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High dimensional time series

Modern time series datasets often defy traditional statistical
assumptions.

Key features:
1 high dimensional

2 non-normally-distributed

3 non-linear

4 nonstationary

Application areas:
1 Macroeconomics and finance

2 Neuroscience

3 Climate studies
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Statistical problems for high dimensional time series

Factor modeling, time series PCA and clustering

(Auto)covariance structure estimation, graphical modeling and
causality

Sparse modeling and regularized estimation

Change-point detection and estimation

Predictive inference and forecasting

Statistical inference and uncertainty quantification

......
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CLT for low dimensional time series

Consider n observations {xi}ni=1 from a p-dimensional time series
with p � n.

Central Limit Theorem (CLT):

1√
n

n∑
i=1

(xi − µi)→d N(0,Σ),

µi = E[xi ], Σ = lim
n→+∞

1
n

n∑
i,j=1

E[(xi − µi)(xj − µj)
′].

See Rosenblatt (1956), Ibragimov and Linnik (1971), Wu (2005)
among others.
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Inference for low dimensional time series

Continuous mapping theorem:

h

(
1√
n

n∑
i=1

(xi − µ)

)
→d h (N(0,Σ)) ,

where h : Rp → R is continuous.

Special cases:

h(z) = max
1≤i≤p

zi ,

h(z) = z ′Az,

where z = (z1, . . . , zp)′ and A ∈ Rp×p.
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CLT fails in high dimension

Portnoy (1986) showed that

1√
n

n∑
i=1

(xi − µi)

no longer converges to the Gaussian limit when
√

n = o(p).

For a specific h, does

h

(
1√
n

n∑
i=1

(xi − µi)

)
→d h (N(0,Σ)) , (1)

still hold when p ≈ n or even p � n?

For independent data, (1) holds when

h(z) = max
1≤i≤p

zi and h(z) = z ′Az.

See Bai and Saranadasa (1996) and Chernozhukov et al. (2013).
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Our main contribution

Develop a Gaussian approximation result for high-dimensional,
non-stationary, non-linear, non-Gaussian time series when
h(z) = max1≤i≤p zi .

Let yi be a Gaussian sequence which preserves the
autocovariance structure of xi . Suppose E[xi ] = E[yi ] = 0.

Main result:

ρn := sup
t≥0

∣∣∣∣P (max
1≤i≤p

Xn,i ≤ t
)
− P

(
max
1≤i≤p

Yn,i ≤ t
)∣∣∣∣→ 0,

where

Xn = (Xn,1, . . . ,Xn,p)′ = n−1/2
n∑

i=1

xi ,

Yn = (Yn,1, . . . ,Yn,p)′ = n−1/2
n∑

i=1

yi .
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Applications

Multiplicity adjustment in large-scale inference

Simultaneous inference for mean and covariance structure, white
noise testing [Zhang and Cheng (2014); Zhang and Wu (2016);
Chang et al. (2017)]

Change-point detection [Dette and Gömann (2017)]
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Smooth approximation

Note that

P
(

max
1≤i≤p

Xn,i ≤ t
)

= E
[
1
{

max
1≤i≤p

Xn,i ≤ t
}]

.

Both the maximum function and the indicator function 1{· ≤ t} are
non-smooth.

Approximate max1≤i≤p zi by the “soft maximum”

Fβ(z) := β−1 log

 p∑
j=1

exp(βzj)

 , where z = (z1, . . . , zp)′.

We have
0 ≤ Fβ(z)− max

1≤i≤p
zi ≤ β−1 log p.

Approximate 1{· ≤ t} by a sufficiently smooth function say g(·).
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Moment match

By the smooth approximation,∣∣∣∣P (max
1≤i≤p

Xn,i ≤ t
)
− P

(
max
1≤i≤p

Yn,i ≤ t
)∣∣∣∣

≈ |Eg ◦ Fβ(Xn)− Eg ◦ Fβ(Yn)| .

From now on, we write g ◦ Fβ(·) as m(·).

How can we compare E[m(Xn)] with E[m(Yn)]?

Two classical methods

1 Slepian-Stein smart path interpolation: second moment match.

2 Lindeberg exchange method: third or higher moment match.
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Slepian-Stein interpolation

Smart interpolation:

Zn(t) =
√

tXn +
√

1− tYn =
n∑

i=1

(zi,1(t), . . . , zi,p(t))′,

where var(Zn(t)) = var(Xn) = var(Yn).

E[m(Xn)]− E[m(Yn)] =E[m(Zn(1))]− E[m(Zn(0))]

=

∫ 1

0

∂E[m(Zn(t))]

∂t
dt

=
n∑

i=1

p∑
j=1

∫ 1

0
E[∂jm(Zn(t))]

∂zi,j(t)
∂t

dt .

We develop a new argument to analyze the RHS when xi is a
M-dependent time series.
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Physical dependence

Consider a p-dimensional random vector with the following causal
representation:

xi := Gi(. . . , εi−1, εi),

where Gi = (Gi,1, . . . ,Gi,p)′ and {εi}i∈Z are i.i.d elements.

Define

θk ,j,q = sup
i

(E|Gi,j(Fi)− Gi,j(Fi,i−k )|q)1/q, Θk ,j,q =
+∞∑
l=k

θl,j,q,

where

Fi = (. . . , εi−1, εi),

Fi,i−k = (. . . , εk−1, ε
′
i−k , εi−k+1, . . . , εi−1, εi).
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M-dependent approximation

Construct a M-dependent time series:

x (M)
i = E [xi |εi−M , εi−M+1, . . . , εi ].

Derive a finite sample upper bound for∣∣∣E[m(X (M)
n )]− E[m(Y (M)

n )]
∣∣∣ ,

where X (M)
n = n−1/2∑n

i=1 x (M)
i .

Quantify the M-dependent approximation error:

P(|X (M)
n − Xn|∞ > t)

where | · |∞ is the l∞ norm.
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Proof roadmap

max1≤i≤p Xn,i

M-dependent approximation
��

max1≤i≤p X (M)
n,i

Modified Stein’s method
��

max1≤i≤p Y (M)
n,i

Gaussian-to-Gaussian approximation
��

max1≤i≤p Yn,i
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Key result

Assume that
High dimensionality:

p . exp(nb) for 0 ≤ b < 1/11.

Weak dependence:

max
1≤j≤p

Θk ,j,q . %k for % < 1,q ≥ 2.

Moment condition: one of the following two conditions holds

max
1≤i≤n

E( max
1≤j≤p

|xij |/Dn)4 ≤ 1, Dn . n(3−25b)/32,

max
1≤i≤n

max
1≤j≤p

Eexp(|xij |/Dn) ≤ 1, Dn . n(3−17b)/8.

Then
ρn . n−(1−11b)/8.
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Key result (con’t)

Dependence adjusted norm [Zhang and Wu (2016)]:

ωj,q = max
i
|| ||Gi(Fi)− Gi(Fi,i−j)||∞||q, ΩM,q =

+∞∑
j=M

ωj,q.

Assume that
High dimensionality:

p . exp(nb) for 0 ≤ b < 1/11.

Weak dependence + Moment condition:

ΩM+1,q � M−α for α > (1 + b)/(1− 7b).

Then
ρn . n−c , c > 0.
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Nonstationary linear model

Nonstationary linear model:

xi =
+∞∑
l=0

Ai,lεi−l .

Our assumptions are satisfied if

1 supi max1≤j≤p ||Ai,l
j,·||2 . %l , for some % < 1.

2 The components of εi are sub-exponential.
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Numerical results

Figure: P-P plots comparing the distributions of |Xn|∞ and |Yn|∞, where the
data are generated from the time-varying VAR(1) model.
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Estimating the covariance structure

The Gaussian approximation theory says that∣∣∣∣∣ 1√
n

n∑
i=1

(xi − µi)

∣∣∣∣∣
∞

≈d |N(0,Σn)|∞,

where Σn = var
(
n−1/2∑n

i=1 xi
)
.

Subsampling estimator for Σn:

Σ̂n =
M

n −M + 1

n−M+1∑
i=1

 1
M

i+M−1∑
j=i

xj − x̄

 1
M

i+M−1∑
j=i

xj − x̄

′ ,
where 1/M + M/n→ 0.

Approximate the distribution of∣∣∣∣∣ 1√
n

n∑
i=1

(xi − µi)

∣∣∣∣∣
∞

by that of |N(0, Σ̂n)|∞.
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Testing second-order stationarity

Consider the null hypothesis

H0 : E[xi+hx ′i ] = Γ(h) for 0 ≤ h ≤ H and all i .

Define

Γ̂(k)(h) := (γ̂
(k)
i,j (h))p

i,j=1 =
1
n

n−h∑
i=1

φk

(
i − 1

n

)
xi+hx ′i ,

where φk (·) is a sequence of orthonormal basis on [0,1] such that∫ 1

0
φk (u)du = 0, 1 ≤ k ≤ K .

Our statistic:

G =
√

n max
1≤i,j≤p

max
0≤h≤H

max
1≤k≤K

|γ̂(k)i,j (h)|.
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Testing second-order stationarity (Con’t)

p = 20 p = 30 p = 40

n 10% 5% 10% 5% 10% 5%

H0 120 13.6 4.9 11.1 4.4 9.9 3.5
240 11.7 5.1 9.4 3.4 7.0 3.1

Ha 120 64.4 40.1 59.9 36.1 60.9 35.2
240 100.0 99.7 100.0 99.9 100.0 99.9

Table: Rejection percentages for testing second-order stationarity. Under the
null, the data are generated from a VAR(1) model. Under the alternative, the
data are generated from a time varying VAR(1) model. The actual number of
parameters is equal to p2κH (i.e., 4800, 10800, and 19200 for p = 20,30,40
respectively).
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Conclusion

Develop a Gaussian approximation theory for maxima of sums of
dependent random vectors.

A modified Stein’s method for dependent data and M-dependent
approximation.

Future directions:

1 Improve the rate on p using Lindeberg exchange method [Deng
and Zhang (2017)].

2 Develop a rigorous bootstrap theory for locally stationary time
series.

3 Inference for high dimensional locally stationary time series.
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Thank you!
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