Gaussian Approximation for High Dimensional Vector Under Physical Dependence

Xianyang Zhang Joint work with Guang Cheng

High dimensional time series

- Modern time series datasets often defy traditional statistical assumptions.
- Key features:
 - high dimensional
 - 2 non-normally-distributed
 - Inon-linear
 - Inonstationary
- Application areas:
 - Macroeconomics and finance
 - 2 Neuroscience
 - Olimate studies

Statistical problems for high dimensional time series

- Factor modeling, time series PCA and clustering
- (Auto)covariance structure estimation, graphical modeling and causality
- Sparse modeling and regularized estimation
- Change-point detection and estimation
- Predictive inference and forecasting
- Statistical inference and uncertainty quantification
-

CLT for low dimensional time series

- Consider *n* observations {*x_i*}^{*n*}_{*i*=1} from a *p*-dimensional time series with *p* ≪ *n*.
- Central Limit Theorem (CLT):

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(x_i-\mu_i)\to^{d} N(0,\Sigma),$$

$$\mu_i=\mathbb{E}[x_i], \quad \Sigma=\lim_{n\to+\infty}\frac{1}{n}\sum_{i,j=1}^{n}\mathbb{E}[(x_i-\mu_i)(x_j-\mu_j)'].$$

See Rosenblatt (1956), Ibragimov and Linnik (1971), Wu (2005) among others.

Inference for low dimensional time series

Continuous mapping theorem:

$$h\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(x_i-\mu)\right) \rightarrow^{d} h(N(0,\Sigma)),$$

where $h : \mathbb{R}^{p} \to \mathbb{R}$ is continuous.

• Special cases:

$$h(z) = \max_{1 \le i \le p} z_i,$$

$$h(z) = z' A z,$$

where $z = (z_1, \ldots, z_p)'$ and $A \in \mathbb{R}^{p \times p}$.

CLT fails in high dimension

Portnoy (1986) showed that

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n (x_i - \mu_i)$$

no longer converges to the Gaussian limit when $\sqrt{n} = o(p)$.

• For a specific *h*, does

$$h\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(x_{i}-\mu_{i})\right)\rightarrow^{d}h(N(0,\Sigma)), \qquad (1)$$

still hold when $p \approx n$ or even $p \gg n$?

• For independent data, (1) holds when

$$h(z) = \max_{1 \le i \le p} z_i$$
 and $h(z) = z'Az$.

See Bai and Saranadasa (1996) and Chernozhukov et al. (2013).

Our main contribution

- Develop a Gaussian approximation result for high-dimensional, non-stationary, non-linear, non-Gaussian time series when $h(z) = \max_{1 \le i \le p} z_i$.
- Let y_i be a Gaussian sequence which preserves the autocovariance structure of x_i. Suppose E[x_i] = E[y_i] = 0.

Main result:

$$\rho_{n} := \sup_{t \ge 0} \left| P\left(\max_{1 \le i \le p} X_{n,i} \le t \right) - P\left(\max_{1 \le i \le p} Y_{n,i} \le t \right) \right| \to 0,$$

$$X_n = (X_{n,1}, \dots, X_{n,p})' = n^{-1/2} \sum_{i=1}^n x_i,$$

$$Y_n = (Y_{n,1}, \dots, Y_{n,p})' = n^{-1/2} \sum_{i=1}^n y_i.$$

Applications

- Multiplicity adjustment in large-scale inference
- Simultaneous inference for mean and covariance structure, white noise testing [Zhang and Cheng (2014); Zhang and Wu (2016); Chang et al. (2017)]
- Change-point detection [Dette and Gömann (2017)]

Smooth approximation

Note that

$$P\left(\max_{1\leq i\leq p} X_{n,i}\leq t\right)=\mathbb{E}\left[\mathbf{1}\left\{\max_{1\leq i\leq p} X_{n,i}\leq t\right\}\right].$$

Both the maximum function and the indicator function $\mathbf{1}\{\cdot \leq t\}$ are non-smooth.

• Approximate $\max_{1 \le i \le p} z_i$ by the "soft maximum"

$$F_{eta}(z) := eta^{-1} \log \left(\sum_{j=1}^{p} \exp(eta z_j)
ight), \quad ext{where } z = (z_1, \dots, z_p)'.$$

We have

$$0 \leq F_{eta}(z) - \max_{1 \leq i \leq p} z_i \leq eta^{-1} \log p.$$

• Approximate $\mathbf{1}\{\cdot \leq t\}$ by a sufficiently smooth function say $g(\cdot)$.

Moment match

• By the smooth approximation,

$$\left| \mathcal{P}\left(\max_{1 \le i \le p} X_{n,i} \le t \right) - \mathcal{P}\left(\max_{1 \le i \le p} Y_{n,i} \le t \right) \right|$$

$$\approx \left| \mathbb{E}g \circ \mathcal{F}_{\beta}(X_n) - \mathbb{E}g \circ \mathcal{F}_{\beta}(Y_n) \right|.$$

From now on, we write $g \circ F_{\beta}(\cdot)$ as $m(\cdot)$.

- How can we compare $\mathbb{E}[m(X_n)]$ with $\mathbb{E}[m(Y_n)]$?
- Two classical methods
 - Slepian-Stein smart path interpolation: **second moment match**.
 - 2 Lindeberg exchange method: third or higher moment match.

Slepian-Stein interpolation

• Smart interpolation:

٠

$$Z_n(t) = \sqrt{t}X_n + \sqrt{1-t}Y_n = \sum_{i=1}^n (z_{i,1}(t), \dots, z_{i,p}(t))',$$

where $\operatorname{var}(Z_n(t)) = \operatorname{var}(X_n) = \operatorname{var}(Y_n)$.

$$\mathbb{E}[m(X_n)] - \mathbb{E}[m(Y_n)] = \mathbb{E}[m(Z_n(1))] - \mathbb{E}[m(Z_n(0))]$$
$$= \int_0^1 \frac{\partial \mathbb{E}[m(Z_n(t))]}{\partial t} dt$$
$$= \sum_{i=1}^n \sum_{j=1}^p \int_0^1 \mathbb{E}[\partial_j m(Z_n(t))] \frac{\partial Z_{i,j}(t)}{\partial t} dt.$$

• We develop a new argument to analyze the RHS when *x_i* is a M-dependent time series.

Physical dependence

 Consider a p-dimensional random vector with the following causal representation:

$$\mathbf{x}_i := \mathcal{G}_i(\ldots, \epsilon_{i-1}, \epsilon_i),$$

where $\mathcal{G}_i = (\mathcal{G}_{i,1}, \dots, \mathcal{G}_{i,p})'$ and $\{\epsilon_i\}_{i \in \mathbb{Z}}$ are i.i.d elements.

Define

$$\theta_{k,j,q} = \sup_{i} (\mathbb{E}|\mathcal{G}_{i,j}(\mathcal{F}_i) - \mathcal{G}_{i,j}(\mathcal{F}_{i,i-k})|^q)^{1/q}, \quad \Theta_{k,j,q} = \sum_{l=k}^{+\infty} \theta_{l,j,q},$$

where

$$\mathcal{F}_i = (\dots, \epsilon_{i-1}, \epsilon_i),$$

$$\mathcal{F}_{i,i-k} = (\dots, \epsilon_{k-1}, \epsilon'_{i-k}, \epsilon_{i-k+1}, \dots, \epsilon_{i-1}, \epsilon_i).$$

M-dependent approximation

• Construct a M-dependent time series:

$$x_i^{(M)} = E[x_i | \epsilon_{i-M}, \epsilon_{i-M+1}, \dots, \epsilon_i].$$

• Derive a finite sample upper bound for

$$\left|\mathbb{E}[m(X_n^{(M)})] - \mathbb{E}[m(Y_n^{(M)})]\right|,$$

where
$$X_n^{(M)} = n^{-1/2} \sum_{i=1}^n x_i^{(M)}$$
.

• Quantify the M-dependent approximation error:

$$P(|X_n^{(M)}-X_n|_{\infty}>t)$$

where $|\cdot|_{\infty}$ is the I_{∞} norm.

Proof roadmap

Key result

Assume that

• High dimensionality:

$$p \lesssim \exp(n^b)$$
 for $0 \le b < 1/11$.

• Weak dependence:

$$\max_{1\leq j\leq p} \Theta_{k,j,oldsymbol{q}}\lesssim arrho^k \quad ext{for} \quad arrho<\mathsf{1},oldsymbol{q}\geq\mathsf{2}.$$

• Moment condition: one of the following two conditions holds

$$\begin{split} \max_{1 \leq i \leq n} \mathbb{E}(\max_{1 \leq j \leq p} |x_{ij}| / \mathfrak{D}_n)^4 &\leq 1, \quad \mathfrak{D}_n \lesssim n^{(3-25b)/32}, \\ \max_{1 \leq i \leq n} \max_{1 \leq j \leq p} \mathbb{E} \exp(|x_{ij}| / \mathfrak{D}_n) \leq 1, \quad \mathfrak{D}_n \lesssim n^{(3-17b)/8} \end{split}$$

Then

$$ho_n \lesssim n^{-(1-11b)/8}.$$

Key result (con't)

Dependence adjusted norm [Zhang and Wu (2016)]:

$$\omega_{j,q} = \max_{i} || ||\mathcal{G}_{i}(\mathcal{F}_{i}) - \mathcal{G}_{i}(\mathcal{F}_{i,i-j})||_{\infty}||_{q}, \quad \Omega_{M,q} = \sum_{j=M}^{+\infty} \omega_{j,q}.$$

Assume that

• High dimensionality:

$$p \lesssim \exp(n^b)$$
 for $0 \le b < 1/11$.

• Weak dependence + Moment condition:

$$\Omega_{M+1,q} \asymp M^{-lpha}$$
 for $lpha > (1+b)/(1-7b)$.

Then

$$ho_{\textit{n}} \lesssim \textit{n}^{-\textit{c}}, \quad \textit{c} > \textit{0}.$$

Nonstationary linear model

Nonstationary linear model:

$$x_i = \sum_{l=0}^{+\infty} \mathbf{A}^{i,l} \epsilon_{i-l}.$$

• Our assumptions are satisfied if

• sup_i max<sub>1
$$\leq j \leq \rho$$</sub> $||\mathbf{A}_{j,\cdot}^{i,l}||_2 \lesssim \varrho'$, for some $\varrho < 1$.

2 The components of ϵ_i are sub-exponential.

Numerical results

Figure: P-P plots comparing the distributions of $|X_n|_{\infty}$ and $|Y_n|_{\infty}$, where the data are generated from the time-varying VAR(1) model.

Estimating the covariance structure

• The Gaussian approximation theory says that

$$\left|\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(x_{i}-\mu_{i})\right|_{\infty}\approx^{d}|N(0,\Sigma_{n})|_{\infty},$$

where $\Sigma_n = \text{var} (n^{-1/2} \sum_{i=1}^n x_i)$.

• Subsampling estimator for Σ_n :

$$\hat{\Sigma}_n = \frac{M}{n-M+1} \sum_{i=1}^{n-M+1} \left(\frac{1}{M} \sum_{j=i}^{i+M-1} x_j - \bar{x} \right) \left(\frac{1}{M} \sum_{j=i}^{i+M-1} x_j - \bar{x} \right)',$$

where $1/M + M/n \rightarrow 0$.

Approximate the distribution of

$$\left|\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(x_i-\mu_i)\right|_{\infty}$$
 by that of $|N(0,\hat{\Sigma}_n)|_{\infty}$.

Testing second-order stationarity

Consider the null hypothesis

 $H_0: \mathbb{E}[x_{i+h}x_i'] = \Gamma(h) \quad \text{for } 0 \le h \le H \text{ and all } i.$

Define

$$\hat{\Gamma}^{(k)}(h) := (\hat{\gamma}_{i,j}^{(k)}(h))_{i,j=1}^{p} = \frac{1}{n} \sum_{i=1}^{n-h} \phi_{k} \left(\frac{i-1}{n} \right) x_{i+h} x_{i}',$$

where $\phi_k(\cdot)$ is a sequence of orthonormal basis on [0, 1] such that

$$\int_0^1 \phi_k(u) du = 0, \quad 1 \le k \le K.$$

• Our statistic:

$$\mathcal{G} = \sqrt{n} \max_{1 \le i,j \le p} \max_{0 \le h \le H} \max_{1 \le k \le K} \max_{1 \le k \le K} |\hat{\gamma}_{i,j}^{(k)}(h)|.$$

Testing second-order stationarity (Con't)

		<i>p</i> = 20		<i>p</i> = 30		<i>p</i> = 40	
	п	10%	5%	10%	5%	10%	5%
H_0	120	13.6	4.9	11.1	4.4	9.9	3.5
	240	11.7	5.1	9.4	3.4	7.0	3.1
Ha	120	64.4	40.1	59.9	36.1	60.9	35.2
	240	100.0	99.7	100.0	99.9	100.0	99.9

Table: Rejection percentages for testing second-order stationarity. Under the null, the data are generated from a VAR(1) model. Under the alternative, the data are generated from a time varying VAR(1) model. The actual number of parameters is equal to $p^2 \kappa H$ (i.e., 4800, 10800, and 19200 for p = 20, 30, 40 respectively).

Conclusion

- Develop a Gaussian approximation theory for maxima of sums of dependent random vectors.
- A modified Stein's method for dependent data and M-dependent approximation.
- Future directions:
 - Improve the rate on p using Lindeberg exchange method [Deng and Zhang (2017)].
 - 2 Develop a rigorous bootstrap theory for locally stationary time series.
 - Inference for high dimensional locally stationary time series.

Thank you!