Bayesian Aggregation for Extraordinarily Large Dataset

Guang Cheng¹

Department of Statistics Purdue University www.science.purdue.edu/bigdata

> Department Seminar Statistics@LSE May 19, 2017

 $^{^1\}mathrm{A}$ Joint Work with Zuofeng Shang. Acknowledge NSF, ONR and Simons Foundation.

"There were 5 exabytes of information created between the dawn of civilization through 2003, but that much information is now created every 2 days."

— Eric Schmidt, Google CEO (2001 – 2011)

1 EB=10¹⁸ bytes and 1 ZB= 10^{21} bytes

This generic aggregation procedure applies to both finite dimensional parameter and infinite dimensional parameter.

 $R_{\text{oracle}}(\alpha)$: $(1 - \alpha)$ oracle credible region constructed from the entire data (computationally prohibitive in practice, though); $R_j(\alpha)$: $(1 - \alpha)$ credible region constructed from the *j*-th subset.

- How to define an aggregation rule s.t. $R(\alpha)$ covers (1α) posterior mass, with the same radius as $R_{\text{oracle}}(\alpha)$?
- How to construct a prior s.t. $R(\alpha)$ covers the true parameter (generating the data) with probability (1α) ?
- How fast can we allow s to diverge ("splitotics theory")?
- The above tasks are particularly challenging when the parameter in consideration is infinite dimensional, which is the focus of our talk today.

- How to define an aggregation rule s.t. $R(\alpha)$ covers (1α) posterior mass, with the same radius as $R_{\text{oracle}}(\alpha)$?
- How to construct a prior s.t. $R(\alpha)$ covers the true parameter (generating the data) with probability (1α) ?
- How fast can we allow s to diverge ("splitotics theory")?
- The above tasks are particularly challenging when the parameter in consideration is infinite dimensional, which is the focus of our talk today.

- How to define an aggregation rule s.t. $R(\alpha)$ covers (1α) posterior mass, with the same radius as $R_{\text{oracle}}(\alpha)$?
- How to construct a prior s.t. $R(\alpha)$ covers the true parameter (generating the data) with probability (1α) ?
- How fast can we allow s to diverge ("splitotics theory")?
- The above tasks are particularly challenging when the parameter in consideration is infinite dimensional, which is the focus of our talk today.

- How to define an aggregation rule s.t. $R(\alpha)$ covers (1α) posterior mass, with the same radius as $R_{\text{oracle}}(\alpha)$?
- How to construct a prior s.t. $R(\alpha)$ covers the true parameter (generating the data) with probability (1α) ?
- How fast can we allow s to diverge ("splitotics theory")?
- The above tasks are particularly challenging when the parameter in consideration is infinite dimensional, which is the focus of our talk today.

- In the Bayesian community, the existing statistical studies mostly focus on computational or methodological aspects of MCMC-based distributed methods;
- Nonetheless, not much effort has been devoted to *theoretically* understanding scalable Bayesian procedures especially in a general nonparametric context;
- One particular reason is the failure of Bernstein-von Mises theorem in the nonparametric setting found by Cox (1993) and Freedman (1999).

- In the Bayesian community, the existing statistical studies mostly focus on computational or methodological aspects of MCMC-based distributed methods;
- Nonetheless, not much effort has been devoted to *theoretically* understanding scalable Bayesian procedures especially in a general nonparametric context;
- One particular reason is the failure of Bernstein-von Mises theorem in the nonparametric setting found by Cox (1993) and Freedman (1999).

- In the Bayesian community, the existing statistical studies mostly focus on computational or methodological aspects of MCMC-based distributed methods;
- Nonetheless, not much effort has been devoted to *theoretically* understanding scalable Bayesian procedures especially in a general nonparametric context;
- One particular reason is the failure of Bernstein-von Mises theorem in the nonparametric setting found by Cox (1993) and Freedman (1999).

Outline

What is Bernstein-von Mises (BvM) Theorem?

• BvM theorem² characterizes *asymptotic shape* of posterior distribution

$$d(\Pi(\cdot|\mathbf{D}_n), P_0(\cdot)) \longrightarrow 0 \text{ as } n \to \infty,$$

where $\Pi(\cdot|\mathbf{D}_n)$ represents a posterior measure based on sample \mathbf{D}_n with size $n, P_0(\cdot)$ is a limiting probability measure, and d denotes a distance measure;

• For example, in parametric models BvM Theorem says

 $\sup_{B \in \mathcal{B}} |\Pi(B|\mathbf{D}_n) - \mathcal{N}(\widehat{\theta}_n, (nI_{\theta_0})^{-1})(B)| = o_{P_{\theta_0}^n}(1),$

where \mathcal{B} is the Borel algebra on \mathbb{R}^d .

²Named after two mathematicians: S. Bernstein and R. von Mises.

What is Bernstein-von Mises (BvM) Theorem?

• BvM theorem² characterizes *asymptotic shape* of posterior distribution

$$d(\Pi(\cdot|\mathbf{D}_n), P_0(\cdot)) \longrightarrow 0 \text{ as } n \to \infty,$$

where $\Pi(\cdot|\mathbf{D}_n)$ represents a posterior measure based on sample \mathbf{D}_n with size $n, P_0(\cdot)$ is a limiting probability measure, and d denotes a distance measure;

• For example, in parametric models BvM Theorem says

$$\sup_{B \in \mathcal{B}} |\Pi(B|\mathbf{D}_n) - \mathcal{N}(\widehat{\theta}_n, (nI_{\theta_0})^{-1})(B)| = o_{P_{\theta_0}^n}(1),$$

where \mathcal{B} is the Borel algebra on \mathbb{R}^d .

²Named after two mathematicians: S. Bernstein and R. von Mises.

More importantly, BvM theorem implies the frequentist validity of Bayesian credible sets, called as BvM phenomenon, as

$$P_{\theta_0}^n(\theta_0 \in (1-\alpha)\text{-th credible set}) \to 1-\alpha.$$

Nonparametric BvM: a negative example

• Consider Gaussian sequence models:

$$Y_i = \theta_{0i} + \frac{1}{\sqrt{n}}\epsilon_i, \quad i = 1, 2, \dots,$$

where $\epsilon_i \stackrel{iid}{\sim} N(0,1)$. The "true" mean sequence $\{\theta_{0i}\}_{i=1}^{\infty}$ is square-summable, i.e., $\sum_{i=1}^{\infty} \theta_{0i}^2 < \infty$;

• Assign a (very innocent) Gaussian Prior:

P0: $\theta_i \sim N(0, i^{-2p})$ for some p > 1/2.

• Freedman (1999) demonstrated the failure of BvM:

 $P_{\theta_0}^n(\theta_0 \in (1-\alpha) \text{ credible set}) \to 0.$

The credible set is based on ℓ^2 -norm.

Nonparametric BvM: a negative example

• Consider Gaussian sequence models:

$$Y_i = \theta_{0i} + \frac{1}{\sqrt{n}} \epsilon_i, \quad i = 1, 2, \dots,$$

where $\epsilon_i \stackrel{iid}{\sim} N(0,1)$. The "true" mean sequence $\{\theta_{0i}\}_{i=1}^{\infty}$ is square-summable, i.e., $\sum_{i=1}^{\infty} \theta_{0i}^2 < \infty$;

• Assign a (very innocent) Gaussian Prior:

P0: $\theta_i \sim N(0, i^{-2p})$ for some p > 1/2.

• Freedman (1999) demonstrated the failure of BvM:

 $P_{\theta_0}^n(\theta_0 \in (1-\alpha) \text{ credible set}) \to 0.$

The credible set is based on ℓ^2 -norm.

Nonparametric BvM: a negative example

• Consider Gaussian sequence models:

$$Y_i = \theta_{0i} + \frac{1}{\sqrt{n}} \epsilon_i, \quad i = 1, 2, \dots,$$

where $\epsilon_i \stackrel{iid}{\sim} N(0,1)$. The "true" mean sequence $\{\theta_{0i}\}_{i=1}^{\infty}$ is square-summable, i.e., $\sum_{i=1}^{\infty} \theta_{0i}^2 < \infty$;

• Assign a (very innocent) Gaussian Prior:

P0:
$$\theta_i \sim N(0, i^{-2p})$$
 for some $p > 1/2$.

• Freedman (1999) demonstrated the failure of BvM:

$$P_{\theta_0}^n(\theta_0 \in (1-\alpha) \text{ credible set}) \to 0.$$

The credible set is based on ℓ^2 -norm.

- The power of smoothing spline (Wahba, 1990)!
- We will show that nonparametric BvM theorem can be rescured under a new class of Gaussian process (GP) priors motivated by smoothing spline, named as *"tuning prior"*;
- Take Gaussian regression models as an example³:

$$Y_i = f_0(X_i) + \epsilon_i, \ i = 1, 2, \dots, n,$$

where $\epsilon_i \stackrel{iid}{\sim} N(0,1)$ and $f \in H^m(0,1)$, a *m*-th order Sobolev space. Denote its log-likelihood function as

$$\ell_n(f) = -\sum_{i=1}^n (Y_i - f(X_i))^2 / 2.$$

³Our nonparametric BvM results hold in a general exponential family. No conjugacy is needed.

• The power of smoothing spline (Wahba, 1990)!

- We will show that nonparametric BvM theorem can be rescured under a new class of Gaussian process (GP) priors motivated by smoothing spline, named as *"tuning prior"*;
- Take Gaussian regression models as an example³:

$$Y_i = f_0(X_i) + \epsilon_i, \ i = 1, 2, \dots, n,$$

where $\epsilon_i \stackrel{iid}{\sim} N(0,1)$ and $f \in H^m(0,1)$, a *m*-th order Sobolev space. Denote its log-likelihood function as

$$\ell_n(f) = -\sum_{i=1}^n (Y_i - f(X_i))^2 / 2.$$

³Our nonparametric BvM results hold in a general exponential family. No conjugacy is needed.

- The power of smoothing spline (Wahba, 1990)!
- We will show that nonparametric BvM theorem can be rescured under a new class of Gaussian process (GP) priors motivated by smoothing spline, named as *"tuning prior"*;
- Take Gaussian regression models as an example³:

$$Y_i = f_0(X_i) + \epsilon_i, \ i = 1, 2, \dots, n,$$

where $\epsilon_i \stackrel{iid}{\sim} N(0,1)$ and $f \in H^m(0,1)$, a *m*-th order Sobolev space. Denote its log-likelihood function as

$$\ell_n(f) = -\sum_{i=1}^n (Y_i - f(X_i))^2 / 2.$$

³Our nonparametric BvM results hold in a general exponential family. No conjugacy is needed.

- The power of smoothing spline (Wahba, 1990)!
- We will show that nonparametric BvM theorem can be rescured under a new class of Gaussian process (GP) priors motivated by smoothing spline, named as *"tuning prior"*;
- Take Gaussian regression models as an example³:

$$Y_i = f_0(X_i) + \epsilon_i, \ i = 1, 2, \dots, n,$$

where $\epsilon_i \stackrel{iid}{\sim} N(0,1)$ and $f \in H^m(0,1)$, a *m*-th order Sobolev space. Denote its log-likelihood function as

$$\ell_n(f) = -\sum_{i=1}^n (Y_i - f(X_i))^2/2.$$

³Our nonparametric BvM results hold in a general exponential family. No conjugacy is needed.

Tuning Prior: A General Framework

• Assume that f follows a probability measure Π_{λ} ;

• Specify Π_{λ} through its Radon-Nikodym derivative w.r.t. a base measure Π (also on $H^m(0, 1)$) as follows:

$$\frac{d\Pi_{\lambda}}{d\Pi}(f) \propto \exp\left(-\frac{n\lambda}{2}J(f)\right),\tag{1.1}$$

where J(f) is a type of roughness penalty used in smoothing spline literature.

Tuning Prior: A General Framework

- Assume that f follows a probability measure Π_{λ} ;
- Specify Π_{λ} through its Radon-Nikodym derivative w.r.t. a base measure Π (also on $H^m(0, 1)$) as follows:

$$\frac{d\Pi_{\lambda}}{d\Pi}(f) \propto \exp\left(-\frac{n\lambda}{2}J(f)\right),\tag{1.1}$$

where J(f) is a type of roughness penalty used in smoothing spline literature.

Tuning Prior: Duality

• Based on (1.1), we have the posterior as

$$P(f|\mathbf{D}_n) := \frac{\exp(\ell_n(f))d\Pi_{\lambda}(f)}{\int_{H^m(0,1)}\exp(\ell_n(f))d\Pi_{\lambda}(f)}$$
$$= \frac{\exp(\ell_{n,\lambda}(f))d\Pi(f)}{\int_{H^m(0,1)}\exp(\ell_{n,\lambda}(f))d\Pi(f)},$$

where $\ell_{n,\lambda}(f) = \ell_n(f) - n\lambda J(f)$. Smoothing spline estimate $\widehat{f}_{n,\lambda} := \arg \max_{f \in H^m(0,1)} \ell_{n,\lambda}(f);$

- The name "tuning prior" now makes sense. So, we can employ GCV to select a proper tuning prior (and we did!);
- More importantly, we are able to borrow the recent advances in smoothing spline inference theory (Shang and C., 2013, *AoS*) to build a foundation of nonpara. BvM.

Tuning Prior: Duality

• Based on (1.1), we have the posterior as

$$P(f|\mathbf{D}_n) := \frac{\exp(\ell_n(f))d\Pi_{\lambda}(f)}{\int_{H^m(0,1)}\exp(\ell_n(f))d\Pi_{\lambda}(f)}$$
$$= \frac{\exp(\ell_{n,\lambda}(f))d\Pi(f)}{\int_{H^m(0,1)}\exp(\ell_{n,\lambda}(f))d\Pi(f)},$$

where $\ell_{n,\lambda}(f) = \ell_n(f) - n\lambda J(f)$. Smoothing spline estimate $\widehat{f}_{n,\lambda} := \arg \max_{f \in H^m(0,1)} \ell_{n,\lambda}(f);$

- The name "tuning prior" now makes sense. So, we can employ GCV to select a proper tuning prior (and we did!);
- More importantly, we are able to borrow the recent advances in smoothing spline inference theory (Shang and C., 2013, *AoS*) to build a foundation of nonpara. BvM.

Tuning Prior: Duality

• Based on (1.1), we have the posterior as

$$P(f|\mathbf{D}_n) := \frac{\exp(\ell_n(f))d\Pi_{\lambda}(f)}{\int_{H^m(0,1)}\exp(\ell_n(f))d\Pi_{\lambda}(f)}$$
$$= \frac{\exp(\ell_{n,\lambda}(f))d\Pi(f)}{\int_{H^m(0,1)}\exp(\ell_{n,\lambda}(f))d\Pi(f)}$$

where $\ell_{n,\lambda}(f) = \ell_n(f) - n\lambda J(f)$. Smoothing spline estimate $\widehat{f}_{n,\lambda} := \arg \max_{f \in H^m(0,1)} \ell_{n,\lambda}(f);$

- The name "tuning prior" now makes sense. So, we can employ GCV to select a proper tuning prior (and we did!);
- More importantly, we are able to borrow the recent advances in smoothing spline inference theory (Shang and C., 2013, *AoS*) to build a foundation of nonpara. BvM.

Tuning Prior: Gaussian Process Construction

- To satisfy (1.1), we choose Π_λ and Π as two Gaussian measures induced by GP priors as specified below (this can be verified by applying Hájek's Lemma);
- Assign a GP prior on f, i.e., Π_{λ} , as follows:

$$f \sim G_{\lambda}(\cdot) = \sum_{\nu=1}^{\infty} w_{\nu} \varphi_{\nu}(\cdot),$$

where (recall that m is the smoothness of f_0)

$$w_{\nu} \sim \begin{cases} N(0,1), & \nu = 1, \dots, m \\ N\left(0, (\rho_{\nu}^{1+\beta/2m} + n\lambda\rho_{\nu})^{-1}\right), & \nu > m, \end{cases}$$

for a sequence $\rho_{\nu} \simeq \nu^{2m}$; • Π is induced by a similar GP (by setting $\lambda = 0$).

Tuning Prior: Gaussian Process Construction

- To satisfy (1.1), we choose Π_λ and Π as two Gaussian measures induced by GP priors as specified below (this can be verified by applying Hájek's Lemma);
- Assign a GP prior on f, i.e., Π_{λ} , as follows:

$$f \sim G_{\lambda}(\cdot) = \sum_{\nu=1}^{\infty} w_{\nu} \varphi_{\nu}(\cdot),$$

where (recall that m is the smoothness of f_0)

$$w_{\nu} \sim \begin{cases} N(0,1), & \nu = 1, \dots, m \\ N\left(0, (\rho_{\nu}^{1+\beta/2m} + n\lambda\rho_{\nu})^{-1}\right), & \nu > m, \end{cases}$$

for a sequence $\rho_{\nu} \asymp \nu^{2m}$;

• Π is induced by a similar GP (by setting $\lambda = 0$).

Tuning Prior: Gaussian Process Construction

- To satisfy (1.1), we choose Π_λ and Π as two Gaussian measures induced by GP priors as specified below (this can be verified by applying Hájek's Lemma);
- Assign a GP prior on f, i.e., Π_{λ} , as follows:

$$f \sim G_{\lambda}(\cdot) = \sum_{\nu=1}^{\infty} w_{\nu} \varphi_{\nu}(\cdot),$$

where (recall that m is the smoothness of f_0)

$$w_{\nu} \sim \begin{cases} N(0,1), & \nu = 1, \dots, m \\ N\left(0, (\rho_{\nu}^{1+\beta/2m} + n\lambda\rho_{\nu})^{-1}\right), & \nu > m, \end{cases}$$

for a sequence $\rho_{\nu} \simeq \nu^{2m}$;

• Π is induced by a similar GP (by setting $\lambda = 0$).

- Our construction of GP prior is motivated from Wahba' Bayesian view on smoothing spline (Wahba, 1990);
- The RKHS induced by G_{λ} is essentially $H^{m+\beta/2}(0,1)$, where β adjusts the prior support;
- In addition, we need to assume $\beta \in (1, 2m + 1)$ to guarantee $E\{J(G_{\lambda}, G_{\lambda})\} < \infty$ such that the sample path of G_{λ} belongs to $H^m(0, 1)$ a.s..

- Our construction of GP prior is motivated from Wahba' Bayesian view on smoothing spline (Wahba, 1990);
- The RKHS induced by G_{λ} is essentially $H^{m+\beta/2}(0,1)$, where β adjusts the prior support;
- In addition, we need to assume $\beta \in (1, 2m + 1)$ to guarantee $E\{J(G_{\lambda}, G_{\lambda})\} < \infty$ such that the sample path of G_{λ} belongs to $H^m(0, 1)$ a.s..

- Our construction of GP prior is motivated from Wahba' Bayesian view on smoothing spline (Wahba, 1990);
- The RKHS induced by G_{λ} is essentially $H^{m+\beta/2}(0,1)$, where β adjusts the prior support;
- In addition, we need to assume $\beta \in (1, 2m + 1)$ to guarantee $E\{J(G_{\lambda}, G_{\lambda})\} < \infty$ such that the sample path of G_{λ} belongs to $H^m(0, 1)$ a.s..

Underlying Eigensystem $(\varphi_{\nu}(\cdot), \rho_{\nu})$

 $\bullet\,$ Under mild conditions, f admits a Fourier expansion:

$$f(\cdot) = \sum_{\nu=1}^{\infty} f_{\nu} \varphi_{\nu}(\cdot),$$

where $\varphi_{\nu}(\cdot)$'s are basis functions in $H^m(0,1)$.

• An example for $(\varphi_{\nu}, \rho_{\nu})$ is the following ODE solution:

$$\varphi_{\nu}^{(2m)}(\cdot) = \rho_{\nu}\varphi_{\nu}(\cdot), \ \varphi_{\nu}^{(j)}(0) = \varphi_{\nu}^{(j)}(1) = 0, \ j = 2, \dots, 2m-1,$$

where φ_{ν} 's have closed forms. This is also called as "uniform free beam problem" in physics.

Underlying Eigensystem $(\varphi_{\nu}(\cdot), \rho_{\nu})$

 $\bullet\,$ Under mild conditions, f admits a Fourier expansion:

$$f(\cdot) = \sum_{\nu=1}^{\infty} f_{\nu} \varphi_{\nu}(\cdot),$$

where $\varphi_{\nu}(\cdot)$'s are basis functions in $H^m(0,1)$.

• An example for $(\varphi_{\nu}, \rho_{\nu})$ is the following ODE solution:

$$\varphi_{\nu}^{(2m)}(\cdot) = \rho_{\nu}\varphi_{\nu}(\cdot), \ \varphi_{\nu}^{(j)}(0) = \varphi_{\nu}^{(j)}(1) = 0, \ j = 2, \dots, 2m-1,$$

where φ_{ν} 's have closed forms. This is also called as "uniform free beam problem" in physics.

Theorem 1

Given that $\lambda \asymp n^{-2m/(2m+\beta)}$, we have

$$\sup_{S \subset H^m(0,1)} |P(S|D_n) - \Pi_W(S)| = o_{P_{f_0}^n}(1),$$

where $\Pi_W(\cdot)$ is the probability measure induced by a GP W.

- Suppose that $\widehat{f}_{n,\lambda}(\cdot) = \sum_{\nu=0}^{\infty} \widehat{f}_{n,\nu} \varphi_{\nu}(\cdot);$
- The mean function of W (also the approximate posterior mode of $P(\cdot|D_n)$) is

$$\widetilde{f}_{n,\lambda} := \sum_{\nu=0}^{\infty} a_{n,\nu} \widehat{f}_{n,\nu} \varphi_{\nu}(\cdot).$$

Hence, $\tilde{f}_{n,\lambda} \neq \hat{f}_{n,\lambda}$ (but very close);

• The mean-zero GP $W_n := W - \tilde{f}_{n,\lambda}$ is expressed as

$$W_n(\cdot) = \sum_{\nu=0}^{\infty} b_{n,\nu} z_{\nu} \varphi_{\nu}(\cdot) \text{ and } z_{\nu} \stackrel{iid}{\sim} N(0,1);$$

- Suppose that $\widehat{f}_{n,\lambda}(\cdot) = \sum_{\nu=0}^{\infty} \widehat{f}_{n,\nu} \varphi_{\nu}(\cdot);$
- The mean function of W (also the approximate posterior mode of $P(\cdot|D_n)$) is

$$\widetilde{f}_{n,\lambda} := \sum_{\nu=0}^{\infty} a_{n,\nu} \widehat{f}_{n,\nu} \varphi_{\nu}(\cdot).$$

Hence, $\tilde{f}_{n,\lambda} \neq \hat{f}_{n,\lambda}$ (but very close);

• The mean-zero GP $W_n := W - \tilde{f}_{n,\lambda}$ is expressed as

$$W_n(\cdot) = \sum_{\nu=0}^{\infty} b_{n,\nu} z_{\nu} \varphi_{\nu}(\cdot) \text{ and } z_{\nu} \stackrel{iid}{\sim} N(0,1);$$

- Suppose that $\widehat{f}_{n,\lambda}(\cdot) = \sum_{\nu=0}^{\infty} \widehat{f}_{n,\nu} \varphi_{\nu}(\cdot);$
- The mean function of W (also the approximate posterior mode of $P(\cdot|D_n)$) is

$$\widetilde{f}_{n,\lambda} := \sum_{\nu=0}^{\infty} a_{n,\nu} \widehat{f}_{n,\nu} \varphi_{\nu}(\cdot).$$

Hence, $\tilde{f}_{n,\lambda} \neq \hat{f}_{n,\lambda}$ (but very close);

• The mean-zero GP $W_n := W - \tilde{f}_{n,\lambda}$ is expressed as

$$W_n(\cdot) = \sum_{\nu=0}^{\infty} b_{n,\nu} z_{\nu} \varphi_{\nu}(\cdot) \text{ and } z_{\nu} \stackrel{iid}{\sim} N(0,1);$$

- Suppose that $\widehat{f}_{n,\lambda}(\cdot) = \sum_{\nu=0}^{\infty} \widehat{f}_{n,\nu} \varphi_{\nu}(\cdot);$
- The mean function of W (also the approximate posterior mode of $P(\cdot|D_n)$) is

$$\widetilde{f}_{n,\lambda} := \sum_{\nu=0}^{\infty} a_{n,\nu} \widehat{f}_{n,\nu} \varphi_{\nu}(\cdot).$$

Hence, $\tilde{f}_{n,\lambda} \neq \hat{f}_{n,\lambda}$ (but very close);

• The mean-zero GP $W_n := W - \tilde{f}_{n,\lambda}$ is expressed as

$$W_n(\cdot) = \sum_{\nu=0}^{\infty} b_{n,\nu} z_{\nu} \varphi_{\nu}(\cdot) \text{ and } z_{\nu} \stackrel{iid}{\sim} N(0,1);$$

Note that $N = s \times n$. Both n and s are allowed to diverge.

Uniform BvM theorem characterizes limit shapes of a sequence of s nonparametric posterior distributions (under proper tuning priors) as long as s does not grow too fast.

Theorem 2

Given that $\lambda \simeq N^{-2m/(2m+\beta)}$ (used in each subset with size n), we have

$$\sup_{S \subset H^m(0,1)} \max_{1 \le j \le s} |P(S|D_{j,n}) - \Pi_{W_j}(S)| = o_{P_{f_0}^n}(1)$$

as long as s does not grow faster than $N^{(\beta-1)/(2m+\beta)}$.

Aggregated Credible Interval

• The *j*-th credible ball is defined as

$$R_{j,n}(\alpha) = \{ f \in H^m(0,1) : \| f - \tilde{f}_{j,n} \|_2 \le r_{j,n}(\alpha) \},\$$

where the radius r_{j,n}(α) is directly obtained via MCMC;
The aggregated credible ball is constructed as

 $R_N(\alpha) = \{ f \in H^m(0,1) : \| f - \bar{f}_{N,\lambda} \|_2 \le \bar{r}_N(\alpha) \};$

• As will be seen, the aggregation step is through weighted averaging Fourier frequencies and weighted averaging individual radii. No additional computation is needed.

Aggregated Credible Interval

• The *j*-th credible ball is defined as

$$R_{j,n}(\alpha) = \{ f \in H^m(0,1) : \| f - \tilde{f}_{j,n} \|_2 \le r_{j,n}(\alpha) \},\$$

where the radius $r_{j,n}(\alpha)$ is directly obtained via MCMC;

• The aggregated credible ball is constructed as

$$R_N(\alpha) = \{ f \in H^m(0,1) : \| f - \bar{f}_{N,\lambda} \|_2 \le \bar{r}_N(\alpha) \};$$

• As will be seen, the aggregation step is through weighted averaging Fourier frequencies and weighted averaging individual radii. No additional computation is needed.

Aggregated Credible Interval

• The *j*-th credible ball is defined as

$$R_{j,n}(\alpha) = \{ f \in H^m(0,1) : \| f - \tilde{f}_{j,n} \|_2 \le r_{j,n}(\alpha) \},\$$

where the radius $r_{j,n}(\alpha)$ is directly obtained via MCMC;

• The aggregated credible ball is constructed as

$$R_N(\alpha) = \{ f \in H^m(0,1) : \| f - \bar{f}_{N,\lambda} \|_2 \le \bar{r}_N(\alpha) \};$$

• As will be seen, the aggregation step is through weighted averaging Fourier frequencies and weighted averaging individual radii. No additional computation is needed. Uniform BvM shows that $R_N(\alpha)$ (asymptotically) covers $(1 - \alpha)$ posterior mass and also possesses frequentist validity as long as

$$\lambda \asymp N^{-2m/(2m+\beta)}$$
 and $s = o(N^{(\beta-1/(2m+\beta))})$.

• Aggregated center:

$$\bar{f}_{N,\lambda}(\cdot) = \sum_{\nu=1}^{\infty} a_{N,\nu} \bar{f}_{\nu} \varphi_{\nu}(\cdot) \text{ and } \bar{f}_{\nu} = (1/s) \sum_{j=1}^{s} \widehat{f}_{n,\nu}^{(j)};$$

• Aggregated radius:

$$\bar{r}_N(\alpha) = \sqrt{\frac{1}{N} \left[\zeta_{1,N} + \sqrt{\frac{\zeta_{2,N}}{\zeta_{2,n}}} \left(\frac{n}{s} \sum_{j=1}^s r_{j,n}^2(\alpha) - \zeta_{1,n} \right) \right]},$$

where

$$\zeta_{k,n} = \sum_{\nu=1}^{\infty} \left(\frac{n}{\tau_{\nu}^2 + n(1 + \lambda \rho_{\nu})} \right)^k$$

• In fact, the aggregated radius \bar{r}_N is (asymptotically) the same as that of oracle credible ball; see simulations.

• Aggregated center:

$$\bar{f}_{N,\lambda}(\cdot) = \sum_{\nu=1}^{\infty} a_{N,\nu} \bar{f}_{\nu} \varphi_{\nu}(\cdot) \text{ and } \bar{f}_{\nu} = (1/s) \sum_{j=1}^{s} \widehat{f}_{n,\nu}^{(j)};$$

• Aggregated radius:

$$\bar{r}_N(\alpha) = \sqrt{\frac{1}{N} \left[\zeta_{1,N} + \sqrt{\frac{\zeta_{2,N}}{\zeta_{2,n}}} \left(\frac{n}{s} \sum_{j=1}^s r_{j,n}^2(\alpha) - \zeta_{1,n} \right) \right]},$$

where

$$\zeta_{k,n} = \sum_{\nu=1}^{\infty} \left(\frac{n}{\tau_{\nu}^2 + n(1 + \lambda \rho_{\nu})} \right)^k.$$

• In fact, the aggregated radius \bar{r}_N is (asymptotically) the same as that of oracle credible ball; see simulations.

• Aggregated center:

$$\bar{f}_{N,\lambda}(\cdot) = \sum_{\nu=1}^{\infty} a_{N,\nu} \bar{f}_{\nu} \varphi_{\nu}(\cdot) \text{ and } \bar{f}_{\nu} = (1/s) \sum_{j=1}^{s} \widehat{f}_{n,\nu}^{(j)};$$

• Aggregated radius:

$$\bar{r}_N(\alpha) = \sqrt{\frac{1}{N} \left[\zeta_{1,N} + \sqrt{\frac{\zeta_{2,N}}{\zeta_{2,n}}} \left(\frac{n}{s} \sum_{j=1}^s r_{j,n}^2(\alpha) - \zeta_{1,n} \right) \right]},$$

where

$$\zeta_{k,n} = \sum_{\nu=1}^{\infty} \left(\frac{n}{\tau_{\nu}^2 + n(1 + \lambda \rho_{\nu})} \right)^k$$

• In fact, the aggregated radius \bar{r}_N is (asymptotically) the same as that of oracle credible ball; see simulations.

- Two examples:
 - Evaluation functional: $F_z(f) = f(z);$
 - Integral functional: $F_{\omega}(f) = \int_0^1 f(z)\omega(z)dz$ for a known function $\omega(\cdot)$ such as an indicator function;
- Individual credible interval for F(f):

 $CI_{j,n}^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\widetilde{f}_{j,n})| \le r_{F,j,n}(\alpha) \};$

• The aggregated version is constructed as

 $CI_N^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\bar{f}_{N,\lambda})| \le \bar{r}_{F,N}(\alpha) \},\$

• Two examples:

• Evaluation functional: $F_z(f) = f(z);$

- Integral functional: $F_{\omega}(f) = \int_0^1 f(z)\omega(z)dz$ for a known function $\omega(\cdot)$ such as an indicator function;
- Individual credible interval for F(f):

 $CI_{j,n}^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\widetilde{f}_{j,n})| \le r_{F,j,n}(\alpha) \};$

• The aggregated version is constructed as

 $CI_N^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\bar{f}_{N,\lambda})| \le \bar{r}_{F,N}(\alpha) \},\$

• Two examples:

• Evaluation functional: $F_z(f) = f(z);$

- Integral functional: $F_{\omega}(f) = \int_0^1 f(z)\omega(z)dz$ for a known function $\omega(\cdot)$ such as an indicator function;
- Individual credible interval for F(f):

 $CI_{j,n}^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\widetilde{f}_{j,n})| \le r_{F,j,n}(\alpha) \};$

• The aggregated version is constructed as

 $CI_N^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\bar{f}_{N,\lambda})| \le \bar{r}_{F,N}(\alpha) \},\$

- Two examples:
 - Evaluation functional: $F_z(f) = f(z);$
 - Integral functional: $F_{\omega}(f) = \int_0^1 f(z)\omega(z)dz$ for a known function $\omega(\cdot)$ such as an indicator function;
- Individual credible interval for F(f):

 $CI_{j,n}^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\widetilde{f}_{j,n})| \le r_{F,j,n}(\alpha) \};$

• The aggregated version is constructed as

 $CI_N^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\bar{f}_{N,\lambda})| \le \bar{r}_{F,N}(\alpha) \},\$

- Two examples:
 - Evaluation functional: $F_z(f) = f(z);$
 - Integral functional: $F_{\omega}(f) = \int_0^1 f(z)\omega(z)dz$ for a known function $\omega(\cdot)$ such as an indicator function;
- Individual credible interval for F(f):

$$CI_{j,n}^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\widetilde{f}_{j,n})| \le r_{F,j,n}(\alpha) \};$$

• The aggregated version is constructed as

$$CI_N^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\bar{f}_{N,\lambda})| \le \bar{r}_{F,N}(\alpha) \},\$$

- Two examples:
 - Evaluation functional: $F_z(f) = f(z);$
 - Integral functional: $F_{\omega}(f) = \int_0^1 f(z)\omega(z)dz$ for a known function $\omega(\cdot)$ such as an indicator function;
- Individual credible interval for F(f):

$$CI_{j,n}^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\widetilde{f}_{j,n})| \le r_{F,j,n}(\alpha) \};$$

• The aggregated version is constructed as

$$CI_N^F(\alpha) := \{ f \in S^m(\mathbb{I}) : |F(f) - F(\bar{f}_{N,\lambda})| \le \bar{r}_{F,N}(\alpha) \},\$$

• How to define an aggregation rule s.t. $R(\alpha)$ covers $(1 - \alpha)$ posterior mass, with the same radius as $R_{\text{oracle}}(\alpha)$?

Weighted averaging individual centers (in terms of their Fourier coefficients) and radii by *analytical formula*.

• How to construct a prior s.t. $R(\alpha)$ covers the true parameter (generating the data) with probability $(1 - \alpha)$?

Pick a proper tuning prior by GCV.

• How fast can we allow s to diverge?

s cannot grow faster than a rate jointly determined by the smoothness of f_0 and the smoothness of GP prior.

• How to define an aggregation rule s.t. $R(\alpha)$ covers $(1 - \alpha)$ posterior mass, with the same radius as $R_{\text{oracle}}(\alpha)$?

Weighted averaging individual centers (in terms of their Fourier coefficients) and radii by *analytical formula*.

• How to construct a prior s.t. $R(\alpha)$ covers the true parameter (generating the data) with probability $(1 - \alpha)$?

Pick a proper tuning prior by GCV.

• How fast can we allow s to diverge?

s cannot grow faster than a rate jointly determined by the smoothness of f_0 and the smoothness of GP prior.

• How to define an aggregation rule s.t. $R(\alpha)$ covers $(1 - \alpha)$ posterior mass, with the same radius as $R_{\text{oracle}}(\alpha)$?

Weighted averaging individual centers (in terms of their Fourier coefficients) and radii by *analytical formula*.

• How to construct a prior s.t. $R(\alpha)$ covers the true parameter (generating the data) with probability $(1 - \alpha)$?

Pick a proper tuning prior by GCV.

• How fast can we allow s to diverge?

s cannot grow faster than a rate jointly determined by the smoothness of f_0 and the smoothness of GP prior.

• Gaussian regression models:

$$Y = f_0(X) + \epsilon,$$

where $\epsilon \sim N(0, 1)$ and

$$f_0(x) = 3\beta_{30,17}(x) + 2\beta_{3,11}(x),$$

where $\beta_{a,b}$ is the pdf of Beta distribution. Set m = 2;

- Assign a tuning prior with $\beta = 2$ and λ being selected by GCV as follows;
- Let λ_{GCV} be the GCV-selected tuning parameter with the order $N^{-2m/(2m+1)}$ by applying to the entire data (A practical formula needs to be developed here). Set λ as $\lambda_{GCV}^{(2m+1)/(2m+\beta)}$ to match with the order $\approx N^{-2m/(2m+\beta)}$.

• Gaussian regression models:

$$Y = f_0(X) + \epsilon,$$

where $\epsilon \sim N(0, 1)$ and

$$f_0(x) = 3\beta_{30,17}(x) + 2\beta_{3,11}(x),$$

where $\beta_{a,b}$ is the pdf of Beta distribution. Set m = 2;

- Assign a tuning prior with $\beta = 2$ and λ being selected by GCV as follows;
- Let λ_{GCV} be the GCV-selected tuning parameter with the order $N^{-2m/(2m+1)}$ by applying to the entire data (A practical formula needs to be developed here). Set λ as $\lambda_{GCV}^{(2m+1)/(2m+\beta)}$ to match with the order $\approx N^{-2m/(2m+\beta)}$.

• Gaussian regression models:

$$Y = f_0(X) + \epsilon,$$

where $\epsilon \sim N(0, 1)$ and

$$f_0(x) = 3\beta_{30,17}(x) + 2\beta_{3,11}(x),$$

where $\beta_{a,b}$ is the pdf of Beta distribution. Set m = 2;

- Assign a tuning prior with $\beta = 2$ and λ being selected by GCV as follows;
- Let λ_{GCV} be the GCV-selected tuning parameter with the order $N^{-2m/(2m+1)}$ by applying to the entire data (A practical formula needs to be developed here). Set λ as $\lambda_{GCV}^{(2m+1)/(2m+\beta)}$ to match with the order $\asymp N^{-2m/(2m+\beta)}$.

Figure 1: Plot of the true function f_0 .

Computing Time

Figure 2: ρ versus γ based on FCR and ACR, where $\rho = (T_0 - T)/T_0$, T_0 is computing time based on big data and T is the D&C time. And, $\gamma = \log s / \log N$ describes the growth of s.

Phase Transition: Coverage Probability

Figure 3: Frequentist coverage probability (CP) of $R_N(\alpha)$ against γ for N = 2400. Red-dotted line indicates the position of $1 - \alpha$.

Phase Transition: Radius

Figure 4: Radius of $R_N(\alpha)$ against γ for various α .

Thanks for your attention. Questions are welcome.