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Parallel Computing on Big Data

I In the parallel computing environment, a common practice is to distribute a
massive dataset to multiple processors, and then aggregate local results
obtained from separate machines into global counterparts;

I The above Divide-and-Conquer (D&C) strategy often requires a growing
number of machines to deal with an increasingly large dataset;

I This computational consideration leads to the emergence of the so-called
“Splitotics Theory,” a type of “Big Data Theory.”

A Basic Question from Statisticians

How many machines do we really need in parallel computing from a statistical
theory perspective?

I In this poster, we address this basic, yet fundamentally important, question
by carefully analyzing statistical versus computational trade-off in the above
D&C framework;

I In particular, an intriguing phase transition phenomenon is discovered for the
number of deployed machines that ends up being a simple proxy for
computing cost, for both statistical estimation and testing.

Divide and Conquer Strategy

A Flowchart of D&C

Nonparametric (univariate) regression model:
Y = f0(Z ) + ε.
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A Plot for Computing Time
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Figure: Computing time for f̄N when N = 1024 as s diverges

Statistical-and-Computational Tradeoff

A Plot for Mean Squared Error
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Figure: Mean-square errors of f̄N under different N as s diverges

Our Major Goal
I We would like to know how fast s is allowed to diverge (w.r.t. N), say s = Na,

such that the aggregated estimate f̄N is minimax optimal or nonparametric
testing based on f̄N is minimax optimal;

I We will show that there indeed exists a sharp upper bound for s, below which
statistical optimality is achievable and above which statistical optimality is
impossible. The sharpness is important in that it captures the intrinsic
computational limit of the D&C algorithm.

Computational Limit I: Statistical Estimation

I Observe samples from the following model
yl = f (l/N) + εl, l = 0,1, . . . ,N − 1,

where εl ’s are iid zero-mean r.v.s with unit variances;
I The N samples {yl, l/N}N−1

l=0 are distributed to s machines with each machine
being assigned n samples. We want the N covariates tl = l/N to appear in s
machines as “evenly” as possible over the entire interval [0,1];

I At each machine, we obtain a smoothing spline sub-estimate as

f̂j = arg min
f∈Sm(I)

1
n

n∑
i=1

(Yi ,j − f (ti ,j))2 + λ‖f‖2
H,

where 〈f ,g〉 is a roughness penalty and λ > 0 is a smoothing parameter;
I MSEf0(f̄N) = E{‖f̄N − E{f̄N}‖2

2} + ‖E{f̄N} − f0‖2
2.

A Graphical Illustration
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Figure: Plots of ρ1, ρ2, ρ3 versus a, indicated by thick solid lines. Here, N−ρ1 (N−ρ2) indicates the upper (lower)
bound of squared bias of f̄N, and N−ρ3 indicates the upper bound of variance of f̄N. Phase transition occurs at
a = 2m/(2m + 1). Lower bound result is obtained over {f0 ∈ Sm(I) : ‖f0‖H ≤ C}, i.e., “worst scenario” consideration.

A sharp upper bound s∗ � N2m/(2m+1) is established for optimal estimation.

Computational Limit II: Statistical Testing

I Test the following simple hypothesis:
H0 : f = 0 v.s. H1 : f ∈ Sm(I)\{0};

I Define a Wald-type test statistic:
TN,λ = ‖f̄N‖2

2;

I Our testing rule is thus
φN,λ = I(|TN,λ− µN,λ| ≥ z1−α/2σN,λ),

where µN,λ and σ2
N,λ are mean and variance of TN,λ, respectively;

I Testing consistency (Type I error) essentially requires no condition on s as
long as N →∞. In other words, s can be either fixed or diverge at any rate;

I However, the (non-asymptotic) power of our proposed test depends on s in a
very subtle manner. Specifically, the separation rate achieves its minimal
value N−2m/(4m+1) under the following sharp upper bound

s∗∗ � N (4m−1)/(4m+1).

Future Works

Conjecture: is D&C a new form of tuning?
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Figure: Two lines indicate the choices of s � Na and λ � N−b, leading to minimax optimal estimation (left) and
minimax optimal testing (right). Whereas (a,b)’s outside these two lines lead to suboptimal rates.

A “Theoretical” Suggestion

When applying D&C to massive data, we may allocate machines as:
I Distribute to

s � N2m/(2m+1)

machines for obtaining an optimal estimate;
I Distribute to

s � N4m/(4m+1)

machines for performing an optimal test.

Practical Formulae to be Developed...

I We show that λ should be chosen in the order of N even when each
subsample has size n. Hence, the standard generalized cross validation
method does not work here;

How to select λ that is scaled to N in practice?
I So far, we can only give a theoretical upper bound for s.

How to pick the number of machines in practice using data-depdent method?
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