothness of fy)

N(0,1), v=1,....m
W~y N (0, (p}fﬁ/Qm + n)\py)_l) , v>m,

- 7,2m.
for a sequence p, =< v

o II is induced by a similar GP (by setting A = 0).
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@ Our construction of GP prior is motivated from Wahba’
Bayesian view on smoothing spline (Wahba, 1990);

e The RKHS induced by G} is essentially H™+#/2(0, 1),
where [ adjusts the prior support;

e In addition, we need to assume € (1,2m + 1) to
guarantee E{J(Gy,Gx)} < oo such that the sample path of
G belongs to H™(0,1) a.s..
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Underlying Eigensystem (¢, (+), pv)

@ Under mild conditions, f admits a Fourier expansion:
[e.9]
O =" heu),
v=1

where ¢, (-)’s are basis functions in H™(0, 1).

e An example for (., p,) is the following ODE solution:

™ () = pupn (), ©P(0) = (1) =0, j=2,...,2m—1,

where ¢,’s have closed forms. This is also called as
“uniform free beam problem” in physics.



Nonparametric BvM theorem

Given that A < n=2m/2m+8) e have

sup [P(S|Dn) —Hw ()| = opy (1),
SCH™(0,1) 0

where Iy (+) is the probability measure induced by a GP W.
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Specifications of the Limiting GP W

e Suppose that ﬁm() => 020 fn,v%pv(')?
e The mean function of W (also the approximate posterior
mode of P(-|Dy)) is

o

ﬁn,)\ = Z an,uﬁb,uwu(')'

v=0

Hence, ]A”;w\ + j/’;%,\ (but very close);

o The mean-zero GP W,, .= W — ]?n » is expressed as

Wn() = Z bn,l/’zljsol/(') and Zy 1;'161 .Z\]’(O7 1)’
v=0

e Here, a, , and b, , are both non-random sequences.
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Recall “Bayesian Aggregation”

Divide

Big Data (N) ——

Super || machine

Roracle ( a )

Subset 1 (n) "' Ry, ()
Subset 2 (n) M Ry ,(«)
)

Subset s (n) VB Ryn(a)

Aggre || gate

Ry («)

Note that N = s x n.
Both n and s are allowed to diverge.



Nonparametric BvM Theorem

Uniform BvM theorem characterizes limit shapes of a sequence
of s nonparametric posterior distributions (under proper tuning
priors) as long as s does not grow too fast.

Theorem 2

Given that X\ =< N=2™/Cm+B8) (ysed in each subset with size n),
we have

su max |P(S|D;,) — . (S)| = opn (1
SchIzo,l)lﬁng (S]Djn) w; ()] Pfo()

as long as s does not grow faster than N(B—1/@m+5)

%]
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Aggregated Credible Interval

o The j-th credible ball is defined as
Rin(@) = {f € H™0,1) : ||f = fjm

where the radius r;,(«) is directly obtained via MCMC;
o The aggregated credible ball is constructed as

Ry(a) ={f € H™(0,1) :||f = fnallz < nla)}s

2 < 7jn(a)},

o As will be seen, the aggregation step is through weighted
averaging Fourier frequencies and weighted averaging
individual radii. No additional computation is needed.



Implication of Uniform BvM Theorem

Uniform BvM shows that Ry («) (asymptotically) covers (1 — «)
posterior mass and also possesses frequentist validity as long as

N = N-2m/m+B) anq s — O(N(ﬁ—l/(2m+,6’))).
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Aggregation Details

o Aggregated center:
fN)\ ZaNusQDV and fu = 1/5 /;(le)n

o Aggregated radius:

G,N+ 3 r3.(@) = Cin | |
<2,n S =

0o k
n
Ck’"zz<73+n<1+xpy>> '

v=1

1
N




Aggregation Details

o Aggregated center:

() Zawyfusou ) and f, = (1/5) > f¥9);

7j=1

o Aggregated radius:

_ 1 Con [ 1
n(a) = I CI,N"‘H@’H 8]_17",” —Cin ||

0o k
n
Ck’"zz<73+n<1+xpy>> '

v=1

o In fact, the aggregated radius 7y is (asymptotically) the
same as that of oracle credible ball; see simulations.
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We can also aggregate individual credible intervals for linear
functionals of f, denoted as F(f).
o Two examples:
o Evaluation functional: F,(f) = f(z);
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Aggregated Credible Interval

We can also aggregate individual credible intervals for linear
functionals of f, denoted as F(f).
o Two examples:
o Evaluation functional: F ( H=7f (z),

o Integral functional: F( fo z)dz for a known
function w(-) such as an 1ndlcat0r functlon7

e Individual credible interval for F(f):

CIE (o) = {f € S™(I) : |F(f) = F(fin)| < rrjn(e)};

o The aggregated version is constructed as

CIf(a) :={f € S"(D) : |[F(f) = F(fxa)l < RN ()},

where 7r v () is a weighted £ average of rgj,(c)’s.



A Series of Theoretical Questions...

e How to define an aggregation rule s.t. R(«) covers (1 — )
posterior mass, with the same radius as Ropacle(a)?

Weighted averaging individual centers (in terms of their
Fourier coefficients) and radii by analytical formula.
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A Series of Theoretical Questions...

e How to define an aggregation rule s.t. R(«) covers (1 — )
posterior mass, with the same radius as Ropacle(a)?

Weighted averaging individual centers (in terms of their
Fourier coefficients) and radii by analytical formula.

e How to construct a prior s.t. R(«) covers the true
parameter (generating the data) with probability (1 — «)?
Pick a proper tuning prior by GCV.

o How fast can we allow s to diverge?

s cannot grow faster than a rate jointly determined by the
smoothness of fy and the smoothness of GP prior.



Simulations

o Gaussian regression models:
Y = fo(X) +e,
where € ~ N(0,1) and
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o Gaussian regression models:
Y = fo(X) +e,
where € ~ N(0,1) and
fo(z) = 3pB30,17(z) + 26311 (x),

where 3, is the pdf of Beta distribution. Set m = 2;

@ Assign a tuning prior with 8 = 2 and A being selected by
GCV as follows;
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Simulations

o Gaussian regression models:
Y = foy (X) + €,

where € ~ N(0, 1) and

fo(x) = 3Bs0,17(x) + 283,11 (),

where 3, is the pdf of Beta distribution. Set m = 2;

@ Assign a tuning prior with 8 = 2 and A being selected by
GCV as follows;

o Let A\goy be the GCV-selected tuning parameter with the
order N—2m/(2m+1) Ly applying to the entire data (A
practical formula needs to be developed here). Set A as
)\gg‘jl)/(2m+ﬁ) to match with the order =< N—2m/(2m+5)



Figure 1: Plot of the true function fo.



Computing Time

N=1200 N=4800

P
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06 07 08 09 10

| e ACR-a- FCR
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Figure 2: p versus v based on FCR and ACR, where p = (To — T)/To, To is
computing time based on big data and T is the DEC time. And,
v =logs/log N describes the growth of s.
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Phase Transition: Coverage Probability

1-a=095 1-a=090
a7 s
& < s <
S T T S
00 01 02 03 o 05 00 01 02 03 04 05
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a a S R
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a7 s
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B R =
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v v

Figure 3: Frequentist coverage probability (CP) of Rn(«) against v for
N = 2400. Red-dotted line indicates the position of 1 — a.



Phase Transition: Radius
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Figure 4: Radius of Rn(«) against v for various .
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Thanks for your attention.
Questions are welcome.
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