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Big Data: large and complex

“There were 5 exabytes of information created between the dawn
of civilization through 2003, but that much information is now

created every 2 days.”

— Eric Schmidt, Google CEO (2001 – 2011)

1 EB=1018 bytes and 1 ZB= 1021 bytes
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Big Data: large and complex
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Bayesian Aggregation

This generic aggregation procedure applies to both finite
dimensional parameter and infinite dimensional parameter.

Big Data (N)
Divide−−−→

Subset 1 (n1)
Machine 1−→

Subset 2 (n2)
Machine 2−→

· · · · · ·
Subset s (ns)

Machine s−→

R1(α)
R2(α)
· · ·

Rs(α)

Super

www�machine Aggre

www�gate

Roracle(α) R(α)

Roracle(α): (1− α) oracle credible region constructed from the
entire data (computationally prohibitive in practice, though);
Rj(α): (1− α) credible region constructed from the j-th subset.
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A Series of Theoretical Questions...

How to define an aggregation rule s.t. R(α) covers (1− α)
posterior mass, with the same radius as Roracle(α)?

How to construct a prior s.t. R(α) covers the true
parameter (generating the data) with probability (1− α)?

How fast can we allow s to diverge (“splitotics theory”)?

The above tasks are particularly challenging when the
parameter in consideration is infinite dimensional, which is
the focus of our talk today.
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Literature Review

In the Bayesian community, the existing statistical studies
mostly focus on computational or methodological aspects
of MCMC-based distributed methods;

Nonetheless, not much effort has been devoted to
theoretically understanding scalable Bayesian procedures
especially in a general nonparametric context;

One particular reason is the failure of Bernstein-von Mises
theorem in the nonparametric setting found by Cox (1993)
and Freedman (1999).
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Outline
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What is Bernstein-von Mises (BvM) Theorem?

BvM theorem2 characterizes asymptotic shape of posterior
distribution

d(Π(·|Dn), P0(·)) −→ 0 as n→∞,

where Π(·|Dn) represents a posterior measure based on
sample Dn with size n, P0(·) is a limiting probability
measure, and d denotes a distance measure;

For example, in parametric models BvM Theorem says

sup
B∈B
|Π(B|Dn)−N (θ̂n, (nIθ0)−1)(B)| = oPnθ0

(1),

where B is the Borel algebra on Rd.

2Named after two mathematicians: S. Bernstein and R. von Mises.
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A Graphical Illustration

More importantly, BvM theorem implies the frequentist validity
of Bayesian credible sets, called as BvM phenomenon, as

Pnθ0(θ0 ∈ (1− α)-th credible set)→ 1− α.

Π(·|Dn) P0(·)

(1− α)-th credible set

BvM Theorem

MCMC
BvM Phenomenon
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Nonparametric BvM: a negative example

Consider Gaussian sequence models:

Yi = θ0i +
1√
n
εi, i = 1, 2, . . . ,

where εi
iid∼ N(0, 1). The “true” mean sequence {θ0i}∞i=1 is

square-summable, i.e.,
∑∞

i=1 θ
2
0i <∞;

Assign a (very innocent) Gaussian Prior:

P0: θi ∼ N(0, i−2p) for some p > 1/2.

Freedman (1999) demonstrated the failure of BvM:

Pnθ0(θ0 ∈ (1− α) credible set)→ 0.

The credible set is based on `2-norm.
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A Solution: Tuning Prior

The power of smoothing spline (Wahba, 1990)!

We will show that nonparametric BvM theorem can be
rescured under a new class of Gaussian process (GP) priors
motivated by smoothing spline, named as “tuning prior”;

Take Gaussian regression models as an example3:

Yi = f0(Xi) + εi, i = 1, 2, . . . , n,

where εi
iid∼ N(0, 1) and f ∈ Hm(0, 1), a m-th order Sobolev

space. Denote its log-likelihood function as

`n(f) = −
n∑
i=1

(Yi − f(Xi))
2/2.

3Our nonparametric BvM results hold in a general exponential family.
No conjugacy is needed.
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Tuning Prior: A General Framework

Assume that f follows a probability measure Πλ;

Specify Πλ through its Radon-Nikodym derivative w.r.t. a
base measure Π (also on Hm(0, 1)) as follows:

dΠλ

dΠ
(f) ∝ exp

(
−nλ

2
J(f)

)
, (1.1)

where J(f) is a type of roughness penalty used in
smoothing spline literature.
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Tuning Prior: Duality

Based on (1.1), we have the posterior as

P (f |Dn) :=
exp(`n(f))dΠλ(f)∫

Hm(0,1) exp(`n(f))dΠλ(f)

=
exp(`n,λ(f))dΠ(f)∫

Hm(0,1) exp(`n,λ(f))dΠ(f)
,

where `n,λ(f) = `n(f)− nλJ(f). Smoothing spline estimate

f̂n,λ := arg max
f∈Hm(0,1)

`n,λ(f);

The name “tuning prior” now makes sense. So, we can
employ GCV to select a proper tuning prior (and we did!);

More importantly, we are able to borrow the recent
advances in smoothing spline inference theory (Shang and
C., 2013, AoS) to build a foundation of nonpara. BvM.
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Tuning Prior: Gaussian Process Construction

To satisfy (1.1), we choose Πλ and Π as two Gaussian
measures induced by GP priors as specified below (this can
be verified by applying Hájek’s Lemma);

Assign a GP prior on f , i.e., Πλ, as follows:

f ∼ Gλ(·) =

∞∑
ν=1

wνϕν(·),

where (recall that m is the smoothness of f0)

wν ∼

{
N(0, 1), ν = 1, . . . ,m

N
(

0, (ρ
1+β/2m
ν + nλρν)−1

)
, ν > m,

for a sequence ρν � ν2m;

Π is induced by a similar GP (by setting λ = 0).
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Our construction of GP prior is motivated from Wahba’
Bayesian view on smoothing spline (Wahba, 1990);

The RKHS induced by Gλ is essentially Hm+β/2(0, 1),
where β adjusts the prior support;

In addition, we need to assume β ∈ (1, 2m+ 1) to
guarantee E{J(Gλ, Gλ)} <∞ such that the sample path of
Gλ belongs to Hm(0, 1) a.s..
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Underlying Eigensystem (ϕν(·), ρν)

Under mild conditions, f admits a Fourier expansion:

f(·) =

∞∑
ν=1

fνϕν(·),

where ϕν(·)’s are basis functions in Hm(0, 1).

An example for (ϕν , ρν) is the following ODE solution:

ϕ(2m)
ν (·) = ρνϕν(·), ϕ(j)

ν (0) = ϕ(j)
ν (1) = 0, j = 2, . . . , 2m−1,

where ϕν ’s have closed forms. This is also called as
“uniform free beam problem” in physics.
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Nonparametric BvM theorem

Theorem 1

Given that λ � n−2m/(2m+β), we have

sup
S⊂Hm(0,1)

|P (S|Dn)−ΠW (S)| = oPnf0
(1),

where ΠW (·) is the probability measure induced by a GP W .
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Specifications of the Limiting GP W

Suppose that f̂n,λ(·) =
∑∞

ν=0 f̂n,νϕν(·);
The mean function of W (also the approximate posterior
mode of P (·|Dn)) is

f̃n,λ :=

∞∑
ν=0

an,ν f̂n,νϕν(·).

Hence, f̃n,λ 6= f̂n,λ (but very close);

The mean-zero GP Wn := W − f̃n,λ is expressed as

Wn(·) =

∞∑
ν=0

bn,νzνϕν(·) and zν
iid∼ N(0, 1);

Here, an,ν and bn,ν are both non-random sequences.
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Recall “Bayesian Aggregation”

Big Data (N)
Divide−−−→

Subset 1 (n)
Machine 1−→

Subset 2 (n)
Machine 2−→

· · · · · ·
Subset s (n)

Machine s−→

R1,n(α)
R2,n(α)
· · ·

Rs,n(α)

Super

www�machine Aggre

www�gate

Roracle(α) RN (α)

Note that N = s× n.
Both n and s are allowed to diverge.
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Uniform Nonparametric BvM Theorem

Uniform BvM theorem characterizes limit shapes of a sequence
of s nonparametric posterior distributions (under proper tuning
priors) as long as s does not grow too fast.

Theorem 2

Given that λ � N−2m/(2m+β) (used in each subset with size n),
we have

sup
S⊂Hm(0,1)

max
1≤j≤s

|P (S|Dj,n)−ΠWj (S)| = oPnf0
(1)

as long as s does not grow faster than N (β−1)/(2m+β).
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Aggregated Credible Interval

The j-th credible ball is defined as

Rj,n(α) = {f ∈ Hm(0, 1) : ‖f − f̃j,n‖2 ≤ rj,n(α)},

where the radius rj,n(α) is directly obtained via MCMC;

The aggregated credible ball is constructed as

RN (α) = {f ∈ Hm(0, 1) : ‖f − f̄N,λ‖2 ≤ r̄N (α)};

As will be seen, the aggregation step is through weighted
averaging Fourier frequencies and weighted averaging
individual radii. No additional computation is needed.
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Implication of Uniform BvM Theorem

Uniform BvM shows that RN (α) (asymptotically) covers (1−α)
posterior mass and also possesses frequentist validity as long as

λ � N−2m/(2m+β) and s = o(N (β−1/(2m+β))).
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Aggregation Details

Aggregated center:

f̄N,λ(·) =

∞∑
ν=1

aN,ν f̄νϕν(·) and f̄ν = (1/s)

s∑
j=1

f̂ (j)n,ν ;

Aggregated radius:

r̄N (α) =

√√√√√ 1

N

ζ1,N +

√
ζ2,N
ζ2,n

n
s

s∑
j=1

r2j,n(α)− ζ1,n

,
where

ζk,n =

∞∑
ν=1

(
n

τ2ν + n(1 + λρν)

)k
.

In fact, the aggregated radius r̄N is (asymptotically) the
same as that of oracle credible ball; see simulations.
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same as that of oracle credible ball; see simulations.
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Aggregated Credible Interval

We can also aggregate individual credible intervals for linear
functionals of f , denoted as F (f).

Two examples:

Evaluation functional: Fz(f) = f(z);

Integral functional: Fω(f) =
∫ 1

0
f(z)ω(z)dz for a known

function ω(·) such as an indicator function;

Individual credible interval for F (f):

CIFj,n(α) := {f ∈ Sm(I) : |F (f)− F (f̃j,n)| ≤ rF,j,n(α)};

The aggregated version is constructed as

CIFN (α) := {f ∈ Sm(I) : |F (f)− F (f̄N,λ)| ≤ r̄F,N (α)},

where r̄F,N (α) is a weighted `2 average of rF,j,n(α)’s.
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A Series of Theoretical Questions...

How to define an aggregation rule s.t. R(α) covers (1− α)
posterior mass, with the same radius as Roracle(α)?

Weighted averaging individual centers (in terms of their
Fourier coefficients) and radii by analytical formula.

How to construct a prior s.t. R(α) covers the true
parameter (generating the data) with probability (1− α)?

Pick a proper tuning prior by GCV.

How fast can we allow s to diverge?

s cannot grow faster than a rate jointly determined by the
smoothness of f0 and the smoothness of GP prior.
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Simulations

Gaussian regression models:

Y = f0(X) + ε,

where ε ∼ N(0, 1) and

f0(x) = 3β30,17(x) + 2β3,11(x),

where βa,b is the pdf of Beta distribution. Set m = 2;

Assign a tuning prior with β = 2 and λ being selected by
GCV as follows;

Let λGCV be the GCV-selected tuning parameter with the
order N−2m/(2m+1) by applying to the entire data (A
practical formula needs to be developed here). Set λ as

λ
(2m+1)/(2m+β)
GCV to match with the order � N−2m/(2m+β).
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Figure 1: Plot of the true function f0.
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Computing Time
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Figure 2: ρ versus γ based on FCR and ACR, where ρ = (T0 − T )/T0, T0 is

computing time based on big data and T is the D&C time. And,

γ = log s/ logN describes the growth of s.
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Phase Transition: Coverage Probability
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Figure 3: Frequentist coverage probability (CP) of RN (α) against γ for

N = 2400. Red-dotted line indicates the position of 1− α.
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Phase Transition: Radius
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Figure 4: Radius of RN (α) against γ for various α.
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Thanks for your attention.
Questions are welcome.
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