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High dimensional time series

@ Modern time series datasets often defy traditional statistical
assumptions.

@ Key features:
@ high dimensional
@ non-normally-distributed
© non-linear

© nonstationary

@ Application areas:
@ Macroeconomics and finance
© Neuroscience
© Climate studies
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Statistical problems for high dimensional time series

Factor modeling, time series PCA and clustering

(Auto)covariance structure estimation, graphical modeling and
causality

Sparse modeling and regularized estimation
Change-point detection and estimation

Predictive inference and forecasting

Statistical inference and uncertainty quantification
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CLT for low dimensional time series

@ Consider n observations {x;}7_, from a p-dimensional time series
with p < n.

@ Central Limit Theorem (CLT):
fz ) =9 N(0, X),
pi=Elx], ¥=lm Z E[(x ot

See Rosenblatt (1956), Ibragimov and Linnik (1971), Wu (2005)
among others.



Inference for low dimensional time series

@ Continuous mapping theorem:

1 n
hl—=> (xi—p) | =9 h(N(O,X)),
<ﬁ;(, )) (N(
where h: RP — R is continuous.

@ Special cases:
h(z) = max z;
h(z) = Z Az,

where z = (z4,...,2) and A € RP*P.



CLT fails in high dimension
@ Portnoy (1986) showed that

1 n
—= > (X — )
vn i=1
no longer converges to the Gaussian limit when /n = o(p).
@ For a specific h, does
1 n
h|— = 4 h(N(O,x 1
<ﬁ;(x, m)) —9 h(N(0,5)), (1)
still hold when p ~ n or even p > n?
@ For independent data, (1) holds when

_ . ol
h(z) = 12%92' and h(z)=ZAz.

See Bai and Saranadasa (1996) and Chernozhukov et al. (2013).
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Our main contribution

@ Develop a Gaussian approximation result for high-dimensional,
non-stationary, non-linear, non-Gaussian time series when
h(z) = maxi<j<p Zi.

@ Let y; be a Gaussian sequence which preserves the
autocovariance structure of x;. Suppose E[x;] = E[y;] = 0.

@ Main result:

pn := Sup

P<max Xni < t> —P(max Yo < t)‘ — 0,
>0

1<i<p

where

n
Xn — (Xn"] PR ,Xn’p)/ — n_1/2 ZXI,
i=1

n
Yo=(Yni,o. Yap) =n 23 .

i=1



Applications

@ Multiplicity adjustment in large-scale inference

@ Simultaneous inference for mean and covariance structure, white
noise testing [Zhang and Cheng (2014); Zhang and Wu (2016);
Chang et al. (2017)]

@ Change-point detection [Dette and Gémann (2017)]



Smooth approximation
@ Note that

P<max Xni < t> =E [1 {max Xni < tH .

1<i<p 7 1<i<p

Both the maximum function and the indicator function 1{- < t} are
non-smooth.

@ Approximate max<;<p z; by the “soft maximum”

p
Fs(z) := 5 'log (Z exp(ﬁzj)) , where z=(z,...,2).

j=1
We have

< — < B! )

0 < Fs(2) max z; < B~ "logp

@ Approximate 1{- < t} by a sufficiently smooth function say g(-).
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Moment match

@ By the smooth approximation,

‘P(max X < t> —P(max Y, < t)'
1<i<p 7 1<i<p 7

~|Eg o Fg(Xn) —Eg o Fs(Yn)l.
From now on, we write g o F3(-) as m().

@ How can we compare E[m(X,)] with E[m(Y;)]?

@ Two classical methods
@ Slepian-Stein smart path interpolation: second moment match.

@ Lindeberg exchange method: third or higher moment match.
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Slepian-Stein interpolation

@ Smart interpolation:

n

Zy(t) = ViXo + VI = tYa =D (zi4(1),..., zip(1)),

i=1
where var(Z(t)) = var(Xp) = var(Yp).

E[m(Xn)] = E[m(Yn)] =E[m(Zn(1))] — E[m(Z(0))]

_ [ EImZy(1)]
- /O et o

-y / Eloym(Zy(0)] 2 ot

i=1 j=1

@ We develop a new argument to analyze the RHS when x; is a
M-dependent time series.
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Physical dependence

@ Consider a p-dimensional random vector with the following causal
representation:
Xi = Gi(- .., €i-1,€),

where G; = (Gi1,...,Gip) and {¢}jcz are i.i.d elements.

@ Define
+o00
Ok g = SUP(E|Gij(Fi) — Gij(Fiimi)1)9,  Okja = Oijg:
! I=k
where

Fi=0(..,€_1,€),

!
Fiick = (- oy €k—1s € k> Eimkgts - - -5 €i—1, €f)-
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M-dependent approximation

@ Construct a M-dependent time series:

M
X,-( ) = EDXileiom, €y - - €.

@ Derive a finite sample upper bound for
E[m(X;")] - Elm(Y5 )]
where X{") = n~1/25°1 x,.(M).
@ Quantify the M-dependent approximation error:

P(IXM — Xploo > 1)

where | - |« is the I, norm.
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Proof roadmap

maxi <i<p Xn,,'
lM-dependent approximation

M

MmaXi<i<p X/S,i :

Modified Stein’s method
y(M)

MaXi<i<p ¥p;

Gaussian-to-Gaussian approximation

14/23



Key result
Assume that
@ High dimensionality:
p<exp(n®) for 0<b<1/11.

@ Weak dependence:

max Ok q S o for o<1,9>2.
1<j<p 7

@ Moment condition: one of the following two conditions holds
max E(max [x;|/Dn)* <1, Dp < n®-20)/%,
1<i<n 1<j<p
max max Eexp(|xj|/Dn) <1, D, < nE170)/8,

1<i<n1<j<p

Then

on < n-(1-116)/8,
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Key result (con’t)
Dependence adjusted norm [Zhang and Wu (2016)]:

“+00
wjq = max | [|Gi(F)) = Gi(Fii-lllla:  2mg = > wig.
=M

Assume that
@ High dimensionality:
p<exp(n’) for 0<b<1/11.
@ Weak dependence + Moment condition:
Qui1g =M for a>(1+b)/(1-7b).

Then

pm<n° ¢>0.
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Nonstationary linear model

@ Nonstationary linear model:
+oo
Xi = Z AI’IE,'_/.
1=0

@ Our assumptions are satisfied if

@ sup;maxi<j<, [|A][2 < o/, forsome o < 1.

© The components of ¢; are sub-exponential.
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Numerical results

Figure: P-P plots comparing the distributions of | X,|. and | Y|, Where the
data are generated from the time-varying VAR(1) model.
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Estimating the covariance structure
@ The Gaussian approximation theory says that

% Z(Xi = i)
i=1

where ¥, =var (n"1/237 | x;).

~% IN(0,Z )00

o)

@ Subsampling estimator for ¥ ,:

Mo Mt M { HM=1 !
Bsnme 2 \m 2 K (w2 i)

i=1 j=i
where 1/M + M/n — 0.

@ Approximate the distribution of

1 & .
7 > (xi—pi)| oy that of [N(0, £p)|cc.
i=1

[e.o]
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Testing second-order stationarity

@ Consider the null hypothesis

Ho : E[xiipx]] =T(h) forO<h<Handalli.
@ Define
- Ky 1L i1 ,
o (h) = ('Y,'J (h))i7j:1 = Bz¢k N Xi+hXi,
i=1
where ¢ (-) is a sequence of orthonormal basis on [0, 1] such that
1
/ ok(Uu)du=0, 1<k<K.
0

@ Our statistic:

G =+/n max max max W,.('f)(h)|.
1<ij<pO<h<Hi<k<k "
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Testing second-order stationarity (Con’t)

p =20 p =30 p = 40
n  10% 5% 10% 5% 10% 5%
Ho 120 136 49 111 44 99 35
240 117 51 94 34 70 3.1

H, 120 644 401 599 36.1 609 352
240 100.0 99.7 100.0 99.9 100.0 99.9

Table: Rejection percentages for testing second-order stationarity. Under the
null, the data are generated from a VAR(1) model. Under the alternative, the
data are generated from a time varying VAR(1) model. The actual number of
parameters is equal to p?xH (i.e., 4800, 10800, and 19200 for p = 20, 30, 40
respectively).
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Conclusion

@ Develop a Gaussian approximation theory for maxima of sums of
dependent random vectors.

@ A modified Stein’s method for dependent data and M-dependent
approximation.

@ Future directions:

@ Improve the rate on p using Lindeberg exchange method [Deng
and Zhang (2017)].

© Develop a rigorous bootstrap theory for locally stationary time
series.

© Inference for high dimensional locally stationary time series.
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Thank you!



