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Abstract

We consider the efficient estimation of the semiparametric additive transformation model
with current status data. A wide range of survival models and econometric models can be
incorporated into this general transformation framework. We apply the B-spline approach to
simultaneously estimate the linear regression vector, the nondecreasing transformation func-
tion, and a set of nonparametric regression functions. We show that the parametric estimate
is semiparametric efficient in the presence of multiple nonparametric nuisance functions.
An explicit consistent B-spline estimate of the asymptotic variance is also provided. All
nonparametric estimates are smooth, and shown to be uniformly consistent and have faster
than cubic rate of convergence. Interestingly, we observe the convergence rate interfere phe-
nomenon, i.e., the convergence rates of B-spline estimators are all slowed down to equal the
slowest one. The constrained optimization is not required in our implementation. Numerical
results are used to illustrate the finite sample performance of the proposed estimators.

Key Words:B-spline; Consistent variance estimation; Current status data; Efficient estimation;
Semiparametric transformation models

1 Introduction

We consider the efficient estimation of the following semiparametric additive transformation
model:

d
H(U)=Z'8+ ) hi(W)) +e (@)
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whereH (-) is a monotone transformation functidn,(-)'s are smooth regression functions (with
possibly different degrees of smoothness), ahds a known distributiod’(-) with supportR.

A wide range of survival models and econometric models can be incorporated into the above
general transformation framework, e.gduang & Rossinil199% Shen 199§ Huang 1999
Banerjee et /2006 2009. In particular, the modellj can be readily applied to a failure time

T by lettingU = log T'. We can obtain the partly linear additive Cox model, iHuang(1999,

by assuming’(s) = 1 —exp(—e®) andH (u) = log A(e"), whereA is an unspecified cumulative
hazard function. Specifically, the hazard functiorfofgiven the covariateg:, w), has the form

d
At|z, w) = a(t) exp(f Zﬁ w;)) (2)

wherea(t) is the baseline hazard functiof,= —3 andh; = —h;. However, if we change the
form of F'(s) toe®/(1 + e°), the model L) just becomes the partly linear additive proportional
odds model.

Motivated by the close connection with survival models, we focus on the current status data
in this paper which arises not only in survival analysis but also in demography, epidemiology,
econometrics and bioassay. More specifically, we obs&rve (V, A, Z, W), whereV € Ris a
random examination time anl = 1{U < V'}. We assume thdf andV are independent given
(Z,W). Under current status data, the mod#l is also related to the semiparametric binary
model studied in econometrics. Using the link functiBf), we assume that the probability of
A =1, given the covariate§Z, IV, V), is of the expression:

P(A =1|Z,W,V) <52 zd: )). ()

Note thaiBanerjee et al(200€) andBanerjee et al(2009 have done a great deal of statistical
estimation and hypothesis testing on the mo@gl({ithout ﬁj terms) by assuming’(-) to be
log-log function and logistic function, respectively. An extensive discussions on the relation
between'8) and survival models can be foundDoksum & Gaskd199(). Recently a similar
transformation model has been consideredCtimen & Tong(2010) but for theright censored
data They showed that the monotone transformation function is root-n estimable which will
never be achieved in the case of current status data. This is the key theoretical difference between
the two types of survival data.

In this paper, we employ the B-spline approach to simultaneously estimate the pector
monotoneH and smooth:;’s. The corresponding estimates are denoteﬁ af andh In
contrastMa & Kosorok (20054 apply the penalized NPMLE approachf)) (with d = 1) which
yields a non-smooth step functidd and the penalized estimate Our B-spline framework
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has the following theoretical and computational advantages over the existing penalized NPMLE
approach:

1. Our B-spline estimaté/ is smooth and uniformly consistent. Howevef,is always dis-
continues (regardless of the smoothness of its true funéfijrand has a bias which does
not vanish asymptotically; see Page 2258at & Kosorok (20058. We can also obtain
the faster rate of convergence fiirthan that forA, i.e.,0p(n~'/3), by using the B-spline
estimation approach. Therefore, we expect more accurate inferences drawh from

2. We are able to give an explicit B-spline estimate for the asymptotic varianﬁeba‘sed
on which the asymptotic confidence interval®tan be easily constructed. Under very
weak conditions, its consistency is proven. However, the block jackknife appro®dd in
& Kosorok (20054 requires more computation, and is even not theoretically justified.

3. Our spline estimation algorithm requires much less computation than the isotonic type
algorithm used iftMa & Kosorok (200538 since the order of jumps in the step function is
supposed to be much larger than the order of knots we choose for estiffaéindh;’s.

In contrast withtHuang(1999, we deal with the current status data rather than the right censored
data, and thus we also need to estimate the monotone transformation function which has been
proflled out in their partial likelihood framework. Despite the non-root-n convergence rates of
H andh 's, we are able to show that is root-n consistent, asymptotically normal and semi-
parametric efficient. We derive the efficient information bound by taking the general two-stage
projection approach frordasieni(1992) which is needed due to the involvement of multiple
nonparametric functions in semiparametric models. Interestingly, we observe the convergence
rate interfere phenomenon for the B-spline estimators, i.e., the convergence rates of nonpara-
metric estimators are all slowed down to equal the slowest one. Moreover, by approximating
log H with the B-spline, we can avoid the monotonicity constraint in the implementation, which

is usually required in the literature, e.ghang et al(2010).

The remainder of the paper is organized as follows. Sedidascribes the B-spline esti-
mation procedure. The asymptotic properties such as consistency and convergence rates of the
estimates are obtained in Secti@nThe asymptotic distribution of the parametric component is
studied in Sectiod, and its efficient information and the corresponding explicit B-spline esti-
mate are given in Sectidh Simulation studies are presented in Secah We close with an
appendix containing technical details.



2 Semiparametric B-spline Estimation

2.1 Assumptions

We first define some notations. For any veatpp®? = vv’. The notationsz, and < mean
greater than, or smaller than, up to a universal constant. We ddnote B,, if A, < B, and

A, 2 B,. The notation®,, andG,, are used for the empirical distribution and the empirical pro-
cess of the observations, respectively. Furthermore, we use the operator notation for evaluating
expectation. Thus, for every measurable functfcend true probability”,

Pf =3 31X, Pr= [ faP and G = =37 (/(X) - Pi).

We next present some model assumptions.
M1. U andV are independent give¥, ).

M2. (a) The covariategZ, W) are assumed to belong to a bounded subsitif, say|0, 1]’ x
0, 1]¢. The support foll/ is [I,, u,], where—co < [, < u, < +00; (b) The joint density
for (Z,V,W) w.rt. Lebesgue measure stays away from zero, and the joint density for
(V, W) stays away from infinity.

M3. E(Z — E(Z|V,W))®? s strictly positive definite.

M4. The residual error distributiofi’(-) is assumed to be known and has supfiartDenote
the first, second and third derivative Bfas f, f and f, respectively. We assume that (a)
(f(w) V |[f(w)| V|f(u)]) < M < oo over the wholeR and f(u) stays away from zero in
any compact set dR; (b) [f2(v) — f(v)F(v)] A [f2(v) + f(v)(1 — F(v))] > 0, for all
v € R.

Since we employ the smooth B-spline estimation rather than the penalized NPML estimation,
our residue error Condition M4 is much less restrictive than thstar& Kosorok(20059. Note
that Condition M4(b) ensures the concavity of the functier § log F'(s)+(1—0) log(1—F(s))
foro =0,1.

It is easy to verify that the above Condition M4 is satisfied in the following two general
classes of residue error distribution functions after some algebra.

F1. F(s) = y[20(y1)]7' [° exp(—|t|")dt for v > 1 is a family of distributions, which
includes the standard normal distribution after appropriate rescaliag ). This corre-
sponds to the probit mod&lalbfleisch & Prentic€1980).



F2. F(s) = 1 —[1 + ~e*]~'/7 is a Pareto distribution with parametere (0, c0) and cor-
responds to the odds-rate transformation family,3abrowska & Doksun§1988&b). It
includes the following two well-known special cases:

(a). Giveny — 0, it yields the extreme value distribution, i.€(s) = 1 — exp(—e®),
which corresponds to the complementary log-log transformatiorB3agerjee et al.
(2006);

(b). Given~ = 1, it gives the logistic distribution, i.e.F'(s) = ¢*/(1 + ¢*), which
corresponds to the logit transformation, 8smerjee et al(2009).

2.2 B-spline Estimation Framework

From now on, we change the signspand#h; for simplicity of exposition. In addition, we re-
centerH (v) to H(v) — H(l,) so thatH (l,) = 0 for the purpose of identifiability. The additional
parameterH ({,) will be absorbed into the vectat, i.e., the first coordinate of is set as one.

Given a single observation at= (v, d, z, w), the log-likelihood of modelX) is written as

}

H(v) + 'z + Z hj(wj>] } - @4

g(ﬁ,hl,...,hd,H) = 510g{F

H()+ 'z + Z h;(w;)

+(1—5)10g{1—F

We assume that € B, which is a bounded open subsetRf, and that its true valug, is
an interior point of3. Before specifying the parameter spacesfoandh;'s, we first introduce
the Holder ballH’()), which is a class of smooth functions widely used in the nonparametric
estimation, e.g.Stone (1982 1985. For anyf € H.()), itis J < r times continuously
differentiable on)’ and its.J-th derivative is uniformly Holder continuous with exponent=
r—Je(0,1],ie.,

sup ’f(J)(yl) - f(J)(yz)’ <e.

Y1,y2€V,y17Y2 ’yl - yQ‘K
The functions in the Holder ball can always be approximated by a basis expansion, i.e.,

F(£) = > wBi(t) = v'B(t), (5)
k=1

wherey = (y1,...,7x) andB(t) = (Bi(t),...,Bk(t))’. Actually, if the degreel of the
B-spline satisfieg > (r — 1), we have

If =7Blle < K77 asK — oo, (6)
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where| - ||.. denotes the supremum norm..
Assume the following parameter space Condition P1 for the snigoth

P1. Forj = 1,...,d and some knowm;, we assume that the parameter space:fois H,,
where

1
Hj = {hj : hj S Hz; [0, 1] with i > 1/2 and/ hj(wj)dwj = O} ,
0
and that the corresponding spline space is

1
Hjn = {h] : h](w) = ’}/;B](w) with ”h]Hoo < Cj and/ hj(wj)dwj = 0} ,
0

based on a system of basis functidis= (Bj1, ..., B;x,)’ of degreel; > (r; — 1).

As seen from the previous examples, it is reasonable to assun¥éthas differentiable and
strictly increasing ovefl,, u,], i.e., H(v) > Cy, > 0. Considering thafi(l,) = 0, we can thus
write H(v) = fl” exp(g(s))ds, whereg(v) = log H(v) is well defined. Such reparametrization
can get around the strict monotonicity and positivity constraintd pénd thus avoids the con-
strained optimization in the computation. The parameter space Condition B2sfepecified
below.

P2. For some knowrm,, we assume that the parameter space isrg, where
G=1{g:9€H[l,,u,) withr, > 1/2},
and that the corresponding spline space is
Gn =1{9:9(v) =7Bo(v) and||glle < co}
based on a system of basis functi@s= (By, . .., Bok,) of degreei, > (ro — 1).

Similarly, we defingj!, = {H(v) = fl” exp(g(s))ds : g € G,}. By some algebra, we can show
that I € Hzg“[lv,uv] for somec), < oo.

REMARK 1. Note that in the theoretical proofs and numerical calculations the exact values
of ¢; are not necessary. Instead, only the boundedness condition, equivalently the compactness
of parameter spaces and spline spaces, is needed. Here we assume this boundedness condition,
which can be relaxed by invoking the chaining arguments, only for simplifying our theoretical
derivations.



In this paper, we propose the B-spline approach to estiffatnd ;'s as follows. Let
A=DBxGxI_H;andA, = B x G, x I9_ H;,. Denotea as(3', g, hy, ..., hy) and its
true valuewy as (3, g0, P10, - - -, hao)’s Wheregy(-) = log Hy(+). The log-likelihood @) for the
observation can thus be reparametrized as

Bz + /ZU exp(g(s))ds + Z hj(wz‘j)] } : (7)

=1

d

Bz + /lvi exp(g(s))ds + Y hy(wi;)

J=1

The corresponding B-spline estimaiés defined as

&= arg max 2 li(a). (8)

We can also writeéx = (3’,@,%1, . ,ﬁd)’ = (B\’,%BO,%Bl, ...,7,B4)’. Then, the estimate

H(v) = fl” exp(7yBo(s))ds. Some tedious algebra reveals that the Hessian matfix®of w.r.t.

(B 7,715 - - -»74) is indeed negative semidefinite under Condition M4(b) which guarantees the
existence ofx. See more discussions on the computation feasibility in the simulation section.
The above estimation procedure also applies to other linear sieves approximating the Holder ball
(or more generally Holder space), e.g., wavelets.

3 Consistency and Rates of Convergence

In this section, we show that our B-spline estimate is consistent and the convergence rate of each
nonparametric estimate appears to interfere with each other. Define

d
d(ov, a0) = |18 = Boll + I|H — Holl+ Y _ 12 — hjolla,
j=1

where|| - ||, is the L, norm. Now we give the main Theorem of this section.

THEOREM 1. Suppose that Conditions M1-M4 and P1-P2 hold.Klf/n — 0 for j =
0,1,...,d, then we have

d(a, ag) = op(1). 9)

More specifically, we further prove that

d(a, Oég) = OP (0112?2(6[ {KJ_T7 V 4 /K]/n}) . (10)
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If we further require that; < n'/®r+Y for j =0, ..., d, then we have
d(@, ag) = Op(n~"/*), (11)
wherer = Hlil’logjgd{Tj}.

Under the right censored datduang(1999 derived similar convergence rate resi@) in
the partly linear additive Cox model by assuming eqyal According to Theorert, the smooth
H can achieve the rate of convergence, i&:(n~"/+1), no slower tham!/3-rate derived in
the penalized estimation context, 3da & Kosorok (20053, when we assume tha andhy's
are all at least continuously differentiable, i.e.> 1. More importantly, we can further show
that H is uniformly consistent, i. e||,ﬁ Hyl|s = 0op(1), by applying Lemma 2 iil€hen & Shen
(1999 that || f||oe < ||f||i7;/L2;"jd for any f € H’[a,b]* and noting thatid, H, € H?*'[1,,, u,]
for somec|, > 0. '

The above theorem also holds when we employ the constrained monotone B-spline to approx-
imate Hy, i.e.,7,Bo(v) =~ log H(v) with 791 < 702 < ... < yk,.- However, such constrained
optimization usually requires additional computational effort,Zeang et al(2010).

REMARK 2. From the above Theoref) we observe the interesting convergence rate inter-
fere phenomenon, i.e., the convergence rate for each B-spline estimate is forced to equal the
slowest one. liMa & Kosorok (20059, they also show that the convergence rate of the penal-
ized estimaté: is unfortunately slowed down 0p(n~/3) by the NPMLEH regardless of the
smoothness degree kaf. One possible solution in achieving the optimal rate for each nonpara-
metric estimate is to extend the most recent mixed rate asymptotic iIBsulthenkd2008 to
the semiparametric setup.

Since we assume that > 1/2, the convergence rate given ifilj is alwaysop(n=/4).
Such a rate is usually fast enough to guarantee the regular asymptotic beha?r,id:eqf\/_-
consistency and asymptotic normality. Indeed, we will improve the current suboptimal Eate of
in (11) to the optimal/n rate, and further show th&tis semiparametric efficient in next section.

4 Weak Convergence of the Parametric Estimate

In this section, we study the weak convergence of the spline estﬁmatee presence of multiple
nonparametric nuisance functions. We first calculate the semiparametric efficient information
based on the projection onto the nonorthogonal sumspace.

Let

o 1—90
@) =10 (55~ =i )
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wheref(z,v,w) = 'z + H(v) + Z‘j:l h;(w;). Denoted, as the true value of. The score
functions (operators) fa#, g andh; are separately calculated as

(p(X;0) = ZQo(X), (12)

lola)(X;0) = Ulvexp(g(S))a(S)ds Qo(X), (13)

éhj[bj](X;Oé) = bj(;Vj)Qe(X)- (14)

We assume that € LQ(H = [ a’(s)dH(s) < oo} andb; € LY(w;) = {b; :

fo (w;)dw; = 0 and fo (w; dwj < 00} SO that all the score functions defined above are
square integrable.

To calculate the efficient score functi@;a, we need to find the projection ai}g onto the
sumspacel = A, + Ay, + -+ + Ay, whered, = {{,[a] : a € Ly(H)} andA,,, = {£,,[b;] :
bj € L3(w;)}. For simplicity, we definéﬁ(X;.ozo) and/s(X; @) asls, and/;, respectively. The
same notation rule applies tg[a](X; ) and/y, [b;](X; ). We define

Ba(X:0) = Ba(X:0) = al)(X;0) = D by, [BI(X: ),

wherea' = (al,...,d}) andb] = (b!

f. bl And (af, bl bl is the minimizer of

2
(ar,big, ..., bax) — E {[éﬁo Cgolar] Zghjo ik }

fork=1,...,1. Similarly, denote%(X; ap) andZB(X; Q) aszﬁo andZB, respectively. By taking
the two-stage projection approach fr@asieni1992), we have

_ ) it 2

i) = (2= 0w) - et ) 0u () 15)
whereb! (W) = 37| bL(W;) satisfies

. { 25y =BG Q;Objk(wj)} o (16)

for everyb;, € LY(w;), j = 1,...,d andk = 1,...,1. By slightly modifying the proof of
Lemma 4 inMa & Kosorok (20059, we can show that the above nonorthogonal projection is
well defined andf(-) exists by the alternating projection Theorem A.4.Biokel et al.(1993.
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Definell; andIl, as the projection operators

BV W)@, = w)
T T RO W, = w,]
[QGO‘ J w.]]

Elg(V,W)Q5,|V = v]
EQ3 IV =1

g —

respectively. Define

E[ZQ30|V:U7W:UJ] E[Q§0|V:U,Wj:’wj']

D N =
(U7w) E[ng‘v =, W — w] ) S(Ua w]) E[ng‘wj — /LU]] 9
o Q3w =w] 7 T E[Q3,[V =

We say a functiory (s, t) belongs to a uniform Holder bal’.(S x 7) in ¢ relative tos if it is
J < r continuously differentiable w.r.t.and its/-th partial derivative satisfies, with=r — J,

(J) (/)
t t
sup sup i t) = i (s o)l <ec.

SES ti1#to |t1 - t2|ﬁ B

DefineSf (v, w;) = S(v, w;) fuw, (v, w;), T f (wi, w;) = T(ws, w;) fov,yw, (ws, w;) andU f (w;, v) =
U(wj, v) fw,; v (wj, v), where fyw,, fw,w, and fy, ) are the conditional densities of given
W;, W; givenW; andWW; givenV w.r.t. Lebesgue measure, respectively.

Here, we assume some model assumptions implying thatb@pmnd aL belong to some
Holder ballsforanyj = 1,...,dandk =1, ..., 1.

M5. We assume thafl; D (v, w)], € HZ[0,1], Sf(v,w;) € H ([Ly, uy] x [0,1]) in w; relative
to v and T f(w;, w;) € HZ[0,1]* in w; relative tow; for some0 < ¢; < oo andj =
1,....d.

M6. We assume thdtl, D (v, w)], € H2 [, u,] andU f(w;,v) € H2T(0,1] x [, u,]) in
v relative tow; for some0 < ¢, < oo.

Note that we can simplify f (v, w;) (T f(w;, w;)) to S(v,w;) (T (w;, w;)) in Condition M5 and
simplify U f(w,, v) to U(w;, v) in Condition M6 when we assume thatandV are independent
and thatiV is pairwise independent.

THEOREM2. Suppose that Conditions M1-M6 and P1-P2 holdk|f= »'/2+1 and 1, is
invertible, then we have

> 1 717 d =
VB =) = 72 2T T (X0 + op(1) = NOI) (17)
wherel, is the efficient information matrix defined E@BOZ’BO.
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5 B-spline Estimate of the Efficient Information

In this section, we give an explicit B-spline estimate for the efficient information as a by-product
of the establishment of asymptotic normalityﬁ)flndeed, it is simply the observed information
matrix if we treat the semiparametric model as a parametric one after the B-spline approximation,
i.e.,’H; = H;, andG = G,,. Specifically, we treat;(«) defined in () as if it were a parametric

likelihood gz(ﬁ, Yo, V1, - - - ,"}/d).
We construct the corresponding information estimatof ro, 1, . . ., 72)"

~ (Iy T
J o <]11 -/[\12) 7
o e (H‘Z;l:o K;) X(H‘Z?:O K;j)

wherel, = 27" | A;(X; @) AL(X; @) /n, for j,k = 1,2, and
A(X;a) = ég(X;a),
) ) . ) /
A2<X7 Oé) = (gg[B()l], e ’Eg[BOKOLEiu [BH], . 7£hd[Bde]) .

The parametric inferences imply that the information estimatogfisrof the form

=T — Lol Inn. (18)
Some calculations further reveal that
®2
, (19)

f:[@n[ég—' 1VBo] — Z@ (31)B;]

where[7!]x,x = (Vi,....70) for j = 0,1,...,d and (v, ... 75" = I;'In1; wherel,
represents thévector with itsk-th element as one and others as zeros. We will i€e&s our
estimator forl,.

We need the following additional assumption for Theo@m

M7. We assume that

2

B sup | [ oxplols) ~ explaalsan(s)ds| <1 - Al

akegn

THEOREM3. Under Conditions M1-M7 and P1-P2, we haie> T;.

Note that the consistency of the similar random-sieve efficient information estimate was also
proven in the linear regression models with current data; see Theorei®@t&n(2000).
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6 Numerical Results

6.1 Simulations

We perform a Monte-Carlo study to assess the finite-sample performance of our proposed method.
To compare with the penalized NPMLE Ma & Kosorok (20053, we adopt the same setting

used in their paper. We simulate the current status data from the partly linear additive Cox model
which is a special case of general transformation model. We chld¢se = log A(e*) where

A(u) = e*(exp(u/3) — 1) with ky = 0.06516. The errorse follow an extreme value distri-

bution with FI(s) = 1 — exp(—e®). The regression coefficients = 0.3 andg, = 0.25. The
covariateZ; is Uniform[0.5, 1.5] andZ, is Bernoulli with success probability5. We chooséV’

as Unifornjl, 10] andh(w) = sin(w/1.2 — 1) — ko. Censoring times are standard exponential
distribution conditional on being in the intervl.2,1.8]. The sample sizes are = 400 and

n = 1600. We simulatet00 realizations for both sample sizes.

In practice, the location and the numbers of knotsfioandh; need to be determined. For
simplicity, we will use the equal-spaced knots for all functions. Common model selection meth-
ods such as the Akaike information criterion (AIC), and the Bayesian information criterion (BIC)
can be employed for selecting the number of knots. In this paper, we detefiping, ..., K,

by the AIC, given by
d

AIC = —2&&(&) +2(6+ ) K))

In our simulation, we use a quadratic spline to approximate both funatiand functiong in
H. Then,AIC = —2%"" | (;(&) + 2(K, + K1 + 2). Based on our experiences, it is generally
adequate to choose less than ten knots to achieve reasonable approximation, providaddhat
H are not overly erratic. Figurgshows the AIC scores under different combination&gfand
K for one realization of the simulation with the sample size 1600. It shows that the optimal
choices forkK, and K; areb and5, respectively. The estimatédand H with various values of
Ky and K are plotted in Figur@. In the left panel of Figur2, we fix K, = 5 and plot the
estimatedh with K; = 3,5,10. When K is small (e.g.,K; = 3), there seems be to a big bias
in our estimator. On the other hand, wh&n is large (e.g.Kk; = 10), the estimator displays a
wiggly behavior. In the right panel of Figu2 we fix K; = 5 and plot the estimatel with
Ky = 5,7,10. As the number of knots is increasing, the estimaiedhows a similar wiggly
shape. Hence, the numbers of knots should be chosen with caution. It is worth noting that the
selected value®(y, K1, ..., K ; based the AIC criterion can be regarded only as the minimum
numbers of knots required. They may not be the optimal choices since the concept of optimality
is not well defined here. Sé&e et al.(2009 for similar discussions.

Simulation results show that our B-spline estimation procedure performs quite well in the
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Table 1: Monte Carlo results for the partly linear Cox model with current status data based on
400 replicates

Sample size00 Sample sizd 600

B Bias 0.0318 0.0100
SD 0.2919 0.1246
ESD 0.3102 0.1325
Coverage 0.9620 0.9690
ESD-WB 0.3547 0.1575

3,  Bias 0.0168 0.0074
SD 0.1533 0.0797
ESD 0.1612 0.0803
Coverage 0.9710 0.9680
ESD-WB 0.1836 0.0936

Joint Coverage 0.9620 0.9550

SD: Standard error; ESD: Estimated standard error; ESD-WB: Estimated standard error from the
weighted bootstrap method

semiparametric transformation model. The bias and standard errors of the spline estimates of
[, and 3, are given in Tablé. The table shows that the sample biases of kﬁ)tbndﬁg are
small. The ratio of the standard errors for the two sample sizes is cl@satresult consistent
with a y/n-convergence rate fq?l and 32. The estimated standard errors frob8) (denoted as
ESD) are also displayed in Tatllewhich are very close to the simulation results. Although our
proposed method tends to overestimate the standard error slightly but the overestimation lessens
as sample size increases. We also compare our results with the weighted bootstrap method in
Ma & Kosorok (2005F). The weights are from the exponential distribution with mean one.
The estimated standard errors are also similar to the results obtained using our explicit B-spline
estimate. The 95% confidence interval constructed fib8) generally have coverage close to
the nominal value. Histograms 8{ and@ are shown in Figur8. It is clear that the marginal
distributions ofBl and@ are Gaussian. The left panel of Figirdisplays the spline estimate of
h(w) and the monotone estimatgis given in the right panel of Figu4 The dashed line is the
true function, the solid line is the average estimate duérrealizations, and the dash-dotted line
is the 95% pointwise confidence band fdww) or H(v) when we know the true model, which is
obtained by takin@.5 percentile and7.5 percentile of thes¢00 estimates at each or v.

As suggested by one of the referees, we also perform a Monte-Carlo study by including
two nonparametric functions in the model. Under the same setting as in the last study, the
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Histgram of BZ

Histgram of [S‘

h(w)
H(u)

Figure 4:Left: Estimate and pointwise confidence interval foiRight: Estimate and pointwise
confidence interval forr/. The solid line is the average estimate oxé0 realizations from
sample sizen = 1600, and the dashed line is the true function. The dash-dotted lines are the

95% pointwise confidence interval.
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Figure 5:AIC scores under different combinations 8§, K1, and K,

two nonparametric functions atg(w;) = sin(w;/1.2 — 1) — ko with w, following a uniform
distribution on[1, 10] andhy(wy) = 3w3 — 1 with ws, following a uniform distribution o—1, 1.
Figure6 shows the AIC scores under different combination&'gf X; and K, for one realization
of the simulation with the sample size= 1600. For illustration, we only plot two choices &f
where the top surface is fdtf, = 10 and the bottom surface is féf, = 4. The optimal choice
by the AIC criterion is(K,, K1, K5) = (4,5, 3). The spline estimates &f,, h, and H under the
optimal number of knots are displayed in Figi;eand the dotted lines are the true functions.

To compare our spline based method with the penalized methigid i& Kosorok (20054,
there are four obvious advantages of our method. First, the computational cost of our spline esti-
mateH is much less expensive than that useMem& Kosorok (20053, i.e. the cumulative sum
diagram approach. This is because the number of basis B-spline#, és, often taken much
smaller than the sample sizethus the dimension of the estimation problem is greatly reduced.
Secondly, our estimate of the transformation functidns smooth with a higher convergence
rate. We obtain a narrower confidence interval forshown in the right panel of Figur4.
Thirdly, we can obtain an explicit consistent estimatéiowever, the block jackknife approach
proposed irMa & Kosorok (20054 is not theoretically justified. At last, we do not require the
constrained optimization in our implementations.
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Figure 6:Estimates of;, h, and H. The dotted lines are true functions.

Table 2:The estimates and their corresponding estimated standard errors for the parametric part
for the calcification data

extreme value distribution logistic distribution

e} —0.1870 —0.2562
ESD(:) 0.2322 0.2119
B 0.3502 0.3573
ESD(5,) 0.3481 0.3280

ESD: Estimated standard error

6.2 Application: Calcification data

We illustrate the proposed method in a dataset from the calcification studst al. (200]) in-
vestigated the calcification of intraocular lenses, which is an infrequently reported complication

of cataract treatment. Understanding the effect of some clinical variables on the time to calcifi-
cation of the lenses after implantation is the objective of the study. The patients were examined
by an ophthalmologist to determine the status of calcification at a random time ranging from
zero to thirty six months after implantation of the intraocular lenses. The severity of calcification
was graded into five categories ranging from zero to four. In our analysis, we simply treat those
with severity> 1 as calcified and those with severity 1 as not calcified. This dataset can be
treated as the current status dataset because only the examination time and the calcification status
at examination are available. The covariates of interest inciydacision length,Z, gender ()
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Figure 7: The spline estimates df(w) and H (v) under two different assumptions of the error
distribution: extreme value distribution (solid) and logistic distribution (small dashes).

for female andl for male), and/V age at implantation/10. The original dataset Biz&srecords.

We remove the one record with missing measurement, resulting the sample=si2&8. This

dataset has been studied Xue et all(2004, Lam & Xuel(2005, andMa(2009. Xue et al.

(2009 andLam & Xue (2005 modeled the event time by the log-transformation. A straightfor-
ward estimation of the hazard function is not availaiMe. (2009 used the cure model to fit the

data, and assumed a generalized linear model for the cure probability. For subjects not cured, the
linear and partly linear Cox proportional hazards models are used to model the survival risk.

We fit this dateset using the semiparametric additive transformation model. We assume the
error distributionF' to be one of the two distributions: extreme value distribution and logistic
distribution. We approximatk andlog H by quadratic splines. The optimal choices of knots for
h andlog H are6 and5, respectively. The estimates and their corresponding estimated standard
errors for the parametric part are summarized in TableThe estimates foh(w) based on
different error distributions are displayed in the left panel of Figurend the estimates @& (v)
are plotted in the right panel of Figure The analysis shows very similar results for these two
error distributions. From Tab# both incision length and gender are insignificant at the 5% level
of significance. From the left panel of Figureh(w) increases steadily from age 50, achieving a
peak at age 60, decreasing gradually thereafter, which means that patients ages around 60 tend to
enjoy a longer time to calcification. The estimated transformation fundfiom the right panel
of Figure7 displays a nonlinear behavior and it shows that the transformation is necessary.

We can incorporate an unknown scale parameter into to the residual error distriB(tjda
further improve the above analysis. Our general B-spline estimation framework can also handle
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this type of transformation models easily.
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Appendix

Some useful Lemmas

We definee-covering number «bracketing number) ad/(¢, A, d) (Ng(¢, A, d)). The corre-
sponding:-entropy ¢-bracketing entropy) is defined &5, A, d) = log N (¢, A, d) (Hp(e, A, d) =
log Np(¢, A, d)). Definegn(éo;H ) = {g : glv) = ¥Bo(v) satisfying HgH < Jp} and

Hin(@i2 1l 1) = {hy = hy(wy) = 7B;(uw) sausfymg Inll < &; and [, hy(w;)dw; = 0}.
Obviously,G,(co; || - |o) = Gn @ndH;,(cj; || - |lo) = H;jn. Lemmal follows from the B-spline
approximation propertyg). Lemma2 is directly implied by Lemma 2.5 irMan de Geei2000).
Lemmad is adapted from Proposition 1 i€bheng & Huany2010).

LEMMA 1. There exisy,, € G, andh;, € H,, such that

lgn — golle = K™, (A1)
[ Hn — Hollow = O(K™), (A.2)
1hjn — hjolle =< K, (A.3)
d d
;hjn — jz_;hjo ) = 0 ('Iq?fd{Kjrj}) 7 (A.4)
whereH,(v) = [;" exp(gn(s))ds.

LEMMA 2.
H(e, Gu(0os || - 1) 1 1]) = Kolog(L+4do/e), (A.5)
H(e, Hjn(d5: |- ), [ - 1) & Kjlog(1 + 46;/€) (A.6)

forl1 <j <d.
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LEMMA 3. Leth = (hy, ..., hy). Definek = {¢(8,h, H) : B € B,h € []0_, Hjn, g € G},
where the form of is defined in/A.12). We have

sup [Gn¢| = Op( max {K;*}). (A7)
cex 7=0,1,....d

Proof: Define*(8,h, H) = 6F(8'z + 30 hj(w;) + H(v)) + (1 — 8)[1 — F(#'z +
S hi(w,) + H(v))]. The construction of(-) implies that

7=1
Hl*(ﬁ(h hn7 Hn) - l*<50a hOa HO) Hoo = O( %llax d{K'_rj}> (A8)
based onA.2), (A.4) and M4. Thus/*(/, h,,, H,) is bounded away from zero for sufficiently

largen.
For anyg;, 3, € B,hy, h, € H‘j:l H,;» andgi, g» € G,,, we have

|C(ﬁl7h1a Hl) - C(ﬁ?a h?a H2)|
< (B b, Hy) = (B2, h, Ha)|

A

d
181 — Ball + Z 1715 = hajllee + llg1 — g2lco- (A.9)

Jj=1

The first and second inequalities in the above follow from the factittigs, h,,, H,,) is strictly
positive for sufficiently large: by (A.8), and Condition M4(a), respectively. As shown & 9),
the functions in the clask are Lipschitz continuous iif3, h, g). Therefore, by combining
Lemma2 and Theorem 2.7.11 in/an de Geer & Wellnei1996¢), we obtain that

HB<E7IC7 LQ(P)) N max {Kj}log(l + M/€)7
0<j<d

where M = maxg<j<4{4c;}. In the end, we apply Lemma 3.4.2 iNan de Geer & Wellner
1996 to this uniformly bounded class of functiofsto obtain A.7). O

LEMMA 4. Suppose the following Conditions (B1)-(B3) hold.
B1. Pnég = op(n~12), P, ls[al] = op(n=/?) andIP’né,Al]_ [l_);] = op(n~Y/?);
B2. Sup{a:d(a,ao)SCln*T/(%Jrl)} Gn<zﬂ<X7 O./) - Zﬁ(Xa OZ())) = OP(1)1

B3. P((5(X;0) — [5(X;00)) = —Io(B — Bo) + o(||3 — Boll) + o(n="/?) for o satisfying
d(a, ap) < Cyn~"/Cr+1),
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If & is consistent an(fo is invertible, then we have
V(B = By) = \/_Z] Wsy(Xy) + 0p(1) =55 N(0, 1),

LEMMA 5. (i) If a(s,t) = a(s1,s2,t) € HL(S) x Sy x T) in t relative tos; ands,, then
fs a(s1, s, t) ds; € HY (S, x T) in t relative toss,.

(i) If a(s, t) b(s,t) € HL(S x T) int relative tos, thenc(s, t) = a(s, t)b(s,t) € HL, (S x T)
in t relative tos.

(iii) If a(s,t) € HL(S x T) int relative tos and f(-) € C!#1, thenf(a(s,t)) € H,(S x T)
in t relative tos.

Proof: Let || be the largest integer smaller than Denote then-th derivative ofa(s, t)
w.rt. t asD"a(s,t) form =0,1,...,|r].

(i) Note thatD]"a(s1, s, t) is bounded fol0 < m < [r], by the dominated convergence
theorem, we can take derivative inside the integral to obtain

D;n (/ CL(Sl, So, t) dSl> = D?a(sl, Sa, t) dSl,
S S1

which implies thatD}" ( fS (s1,s2,t) ds;) is bounded foH < m < |r]. Using this and the fact
that

|DtLTJ (f& a(s1, 82, t2) dsy) — D" (f& als1, 82, t1) dsi )|

‘tz — t1|’f'—|_’rj
= / sup sup D a(s1,s2,t2) = Dy™als1,5,11)| ds; < ¢ < 0o
- S1 81,82 t1#£t2 |t2 — t1|T—LTJ — )

for all s, andt; # t,, we conclude thafs (s1,89,t)ds; € HL(S2 x T) in t relative tos, for
somed < oo.
(i) The result is true because

D"c= Y DjaDib
i+j=m
is bounded fof) < m < |r]. Also we note that foi < |r|,

|Dja(s,t2) — Dja(s, t1)| | ft2 Di*a(s,t) dt|
|ty — ty|7=Lr) o |ty — tlyr LTJ

It can then be easily verified that

“p sup D e(s,t2) — DiMe(s, )|
s it |ty — t1]7— L7
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(i) When 0 < a < 1, the result follows from the observation that
flals, t2)) — fla(s,t1)) _ flals,t2)) — fla(s, t1)) |a(s,t2) —a(s, t1)|
|t2 — 1117 la(s, t2) — a(s, t1)] |t2 — t1]°
Using the chain rule, the above observation and part (ii) of the lemma, the desired result can be

obtained by induction for genergl O
Denote

Sk(X;5 a,wy) = [(5(X; @)l — Lylar] (X; @) — Zéhj [bji] (X ),

wherew;, = (ay, big, . . ., bai)- LetW, = G, x H;l:l H;n andNy = {a € A : d(a, ag) = o(1)}.
LEMMA 6. Under Conditions M1-M7 & P1-P2, we have
E sup [Sk(X;a,wi) — Si(X; a0, wi)[* £ d*(a, ao) (A.10)

wrEWn,
forall o« € NVyandk =1,...,1.
Proof: In view of (12)-(14) , we can bound the left hand side &.10) by

2

< ||@9—@90||§+E{sup [ / <exp<g<s>>—exp(g()(s)))ak(s)ds] <@e—@eo>2}

akegn v

+E ailelgn {/ZUV exp(go(s))ax(s)ds(Qp — Qoo)] 2

+E sup { /l V(eXp(g(S)) - eXp(go(S)))ak(S)dSQeo}

ag €Gn v
d

+ Z E sup [b?k(QQ — Q00>2]
after some algebra. The compactnesgplind#;,, imply that the third and fifth term in the
above are both of the ordg€)y — Qy,||3. For the second term, we can further bound it by

E[sup [ ate)as [ lexplats)) - explan(s)Pds(Qo — Q|

ar€Gn Jly ly
Considering the compactness®tndg,,, we know the second term is also of the ordéey, —
Qg, ||3. Assumption M4(a) together with Cauchy-Schwartz inequality implies|that-Qg, |12 < ||3—
Boll> + [|H — Holl2 + || ijl(hj — hjo)||3. Since we assume that the density fgris bounded
away from zero and infinity, we have thHaE;l:l(hj —hjo)|l3 < Z;l:l |h; — hjol|3 considering
the identifiability conditionfo1 h;(w;)dw; = 0. Assumption M7 implies that the fourth term is
of the order| H — Hyl|3. Considering the form of(«, ay), we conclude the whole proof]

22



Proof of Theorem/1

We show the estimation consisten®) by first establishing

d 2
P {(B — B0 Z 4+ > (hy = hin) (W) + H(V) — Hn<v>} — 0p(1). (A.11)

j=1
Combining A.11) with the identifiability Condition M3, we directly obtai(ﬁ — 0Go) = op(1)

~ ~ 2

which, in turn, implies thaP {z by — b)) (W) + H(V) — Hn(V)} — op(1). Consider-
ing the assumption M2(b) and thﬁi h;(w;)dw; = 0 for h; € H; U H,,, we can further show
Z?zl ||ﬁj — hjnll2 + |H — H,||» = op(1). The spline approximation resul(2) and A.3)
conclude the proof 019).

In the below, we will showA.11) to complete the proof 0B). Recall thath = (h4, ..., hy).
Denotehy, h,, andh as the corresponding true value, B-spline approximation and sieve estimate,
respectively. Recall thdt (5, h,, H,) is bounded away from zero for sufficiently largeas
implied by (A.8). Then, by the definition oft, we have

P, log{I"(3, b, H)/I" (o, by, H,)} > 0,
which implies that, by the inequality thatlog(xz) < log(1 + a(x — 1)) for anyz > 0 and
€ (0,1),

0<P,log

I*(5,h, H) PPN

Lemma3implies that(P,, — P)g(ﬁ, h, H) = op(1) sinceK;/n = o(1) foranyj =0,1,...,d.
Thus, P¢(3,h, H) > op(1) based onA.12). LetU,(X) = I*(3, h, ﬁ)/l*(ﬁo,hn,Hn). Based
on (A.8) we know PU,(X) = 1 + op(1), which further |mpI|esP§(ﬁ,h H) < op(1) by
the concavity ofs +— log(s). This in turn |mpI|es thatPC(ﬁ,h H) = op(1). This forces
PI(ByZ + S0y hyu(W5) + Ho(V)) = (BZ + S0, hy(Wy) + H(V)| = op(1) by the strict
concavity ofs — log s, Conditions M4(a), P1 and P2. It is easy to verify thag> = op(1) if
E|R,| = op(1). Thus, we have showi#\(11) in the end.

As for the convergence rate result§) & (11), we first apply Theorem 3.2.5 ian de Geer
& Wellner (1996¢) to establish

10 — Golls = Op (81 V Ga), (A.13)
whered is the plug-in sieve estimate 6fand

o1 = max {v/K;} /v and 6, = max {K; "}, (A.14)

0<j<d
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Following similar arguments in proving the consistency, we know tAdt3) implies (10) and
(12) by choosingk; < n'/(+1),

In the below, we showA.13) by verifying the conditions of Theorem 3.2.5Man de Geer
& Wellner (1996). We first need to show that

Plt(oo) — £(@)] 2110 = boll2 (A.15)

for everya in the neighborhood af,. Defineq(d,t) = 0 log(F(t)) + (1 —d)log(1 — F(t)) and
4(4,t) as its second derivative w.rtt. Sincecy maximizesa — P{(«), we have
2

Pll(ag) = l(a)] = P (0 — 00)”

whered is on the line segment betweeéandd,. The compactness of the parameter spaces imply
that P[{(cp) — ¢(a)] < ||0 — 6y]|3. This completes the proof oA(15). We next calculate the
order of E'sup p_g,,<s |Gn(¢(a) — €(ap))| as a function ob, denoted a®, (), by the use of
Lemma 3.4.2 oNVan de Geer & Wellne(1996). Let 71, (0) = {{(a) — l(ap) : g € Gn, h; €

Hjn, |0 — 6o]]2 < d}. Using the same argument as that in the proof of Lerfinvae obtain that
Hp(e, F1,(0), L2(P)) is bounded by maxo<;<qa{ K} log(1 + d/¢). This leads to

(5, Fun(0), / V1T Hp(e, Fin(0), La(P))de < C max {/T;}5.

0<5<d

The compactness @, and ™, implies the uniform boundedness of afiyc F;,(4). Thus,
Lemma 3.4.2 oWan de Geer & Wellne(1996) gives

n(0) = max{\/_}é—i— maX{K }//n.

0<j<d

By solvingd;,24,,(d1,,) < v/n, we get the form of,,, in (A.14).

We next show thaP,, /(a)—P,/(ag) > —Op(62,). The definition ofx implies thatP, [¢(a) —
((ag)] > A, + By, whereA,, = (P, — P){{(0y, Hy,, h,,) — (o)} andB,, = P{{(y, H,, hy,) —
l(ayg)}. A straightforward Taylor expansion gives

d
An = (Pn - P) {é2<507 Efna ﬁn)(Hn - HO) + Zé2+j(ﬂ07 ﬁ[na Hn)(hjn - hjo)} 5

j=1

where/, is the Fréchet derivative a5y, H,, hy,) w.r.t. thet-th argument. ConsideringA(2),
(A.3) and the fact that < ¢; < |¢(d, )] < €2 < oo for ¢ in some compacta @', we have

p {é2(607 ﬁnv anHn - HO) + Z;‘lzl éQ-ﬁ-j(ﬁOv Hm ﬁn)(hjn - hjo)

maXOSde{Kj_Tj }ne

} — 0 (A.16)
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for anye > 0. Let Fo, = {€(Bo, H,h) — () : g € Gn, hy € Hjn, |9 — golloe < CoKy™, ||hj —
hjolloe < CjK;Tj}. Similar analysis in Lemma show that the bracketing entropy integral (in
terms of Ly(P)) for F,, is finite, thus yields thaf,, is P-Donsker. Combining this P-Donsker
result and /A.16), we use Corollary 2.3.12 dfan de Geer & Wellnef1996) to conclude that
VA, /(maxoc;j<s{K; " }n) = op(1). By choosing some propér < e < 1/2 satisfying
n< 1% = maxoc;<a{K; "}, we haved, = Op(maX()Sde{Kj_QTj}>. We can also showB, >
—O(maxogjgd{Kj_Q”}) by similar analysis ofA&.15). This gives the form ob,,, in (A.14), and
thus concludes the whole proaf.

Proof of Theorem 2

We apply Lemmé to prove this theorem by checking their Conditions B1 — B3. To facilitate
the understanding, we first sketch the verification of Condition B1 and then provide the details.
To verify B1, we first know thaP’JB = 0 sincef maximizes/(g, §,ﬁ1, ...h ha), 3 is consistent
andf, is an interior point of3. We next show thalt*k (a}) belongs tchJ [O 1] (HZ [1,, u,]) for

somel < ¢; < oo andj =0,1,...,dsuch that there emstsbé,m € Hj, (a,m € G,) satisfying

100, = Vylloe = O(n773/Cri4D) (A17)

laf,, - aLHoo = O(n7ro/Eroth) (A.18)

by (6) and the assumption thaf; < n'/(?5+1), SinceP, é [bj,m] =0 andIP’nég[akn] = (0 for any
bjkn € H;, anday, € G,, it remains to show

Po {05, i) = G, 0]} = op(n"72), (A.19)

P, {{slal,] - G3lal]} = op(n'7?) (A.20)

for verifying Condition B1.
Now we showa € Hfj [0,1] and A. 19) Following the analysis in Page 2282 dfla &

Kosorok(20053, we can write, witha] (v) = [ exp(go(s))al (s)ds,
bl = ILD(v,w) ZH
i#]
= II;D(v,w) —/ al(v)Sf (v, w;)dv — Z/ bl (wi) T f (wy, w; ) duw.
b i#]

According to Lemmd& and dominated convergence theorem, we know&thatuj) € Hg [0, 1]
under Condition M5b}k € LY(w;) anda). € Ly(H) (thusal, is uniformly bounded) for some

25



0 < ¢; < oo. As for (A.19), we first decompose its left hand sidelas + I,,,, where

L = P Bl Bl — oo bhy — 011}

Ly = (P, —P) {eA B, — b}k]} .

By Cauchy-Schwartz Inequality, we havg, < Hb,m b,thooﬂg— 6y||2 based on Conditions
M4(a), P1 & P2. Thus/A.13) and A.17) imply thatI;,, = Op(n=2/"*+) = op(n~1/2) since
r>1/2.

To showl,, = op(n~'/?), we need to make use of Lemma 3.4.2/am de Geer & Wellner
(1996). We first construct the following class of functions:

T, = { Fobyon (@) = i, [bjin — bl (7500) - @ € Ay (n777) andbyy, € M, (n+ ) } :

whereA, (8) = {a € A, : d(a, ap) < C16} andH’,,(6) = {bﬂm € i« [1bjin—blylloc < Cad}
for some0 < C1,Cy < 0. Let©,,(0) = {3’z + H(v) + ZJ Lhi(w;) o€ A, (6)}. Itis easy
to verify that, for everyr,

| f01070m1 (T) = J02,0,10m ()| S (161 = O2loo + [|0jrn1 — Djn2lloo, (A.21)
whered; € ©,(n~"/ D) for j = 1,2. Letd?, ..., oN O lH=) and

N (&M, (073G D) o)
b},m, v b
be thee-cover for®,, (n /1)) andH/, (n "3/ +1)), respectively. Thus, we can construct the
bracket] f,: o, — 206 foy + 2C'¢] coveringZ,. The bracket size i$Ce. Hence, we obtain
"Wikn "Wikn

HB(E,IH, LQ(P)())

—r

H(e/(4C), 0,(n=1), || - [loo) + H(e/(4C), Hjp (n*570), | - [|oc)
max {K Hog(1 +n~"/@ 1 /¢)

0<j<d

IARIAN

based on Lemma. The corresponding-bracketing entropy integral is calculated as

é
Jp(6,Z,, Lo(Px)) = / V1+ Hp(e Iy, La(Px)) & max {\/K;pn~ 77282 (A.22)
0 RVAS
Now, it is ready to apply Lemma 3.4.2 Wan de Geer & Wellne(199¢) to showE||G,, ||z, =
o(1) implying I, = op(n~"/?). Note that| f||z < [[bjxn — bjk'[|2 and | fllee < [[bjkn — bik"[loo

forany f € Z,,, and thus) and M in Lemma 3.4.2 oVan de Geer & Wellne(199¢) are both
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chosen agi; ", i.e.,n="7/>*1). Then, by Lemma 3.4.2 &fan de Geer & Wellne(1996) and
(A.22), we have that

' T4
R T 4r—1

E|Gy||z, = O <n_<4+2 47'j+2> vV n_4r+2) =o(1).

This completes the proof dA(19).
We next showA.20) by similar arguments. Similarly, we have

d 1
al(0) = MaD(ww) = 3 [ 80 f(w;.v)dus

Recall thata} (v) = fl” exp(go(s))a'(s)ds. Under Condition M6 and the assumption thatc
H!0 (1, u,], we can show that}, € HZX"'[l,, u,], which implies that] € H[l,,v,] for some
0 < ¢ < oo, based on Lemm&. We next show that!, = op(n~'/?) andl, = op(n='/?),
where

[{n = P {gﬁ[a};n - CLL] - égo [aLn - a};]} 3
I, = (Pa=P){fsla}, —afl}.

Similarly, by Cauchy-Schwartz Inequality, we can show that

B & lohy = el toll+ P | [ exp(@ = explan)(o) (el - al)(e)ds

lo

A

laf,, = alloe (16 = ollo + 17T — Ho|l2)
Op(n—r/(Qr—H)) _ OP(n—l/Q)

A

by choosingK; = n!'/ri+1. Following similar arguments in analyzing,, we can show that
I, = op(n~'/?). Thus, we have verified Condition B1 in Lemrda We again apply Lemma
3.4.2 ofVan de Geer & Wellne(1996¢) to verify Assumption B2. The details are skipped due to
the similarity of the previous analysis.

It remains to verify Assumption B3. This can be easily established using the Taylor expansion
in Banach space. However, we first need to reparameterize the efficient score fﬁg@ﬁoa)
as

Us(X;0%) = ZQy(X)— [ /l a*<s>dH<s>+ZB§<Wj> Qo(X)

Us(X;a%) = £,[e)(X;07),
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wherea* = (8, H,hy, ..., hq),n = (H, hy,...,hg) ande’ = (@t,bl,... b). We first derive
two useful equalitiesA.26)-(A.27). Let £, be the expectation corresponding to the reparametrized
likelihood under the parameter. SinceE,-(3(X; o*) = 0, we have

0 ~
§|t:0Ea§€,8(X ar) =0, (A.23)

wherea; = of, + te. Definels ; and(;,[c] as the first derivative of; w.r.t. 3 andy (along the
directionc), respectively. By setting = (¢j,0,...,0)" ande = (0,¢)" = (0, AH,by,...,ba),
respectively, some calculations reveal that

E{ls5(X;05)es } + B {G(X; ap)bs(Xsap)es} = 0, (A.24)

B {Galel(X:0p) } + E{ls(X:ap) el (X30p)} = 0 (A25)

based onA.23). By considering the orthogonal property@g and the above reparametrization,
we obtain the following two useful facts:

To = {zm (X:al } (A.26)
E{Tsfel(X;05) } =0 (A27)

based onA.24) and (A.25).

Define%,a*w [h1, ho)(X; a*) as the second order Fréchet derivativélpw.r.t. o* along the
direction [hy, h] at the pointa*. The same notation rule applies@.- .- [, ho](X; ) and
én,a*,a* [h1, ha, hs](X; o). Now we are ready to express the Taylor expansion as follows.

E[l5(X; ) — T5(X; )]
= E[l5(X;0") — [5(X;05)]
- 5{i, ,ﬂ<X;azs>}<ﬁ ﬁo)+E{€ ol = m](X; ) |
%E{eﬁa*a*[m Aa’](X;a) }
= —1o(8— /)

1 . .
+§E {fﬁ,a*,a* [Aa®, Aa*](X;8%) = by o o6, Aa®, Aa™](X; &*)} ,
whereAa* = o — aof anda* lies betweerny* andag. The last equation in the above follows

from (A.26) & (A.27). Now we only need to show that the second term in the last equation is of
the order

o([|8 = Boll) + o(n~'?).
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Let AH = H — HyandAh; = h; — hj,. After some algebra, we obtain

(5,00 - [ A0, Aa¥](X; @)

2
= ZQ; |Z' (B - Bo) + AH(V +2Ah ] :

lCp oo, Aa” Aa](x-a*)
1%
[ aner s

+2 { /l i aT(s)dAH(s)] Q5

v

2
Z'(B— o) + AH(V +ZAh ]

Z'(B—Bo) + AH(V +2Ah

where lies betweer andd,. Considering the assumption th#ty, og) < Cin~"/@+1 and the
previously shown result thaﬂ; andb},c are both uniformly bounded, we can verify Assumption
B3 based on the above expressions. This completes the proof of Th2orem

Proof of Theorem/3

To facilitate the understanding, we first provide the roadmap of our proof here. For simplicity,
we write Sy, (X; ap, wy) and Si(X; @, wy) as Sp[wy,] and Sy.[wy], respectively. Based on the
definitions of/, and (L9), we know their(k, £')-th entry can be written as

Io(k, k) = ESYw!]SY[wl], (A.28)
I(k, k) = P.Si[wl]Sel@l], (A.29)
wherew! = (af, b, ... 0%,) and@] = ((v),)Bo, (71,)B1,..., (4},)Ba). R ecall thatV,

Gn X H, H;,. Defined] = argmin,, ey, E{S?[w:]}?. To establishi & I, we need to
establish the following three equations step by step:

I(k, k) = ES{@}]SL @] + op(1), (A.30)
ESYw!)sy[w!,] - fsg[ wi]SY[wl] = op(1), (A.31)
ESYw!]SY @l — Io(k, k') = o(1). (A.32)

We first considerA.30). It is easy to show that

E sup  |Sp(X; o, wi)|?| < const.< oo (A.33)
aENo,wkEWn
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since. A andW,, are both assumed to be compact. Note tAaB8) implies that{ S (x; o, wy,) :
a € Ny, wy, € W, } is P-Glivenko-Cantelli. Then, we know that, uniformly ovey, w;, € W,

Pngk[wk]gk/ [wk/] = Egk[wk]gk/ [wk/] + Op(l) (A34)
by considering Corollary 9.27 #&€osorok(2008. Uniformly overw;,, w,, € W,,, we have

| ES[uwn] S [wy] — ES{Lwi] S ]

E ’§k [wie] (S [wi] — SY [wk’])) +E )52/ [wie) (Sklwy] — Shlwi))

152 [wi) [|o ]| S [wie] — S lwe] |2 + 1% [wne] |2 ]| Sk [wn] — S2 ]|l
op(1), (A.35)

VAN VAN VAN

where the last inequality follows from Lemr@xtogether with the consistency o)) & (A.33).
Combining A.34) and (A.35), we have obtained that

sup | Silwi] S [ww] — ESE[wil Sp[wi]| = op(1), (A.36)

Wi, Wyt EWn

which implies A.30).

We next considerA.31). By similar analysis applied t&A;35), we know that/A.31) holds if
159@!] — SO[@]]|l2 = op(1). DenoteM,, (w) andM (w) asP,S2[w] and||S[w]||2, respectively.
The definition ofw] further implies that

Ispl@y] — Spt@illl; = ISel@pllls — ISelaplls,
= PS5} — ISYEf]) + 0p(D),
= M, (@}) — M(w}) + op(1),

where the second equality follows froiA.36). By the definitions of@,*C andw,t, we have
M, (%)) = M(@}) < My (@)) = M(@}) < My(@}) — M(w}).

Therefore, we conclude the proof #.81) by applying (A.§6) to the above inequality.
In the end, we consideA(32). Again, by the form ofly(k, £’) given in (A.28) and similar
analysis in/A.31), we only need to shoWsS2[@}] — SY[w!]||z = o(1). By the definitions ofi}
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andw], we have

d 2
ISR — SRlwillls = onf L Cgolat] — Lgolar] +> (£, hyo [0 ])]
]:1
N wklglﬁ\/n {Hégo [aJlrc] - égo [ak]Hg + Zl ||éhj0 [b;rk} - éhjo[bjk’mg}
j:

A

ap€Gn

< int - ol Z{mf e = bl

where the last inequality trivially follows from the form 6f|a] andéhj [b;]. In the proof of
Theorem2, we show that) € H.°[l,,u,] andbl, € HZ'[0,1]. Thus, we have|Sp[w]] —
S%[w!]|l, — 0 based on the last inequality in the above. This completes the whole proof.

d
inf |14y, [a}] - go[ak]\|§+zb_kig7§ 10 [055] = £no (D] 113
. 1 J gn
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