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SUSY Data Set (UCI Machine Learning Repository)

Size: 5,000,000 particles from the accelerator

Predictor variables: 18 (properties of the particles)

Goal – Classification:

distinguish between a signal process and a background process
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Nearest Neighbor Classification

The kNN classifier predicts the class of x ∈ Rd to be the most
frequent class of its k nearest neighbors (Euclidean distance).
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Computational/Space Challenges for kNN Classifiers

Time complexity: O(dN + Nlog(N))
dN: computing distances from the query point to all N
observations in Rd

Nlog(N): sorting N distances and selecting the k nearest
distances

Space complexity: O(dN)
Here, N is the size of the entire dataset
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How to Conquer ”Big Data?”
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If We Have A Supercomputer...

Train the total data at one time: oracle kNN

Figure: I’m Pac-Superman!
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Construction of Pac-Superman

To build a Pac-superman for oracle-kNN, we need:

Expensive super-computer

Operation system, e.g. Linux

Statistical software designed for big data, e.g. Spark, Hadoop

Write complicated algorithms (e.g. MapReduce) with limited
extendibility to other classification methods
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Machine Learning Literature

In machine learning area, there are some nearest neighbor

algorithms for big data already

Muja&Lowe(2014) designed an algorithm to search nearest

neighbors for big data

Comments: complicated; without statistical gurantee; lack of

extendibility

We hope to design an algorithm framework:

Easy to implement

Strong statistical guarantee

More generic and expandable (e.g. easy to be applied to other

classifiers (decision trees, SVM, etc)
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If We Don’t Have A Supercomputer...

What can we do?
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If We Don’t Have A Supercomputer...

What about splitting the data?
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Divide & Conquer (D&C) Framework

Goal: deliver different insights from regression problems.
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Big-kNN for SUSY Data

Oracle-kNN: kNN trained by the entire data

Number of subsets: s = Nγ , γ = 0.1, 0.2, . . . 0.8
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Figure: Risk and Speedup for Big-kNN.

Risk of classifier φ: R(φ) = P(φ(X ) 6= Y )

Speedup: running time ratio between Oracle-kNN & Big-kNN
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Construction of Pac-Batman (Big Data)
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We need a statistical understanding of Big-kNN....

Guang Cheng Big Data Theory Lab@Purdue 14 / 48



Weighted Nearest Neighbor Classifiers (WNN)

Definition: WNN

In a dataset with size n, the WNN classifier assigns a weight wni

on the i-th neighbor of x:

φ̂wn
n (x) = 1

{
n∑

i=1

wni1{Y(i) = 1} ≥ 1

2

}
s.t.

n∑
i=1

wni = 1,

When wni = k−11{1 ≤ i ≤ k}, WNN reduces to kNN.
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D&C Construction of WNN

Construction of Big-WNN

In a big data set with size N = sn, the Big-WNN is constructed as:

φ̂Bign,s (x) = 1

s−1
s∑

j=1

φ̂
(j)
n (x) ≥ 1/2

 ,

where φ̂
(j)
n (x) is the local WNN in j-th subset.
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Statistical Guarantees: Classification Accuracy & Stability

Primary criterion: accuracy

Regret=Expected Risk−Bayes Risk= ED

[
R(φ̂n)

]
− R(φBayes)

A small value of regret is preferred

Secondary criterion: stability (Sun et al, 2016, JASA)

Definition: Classification Instability (CIS)

Define classification instability of a classification procedure Ψ as

CIS(Ψ) = ED1,D2

[
PX

(
φ̂n1(X ) 6= φ̂n2(X )

)]
,

where φ̂n1 and φ̂n2 are the classifiers trained from the same
classification procedure Ψ based on D1 and D2 with the same
distribution.

A small value of CIS is preferred
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Asymptotic Regret of Big-WNN

Theorem (Regret of Big-WNN)

Under regularity assumptions, with s upper bounded by the subset
size n, we have as n, s →∞,

Regret (Big-WNN) ≈ B1s
−1

n∑
i=1

w2
ni + B2

( n∑
i=1

αiwni

n2/d

)2
,

where αi = i1+
2
d − (i − 1)1+

2
d , wni are the local weights. The

constants B1 and B2 are distribution-dependent quantities.
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Asymptotic Regret Comparison

Round 1
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Asymptotic Regret Comparison

Theorem (Regret Ratio of Big-WNN and Oracle-WNN)

Given an Oracle-WNN classifier, we can always design a Big-WNN
by adjusting its weights according to those in the oracle version s.t.

Regret (Big-WNN)

Regret (Oracle-WNN)
→ Q,

where Q = (π2 )
4

d+4 and 1 < Q < 2.

E.g., in Big-kNN case, we set k = b(π2 )
d

d+4 kO

s c given the

oracle kO . We need a multiplicative constant (π2 )
d

d+4 !

We name Q the Majority Voting (MV) Constant.
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Majority Voting Constant

MV constant monotonically decreases to one as d increases
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For example:

d=1, Q=1.44

d=2, Q=1.35

d=5, Q=1.22

d=10, Q=1.14

d=20, Q=1.08

d=50, Q=1.03

d=100, Q=1.02
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How to Compensate Statistical Accuracy Loss, i.e., Q > 1

Why is there statistical accuracy loss?
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Statistical Accuracy Loss due to Majority Voting

Accuracy loss due to the transformation from
(continuous) percentage to (discrete) 0-1 label
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Majority Voting/Accuracy Loss Once in Oracle Classifier

Only one majority voting in oracle classifier

Figure: I’m Pac-Superman!
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Majority Voting/Accuracy Loss Twice in D&C Framework
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Next Step....

Is it possible to apply majority voting
once in D&C?

Guang Cheng Big Data Theory Lab@Purdue 26 / 48



A Continuous Version of D&C Framework
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Only Loss Once in the Continuous Version
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Construction of Pac-Batman (Continuous Version)
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Continuous Version of Big-WNN (C-Big-WNN)

Definition: C-Big-WNN

In a data set with size N = sn, the C-Big-WNN is constructed as:

φ̂CBign,s (x) = 1

1

s

s∑
j=1

Ŝ
(j)
n (x) ≥ 1/2

,
where Ŝ

(j)
n (x) =

∑n
i=1 wni ,jY(i),j(x) is the weighted average for

nearest neighbors of query point x in j-th subset.
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C-Big-kNN for SUSY Data
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Figure: Risk and Speedup for Big-kNN and C-Big-kNN.
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Asymptotic Regret Comparison

Round 2
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Asymptotic Regret Comparison

Theorem (Regret Ratio between C-Big-WNN and Oracle-WNN)

Given an Oracle-WNN, we can always design a C-Big-WNN by
adjusting its weights according to those in the oracle version s.t.

Regret (C-Big-WNN)

Regret (Oracle-WNN)
→ 1,

E.g., in the C-Big-kNN case, we can set k = bkO

s c given the

oracle kO . There is no multiplicative constant!

Note that this theorem can be directly applied to the
optimally weighted NN (Samworth, 2012, AoS), i.e., OWNN,
whose weights are optimized to lead to the minimal regret.
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Practical Consideration: Speed vs Accuracy

It is time consuming to apply OWNN in each subset although

it leads to the minimal regret

Rather, it is more easier and faster to implement kNN in each

subset (with accuracy loss, though)

What is the statistical price (in terms of accuracy and

stability) in order to trade accuracy with speed?
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Statistical Price

Theorem (Statistical Price)

We can design an optimal C-Big-kNN by setting its weights as
k = bkO,opt

s c s.t.

Regret(Optimal C-Big-kNN)

Regret(Oracle-OWNN)
→ Q ′,

CIS(Optimal C-Big-kNN)

CIS(Oracle-OWNN)
→
√
Q ′,

where Q ′ = 2−4/d+4(d+4
d+2)(2d+4)/(d+4) and 1 < Q ′ < 2. Here,

kO,opt minimizes the regret of Oracle-kNN.

Interestingly, both Q and Q ′ only depend on data dimension!
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Statistical Price

Q ′ converges to one as d grows in a unimodal way
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The worst dimension is d∗ = 4 =⇒ Q∗ = 1.089.
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Simulation Analysis – kNN

Consider the classification problem for Big-kNN and C-Big-kNN:

Sample size: N = 27, 000

Dimensions: d = 6, 8

P0 ∼ N(0d , Id) and P1 ∼ N( 2√
d

1d , Id)

Prior class probability: π1 = Pr(Y = 1) = 1/3

Number of neighbors in Oracle-kNN: kO = N0.7

Number of subsamples in D&C: s = Nγ , γ = 0.1, 0.2, . . . 0.8

Number of neighbors in Big-kNN: kd = b(π2 )
d

d+4 kO

s c

Number of neighbors in C-Big-kNN: kc = bkO

s c
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Simulation Analysis – Empirical Risk
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Figure: Empirical Risk (Testing Error). Left/Right: d = 6/8.
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Simulation Analysis – Running Time
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Figure: Running Time. Left/Right: d = 6/8.
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Simulation Analysis – Empirical Regret Ratio
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Figure: Empirical Ratio of Regret. Left/Right: d = 6/8.

Q: Regret(Big-kNN)/Regret(Oracle-kNN) or
Regret(C-Big-kNN)/Regret(Oracle-kNN)
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Simulation Analysis – Empirical CIS
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Figure: Empirical CIS. Left/Right: d = 6/8.
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Real Data Analysis – UCI Machine Learning Repository

Data Size Dim Big-kNN C-Big-kNN Oracle-kNN Speedup
htru2 17898 8 3.72 3.36 3.34 21.27
gisette 6000 5000 12.86 10.77 10.78 12.83
musk1 476 166 36.43 33.87 35.71 3.6
musk2 6598 166 10.43 9.98 10.14 14.68
occup 20560 6 5.09 4.87 5.19 20.31
credit 30000 24 21.85 21.37 21.5 22.44
SUSY 5000000 18 30.66 30.08 30.01 68.45

Table: Test error (Risk): Big-kNN compared to Oracle-kNN in real
datasets. Best performance is shown in bold-face. The speedup factor is
defined as computing time of Oracle-kNN divided by the time of the
slower Big-kNN method. Oracle k = N0.7, number of subsets s = N0.3.
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