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Abstract
We consider the efficient estimation of the semiparametric additive transformation model

with current status data. A wide range of survival models and econometric models can be
incorporated into this general transformation framework. We apply the B-spline approach to
simultaneously estimate the linear regression vector, the nondecreasing transformation func-
tion, and a set of nonparametric regression functions. We show that the parametric estimate
is semiparametric efficient in the presence of multiple nonparametric nuisance functions.
An explicit consistent B-spline estimate of the asymptotic variance is also provided. All
nonparametric estimates are smooth, and shown to be uniformly consistent and have faster
than cubic rate of convergence. Interestingly, we observe the convergence rate interfere phe-
nomenon, i.e., the convergence rates of B-spline estimators are all slowed down to equal the
slowest one. The constrained optimization is not required in our implementation. Numerical
results are used to illustrate the finite sample performance of the proposed estimators.

Key Words:B-spline; Consistent variance estimation; Current status data; Efficient estimation;
Semiparametric transformation models

1 Introduction

We consider the efficient estimation of the following semiparametric additive transformation
model:

H(U) = Z ′β +
d∑

j=1

hj(Wj) + ε, (1)
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whereH(·) is a monotone transformation function,hj(·)’s are smooth regression functions (with
possibly different degrees of smoothness), andε has a known distributionF (·) with supportR.
A wide range of survival models and econometric models can be incorporated into the above
general transformation framework, e.g., (Huang & Rossini, 1997; Shen, 1998; Huang, 1999;
Banerjee et al., 2006, 2009). In particular, the model (1) can be readily applied to a failure time
T by lettingU = log T . We can obtain the partly linear additive Cox model, i.e.,Huang(1999),
by assumingF (s) = 1−exp(−es) andH(u) = log A(eu), whereA is an unspecified cumulative
hazard function. Specifically, the hazard function ofT , given the covariates(z, w), has the form

λ(t|z, w) = a(t) exp(β̃′z +
d∑

j=1

h̃j(wj)), (2)

wherea(t) is the baseline hazard function,β̃ = −β andh̃j = −hj. However, if we change the
form of F (s) to es/(1 + es), the model (1) just becomes the partly linear additive proportional
odds model.

Motivated by the close connection with survival models, we focus on the current status data
in this paper which arises not only in survival analysis but also in demography, epidemiology,
econometrics and bioassay. More specifically, we observeX = (V, ∆, Z,W ), whereV ∈ R is a
random examination time and∆ = 1{U ≤ V }. We assume thatU andV are independent given
(Z, W ). Under current status data, the model (1) is also related to the semiparametric binary
model studied in econometrics. Using the link functionF (·), we assume that the probability of
∆ = 1, given the covariates(Z, W, V ), is of the expression:

P (∆ = 1|Z, W, V ) = F

(
β̃′Z +

d∑
j=1

h̃j(Wj) + H(V )

)
. (3)

Note thatBanerjee et al.(2006) andBanerjee et al.(2009) have done a great deal of statistical
estimation and hypothesis testing on the model (3) (without h̃j terms) by assumingF (·) to be
log-log function and logistic function, respectively. An extensive discussions on the relation
between (3) and survival models can be found inDoksum & Gasko(1990). Recently a similar
transformation model has been considered byChen & Tong(2010) but for theright censored
data. They showed that the monotone transformation function is root-n estimable which will
never be achieved in the case of current status data. This is the key theoretical difference between
the two types of survival data.

In this paper, we employ the B-spline approach to simultaneously estimate the vectorβ,
monotoneH and smoothhj ’s. The corresponding estimates are denoted asβ̂, Ĥ and ĥj. In
contrast,Ma & Kosorok(2005a) apply the penalized NPMLE approach to (1) (with d = 1) which
yields a non-smooth step functioňH and the penalized estimatěh. Our B-spline framework
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has the following theoretical and computational advantages over the existing penalized NPMLE
approach:

1. Our B-spline estimatêH is smooth and uniformly consistent. However,Ȟ is always dis-
continues (regardless of the smoothness of its true functionH0) and has a bias which does
not vanish asymptotically; see Page 2258 ofMa & Kosorok(2005a). We can also obtain
the faster rate of convergence forĤ than that forȞ, i.e.,OP (n−1/3), by using the B-spline
estimation approach. Therefore, we expect more accurate inferences drawn fromĤ.

2. We are able to give an explicit B-spline estimate for the asymptotic variance ofβ̂ based
on which the asymptotic confidence interval ofβ can be easily constructed. Under very
weak conditions, its consistency is proven. However, the block jackknife approach inMa
& Kosorok (2005a) requires more computation, and is even not theoretically justified.

3. Our spline estimation algorithm requires much less computation than the isotonic type
algorithm used inMa & Kosorok(2005a) since the order of jumps in the step function is
supposed to be much larger than the order of knots we choose for estimatingH andhj ’s.

In contrast withHuang(1999), we deal with the current status data rather than the right censored
data, and thus we also need to estimate the monotone transformation function which has been
profiled out in their partial likelihood framework. Despite the non-root-n convergence rates of
Ĥ and ĥj ’s, we are able to show that̂β is root-n consistent, asymptotically normal and semi-
parametric efficient. We derive the efficient information bound by taking the general two-stage
projection approach fromSasieni(1992) which is needed due to the involvement of multiple
nonparametric functions in semiparametric models. Interestingly, we observe the convergence
rate interfere phenomenon for the B-spline estimators, i.e., the convergence rates of nonpara-
metric estimators are all slowed down to equal the slowest one. Moreover, by approximating
log Ḣ with the B-spline, we can avoid the monotonicity constraint in the implementation, which
is usually required in the literature, e.g.,Zhang et al.(2010).

The remainder of the paper is organized as follows. Section2 describes the B-spline esti-
mation procedure. The asymptotic properties such as consistency and convergence rates of the
estimates are obtained in Section3. The asymptotic distribution of the parametric component is
studied in Section4, and its efficient information and the corresponding explicit B-spline esti-
mate are given in Section5. Simulation studies are presented in Section6.1. We close with an
appendix containing technical details.
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2 Semiparametric B-spline Estimation

2.1 Assumptions

We first define some notations. For any vectorv, v⊗2 = vv′. The notations >∼ and <∼ mean
greater than, or smaller than, up to a universal constant. We denoteAn ³ Bn if An

<∼ Bn and
An

>∼ Bn. The notationsPn andGn are used for the empirical distribution and the empirical pro-
cess of the observations, respectively. Furthermore, we use the operator notation for evaluating
expectation. Thus, for every measurable functionf and true probabilityP ,

Pnf =
1

n

n∑
i=1

f(Xi), Pf =

∫
fdP and Gnf =

1√
n

n∑
i=1

(f(Xi)− Pf).

We next present some model assumptions.

M1. U andV are independent given(Z, W ).

M2. (a) The covariates(Z, W ) are assumed to belong to a bounded subset inRl+d, say[0, 1]l×
[0, 1]d. The support forV is [lv, uv], where−∞ < lv < uv < +∞; (b) The joint density
for (Z, V, W ) w.r.t. Lebesgue measure stays away from zero, and the joint density for
(V, W ) stays away from infinity.

M3. E(Z − E(Z|V, W ))⊗2 is strictly positive definite.

M4. The residual error distributionF (·) is assumed to be known and has supportR. Denote
the first, second and third derivative ofF asf , ḟ andf̈ , respectively. We assume that (a)
(f(u) ∨ |ḟ(u)| ∨ |f̈(u)|) ≤ M < ∞ over the wholeR andf(u) stays away from zero in
any compact set ofR; (b) [f 2(v) − ḟ(v)F (v)] ∧ [f 2(v) + ḟ(v)(1 − F (v))] > 0, for all
v ∈ R.

Since we employ the smooth B-spline estimation rather than the penalized NPML estimation,
our residue error Condition M4 is much less restrictive than that inMa & Kosorok(2005a). Note
that Condition M4(b) ensures the concavity of the functions 7→ δ log F (s)+(1−δ) log(1−F (s))

for δ = 0, 1.
It is easy to verify that the above Condition M4 is satisfied in the following two general

classes of residue error distribution functions after some algebra.

F1. F (s) = γ[2Γ(γ−1)]−1
∫ s

−∞ exp(−|t|γ)dt for γ > 1 is a family of distributions, which
includes the standard normal distribution after appropriate rescaling (γ = 2). This corre-
sponds to the probit modelKalbfleisch & Prentice(1980).
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F2. F (s) = 1 − [1 + γes]−1/γ is a Pareto distribution with parameterγ ∈ (0,∞) and cor-
responds to the odds-rate transformation family, seeDabrowska & Doksum(1988a,b). It
includes the following two well-known special cases:

(a). Given γ → 0, it yields the extreme value distribution, i.e.F (s) = 1 − exp(−es),
which corresponds to the complementary log-log transformation, seeBanerjee et al.
(2006);

(b). Given γ = 1, it gives the logistic distribution, i.e.F (s) = es/(1 + es), which
corresponds to the logit transformation, seeBanerjee et al.(2009).

2.2 B-spline Estimation Framework

From now on, we change the signs ofβ andhj for simplicity of exposition. In addition, we re-
centerH(v) to H(v)−H(lv) so thatH(lv) = 0 for the purpose of identifiability. The additional
parameterH(lv) will be absorbed into the vectorβ, i.e., the first coordinate ofz is set as one.
Given a single observation atx = (v, δ, z, w), the log-likelihood of model (1) is written as

`(β, h1, . . . , hd, H) = δ log

{
F

[
H(v) + β′z +

d∑
j=1

hj(wj)

]}

+(1− δ) log

{
1− F

[
H(v) + β′z +

d∑
j=1

hj(wj)

]}
. (4)

We assume thatβ ∈ B, which is a bounded open subset inRl, and that its true valueβ0 is
an interior point ofB. Before specifying the parameter spaces forH andhj ’s, we first introduce
the Hölder ballHr

c(Y), which is a class of smooth functions widely used in the nonparametric
estimation, e.g.,Stone(1982, 1985). For anyf ∈ Hr

c(Y), it is J < r times continuously
differentiable onY and itsJ-th derivative is uniformly Hölder continuous with exponentκ ≡
r − J ∈ (0, 1], i.e.,

sup
y1,y2∈Y,y1 6=y2

|f (J)(y1)− f (J)(y2)|
|y1 − y2|κ ≤ c.

The functions in the Hölder ball can always be approximated by a basis expansion, i.e.,

f(t) ≈
K∑

k=1

γkBk(t) = γ′B(t), (5)

whereγ = (γ1, . . . , γK)′ andB(t) = (B1(t), . . . , BK(t))′. Actually, if the degreed of the
B-spline satisfiesd ≥ (r − 1), we have

‖f − γ′B‖∞ ³ K−r asK →∞, (6)
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where‖ · ‖∞ denotes the supremum norm..
Assume the following parameter space Condition P1 for the smoothhj.

P1. For j = 1, . . . , d and some knowncj, we assume that the parameter space forhj is Hj,
where

Hj =

{
hj : hj ∈ Hrj

cj
[0, 1] with rj > 1/2 and

∫ 1

0

hj(wj)dwj = 0

}
,

and that the corresponding spline space is

Hjn =

{
hj : hj(w) = γ′jBj(w) with ‖hj‖∞ ≤ cj and

∫ 1

0

hj(wj)dwj = 0

}
,

based on a system of basis functionsBj = (Bj1, . . . , BjKj
)′ of degreedj ≥ (rj − 1).

As seen from the previous examples, it is reasonable to assume thatH(·) is differentiable and
strictly increasing over[lv, uv], i.e., Ḣ(v) ≥ C0 > 0. Considering thatH(lv) = 0, we can thus
write H(v) =

∫ v

lv
exp(g(s))ds, whereg(v) ≡ log Ḣ(v) is well defined. Such reparametrization

can get around the strict monotonicity and positivity constraints ofH, and thus avoids the con-
strained optimization in the computation. The parameter space Condition P2 forg is specified
below.

P2. For some knownc0, we assume that the parameter space forg is G, where

G =
{
g : g ∈ Hr0

c0
[lv, uv] with r0 > 1/2

}
,

and that the corresponding spline space is

Gn = {g : g(v) = γ′0B0(v) and‖g‖∞ ≤ c0}

based on a system of basis functionsB0 = (B01, . . . , B0K0) of degreed0 ≥ (r0 − 1).

Similarly, we defineG ′n = {H(v) =
∫ v

lv
exp(g(s))ds : g ∈ Gn}. By some algebra, we can show

thatH ∈ Hr0+1
c′0

[lv, uv] for somec′0 < ∞.

REMARK 1. Note that in the theoretical proofs and numerical calculations the exact values
of cj are not necessary. Instead, only the boundedness condition, equivalently the compactness
of parameter spaces and spline spaces, is needed. Here we assume this boundedness condition,
which can be relaxed by invoking the chaining arguments, only for simplifying our theoretical
derivations.
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In this paper, we propose the B-spline approach to estimateH and hj ’s as follows. Let
A = B × G × Πd

j=1Hj andAn = B × Gn × Πd
j=1Hjn. Denoteα as(β′, g, h1, . . . , hd)

′ and its
true valueα0 as(β′0, g0, h10, . . . , hd0)

′, whereg0(·) = log Ḣ0(·). The log-likelihood (4) for the
observationi can thus be reparametrized as

`i(α) = δi log

{
F

[
β′zi +

∫ vi

lv

exp(g(s))ds +
d∑

j=1

hj(wij)

]}

+(1− δi) log

{
1− F

[
β′zi +

∫ vi

lv

exp(g(s))ds +
d∑

j=1

hj(wij)

]}
. (7)

The corresponding B-spline estimateα̂ is defined as

α̂ = arg max
α∈An

n∑
i=1

`i(α). (8)

We can also writêα = (β̂′, ĝ, ĥ1, . . . , ĥd)
′ = (β̂′, γ̂′0B0, γ̂

′
1B1, . . . , γ̂

′
dBd)

′. Then, the estimate
Ĥ(v) =

∫ v

lv
exp(γ̂′0B0(s))ds. Some tedious algebra reveals that the Hessian matrix of`i(α) w.r.t.

(β′, γ′0, γ
′
1, . . . , γ

′
d)
′ is indeed negative semidefinite under Condition M4(b) which guarantees the

existence of̂α. See more discussions on the computation feasibility in the simulation section.
The above estimation procedure also applies to other linear sieves approximating the Hölder ball
(or more generally Hölder space), e.g., wavelets.

3 Consistency and Rates of Convergence

In this section, we show that our B-spline estimate is consistent and the convergence rate of each
nonparametric estimate appears to interfere with each other. Define

d(α, α0) = ‖β − β0‖+ ‖H −H0‖2 +
d∑

j=1

‖hj − hj0‖2,

where‖ · ‖2 is theL2 norm. Now we give the main Theorem of this section.

THEOREM 1. Suppose that Conditions M1-M4 and P1-P2 hold. IfKj/n → 0 for j =

0, 1, . . . , d, then we have

d(α̂, α0) = oP (1). (9)

More specifically, we further prove that

d(α̂, α0) = OP

(
max
0≤j≤d

{
K
−rj

j ∨
√

Kj/n

})
. (10)
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If we further require thatKj ³ n1/(2rj+1) for j = 0, . . . , d, then we have

d(α̂, α0) = OP (n−r/(2r+1)), (11)

wherer = min0≤j≤d{rj}.
Under the right censored data,Huang(1999) derived similar convergence rate result (10) in

the partly linear additive Cox model by assuming equalrj ’s. According to Theorem1, the smooth
Ĥ can achieve the rate of convergence, i.e.,OP (n−r/(2r+1)), no slower thann1/3-rate derived in
the penalized estimation context, seeMa & Kosorok(2005a), when we assume thatg0 andhj0’s
are all at least continuously differentiable, i.e.,r ≥ 1. More importantly, we can further show
thatĤ is uniformly consistent, i.e.,‖Ĥ−H0‖∞ = oP (1), by applying Lemma 2 inChen & Shen
(1998) that‖f‖∞ <∼ ‖f‖2r/(2r+d)

L2(Leb) for anyf ∈ Hr
c[a, b]d and noting thatĤ,H0 ∈ Hr0+1

c′0
[lv, uv]

for somec′0 > 0.
The above theorem also holds when we employ the constrained monotone B-spline to approx-

imateH0, i.e.,γ′0B0(v) ≈ log H(v) with γ01 ≤ γ02 ≤ . . . ≤ γ0K0. However, such constrained
optimization usually requires additional computational effort, seeZhang et al.(2010).

REMARK 2. From the above Theorem1, we observe the interesting convergence rate inter-
fere phenomenon, i.e., the convergence rate for each B-spline estimate is forced to equal the
slowest one. InMa & Kosorok(2005a), they also show that the convergence rate of the penal-
ized estimatẽh is unfortunately slowed down toOP (n−1/3) by the NPMLEH̃ regardless of the
smoothness degree ofh0. One possible solution in achieving the optimal rate for each nonpara-
metric estimate is to extend the most recent mixed rate asymptotic resultsRadchenko(2008) to
the semiparametric setup.

Since we assume thatr > 1/2, the convergence rate given in (11) is alwaysoP (n−1/4).
Such a rate is usually fast enough to guarantee the regular asymptotic behavior ofβ̂, i.e.,

√
n-

consistency and asymptotic normality. Indeed, we will improve the current suboptimal rate ofβ̂

in (11) to the optimal
√

n rate, and further show that̂β is semiparametric efficient in next section.

4 Weak Convergence of the Parametric Estimate

In this section, we study the weak convergence of the spline estimateβ̂ in the presence of multiple
nonparametric nuisance functions. We first calculate the semiparametric efficient information
based on the projection onto the nonorthogonal sumspace.

Let

Qθ(x) = f(θ)

(
δ

F (θ)
− 1− δ

1− F (θ)

)
,
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whereθ(z, v, w) = β′z + H(v) +
∑d

j=1 hj(wj). Denoteθ0 as the true value ofθ. The score
functions (operators) forβ, g andhj are separately calculated as

˙̀
β(X; α) = ZQθ(X), (12)

˙̀
g[a](X; α) =

[∫ V

lv

exp(g(s))a(s)ds

]
Qθ(X), (13)

˙̀
hj

[bj](X; α) = bj(Wj)Qθ(X). (14)

We assume thata ∈ L2(H) ≡ {a :
∫ uv

lv
a2(s)dH(s) < ∞} and bj ∈ L0

2(wj) ≡ {bj :∫ 1

0
bj(wj)dwj = 0 and

∫ 1

0
b2
j(wj)dwj < ∞} so that all the score functions defined above are

square integrable.
To calculate the efficient score functioñ`β, we need to find the projection oḟ`β onto the

sumspaceA = Ag + Ah1 + · · · + Ahd
, whereAg = { ˙̀

g[a] : a ∈ L2(H)} andAhj
= { ˙̀

hj
[bj] :

bj ∈ L0
2(wj)}. For simplicity, we definė̀β(X; α0) and ˙̀

β(X; α̂) as ˙̀
β0 and ˙̀

β̂, respectively. The

same notation rule applies to˙̀g[a](X; α) and ˙̀
hj

[bj](X; α). We define

˜̀
β(X; α) = ˙̀

β(X; α)− ˙̀
g[ā

†](X; α)−
d∑

j=1

˙̀
hj

[b̄†j](X; α),

whereā† = (a†1, . . . , a
†
l )
′ andb̄†j = (b†j1, . . . , b

†
jl)
′. And (a†k, b

†
1k, . . . , b

†
dk) is the minimizer of

(ak, b1k, . . . , bdk) 7→ E

{
[ ˙̀β0 ]k − ˙̀

g0 [ak]−
d∑

j=1

˙̀
hj0

[bjk]

}2

for k = 1, . . . , l. Similarly, denotẽ̀ β(X; α0) and˜̀
β(X; α̂) as˜̀

β0 and˜̀̂
β, respectively. By taking

the two-stage projection approach fromSasieni(1992), we have

˜̀
β0(X) =

(
Z − b̄†(W )− E((Z − b̄†(W ))Q2

θ0
(X)|V )

E(Q2
θ0

(X)|V )

)
Qθ0(X) (15)

whereb̄†(W ) =
∑d

j=1 b̄†j(Wj) satisfies

E

{[
Z − b̄†(W )− E((Z − b̄†(W ))Q2

θ0
|V )

E(Q2
θ0
|V )

]

k

Q2
θ0

bjk(Wj)

}
= 0 (16)

for every bjk ∈ L0
2(wj), j = 1, . . . , d andk = 1, . . . , l. By slightly modifying the proof of

Lemma 4 inMa & Kosorok (2005a), we can show that the above nonorthogonal projection is
well defined and̄b†(·) exists by the alternating projection Theorem A.4.2 inBickel et al.(1993).
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DefineΠj andΠa as the projection operators

Πjg 7→
E[g(V, W )Q2

θ0
|Wj = wj]

E[Q2
θ0
|Wj = wj]

, Πag 7→
E[g(V, W )Q2

θ0
|V = v]

E[Q2
θ0
|V = v]

,

respectively. Define

D(v, w) =
E[ZQ2

θ0
|V = v, W = w]

E[Q2
θ0
|V = v, W = w]

, S(v, wj) =
E[Q2

θ0
|V = v, Wj = wj]

E[Q2
θ0
|Wj = wj]

,

T (wi, wj) =
E[Q2

θ0
|Wi = wi,Wj = wj]

E[Q2
θ0
|Wj = wj]

, U(wj, v) =
E[Q2

θ0
|Wj = wj, V = v]

E[Q2
θ0
|V = v]

.

We say a functionf(s, t) belongs to a uniform Hölder ballHr
c(S × T ) in t relative tos if it is

J < r continuously differentiable w.r.t.t and itsJ-th partial derivative satisfies, withκ ≡ r− J ,

sup
s∈S

sup
t1 6=t2

|f (J)
t (s, t1)− f

(J)
t (s, t2)|

|t1 − t2|κ ≤ c.

DefineSf(v, wj) = S(v, wj)fV |Wj
(v, wj), Tf(wi, wj) = T (wi, wj)fWi|Wj

(wi, wj) andUf(wj, v) =

U(wj, v)fWj |V (wj, v), wherefV |Wj
, fWi|Wj

andfWj |V are the conditional densities ofV given
Wj, Wi givenWj andWj givenV w.r.t. Lebesgue measure, respectively.

Here, we assume some model assumptions implying that bothb†jk anda†k belong to some
Hölder balls for anyj = 1, . . . , d andk = 1, . . . , l.

M5. We assume that[ΠjD(v, w)]k ∈ H
rj

c̄j
[0, 1], Sf(v, wj) ∈ H

rj

c̄j
([lv, uv]× [0, 1]) in wj relative

to v andTf(wi, wj) ∈ H
rj

c̄j
[0, 1]2 in wj relative towi for some0 < c̄j < ∞ and j =

1, . . . , d.

M6. We assume that[ΠaD(v, w)]k ∈ Hr0+1
c̄0 [lv, uv] andUf(wj, v) ∈ Hr0+1

c̄0 ([0, 1]× [lv, uv]) in
v relative towj for some0 < c̄0 < ∞.

Note that we can simplifySf(v, wj) (Tf(wi, wj)) to S(v, wj) (T (wi, wj)) in Condition M5 and
simplify Uf(wj, v) to U(wj, v) in Condition M6 when we assume thatV andW are independent
and thatW is pairwise independent.

THEOREM 2. Suppose that Conditions M1-M6 and P1-P2 hold. IfKj ³ n1/(2rj+1) and Ĩ0 is
invertible, then we have

√
n(β̂ − β0) =

1√
n

n∑
i=1

Ĩ−1
0

˜̀
β0(Xi) + oP (1)

d−→ N(0, Ĩ−1
0 ), (17)

whereĨ0 is the efficient information matrix defined asE ˜̀
β0

˜̀′
β0

.

10



5 B-spline Estimate of the Efficient Information

In this section, we give an explicit B-spline estimate for the efficient information as a by-product
of the establishment of asymptotic normality ofβ̂. Indeed, it is simply the observed information
matrix if we treat the semiparametric model as a parametric one after the B-spline approximation,
i.e.,Hj = Hjn andG = Gn. Specifically, we treat̀i(α) defined in (7) as if it were a parametric
likelihood `i(β, γ0, γ1, . . . , γd).

We construct the corresponding information estimator for(β′, γ0, γ1, . . . , γ2)
′:

Ĵ =

(
Î11 Î12

Î21 Î22

)

(l+
∑d

j=0 Kj)×(l+
∑d

j=0 Kj)

,

whereÎj,k =
∑n

i=1 Aj(Xi; α̂)A′
k(Xi; α̂)/n, for j, k = 1, 2, and

A1(X; α) = ˙̀
β(X; α),

A2(X; α) =
(

˙̀
g[B01], . . . , ˙̀

g[B0K0 ],
˙̀
h1 [B11], . . . , ˙̀

hd
[BdKd

]
)′

.

The parametric inferences imply that the information estimator forβ is of the form

Î = Î11 − Î12Î
−1
22 Î21. (18)

Some calculations further reveal that

Î = Pn

[
˙̀
β̂ − ˙̀

ĝ[(γ̄
†
0)
′B0]−

d∑
j=1

˙̀̂
hj

[(γ̄†j )
′Bj]

]⊗2

, (19)

where[γ̄†j ]Kj×l = (γ†j1, . . . , γ
†
jl) for j = 0, 1, . . . , d and(γ†0k, . . . , γ

†
dk)

T = Î−1
22 Î211k where1k

represents thel-vector with itsk-th element as one and others as zeros. We will use (18) as our
estimator for̃I0.

We need the following additional assumption for Theorem3.

M7. We assume that

E sup
ak∈Gn

[∫ V

lV

[exp(g(s))− exp(g0(s))]ak(s)ds

]2

<∼ ‖H −H0‖2
2.

THEOREM 3. Under Conditions M1-M7 and P1-P2, we haveÎ
P→ Ĩ0.

Note that the consistency of the similar random-sieve efficient information estimate was also
proven in the linear regression models with current data; see Theorem 3 ofShen(2000).
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6 Numerical Results

6.1 Simulations

We perform a Monte-Carlo study to assess the finite-sample performance of our proposed method.
To compare with the penalized NPMLE inMa & Kosorok (2005a), we adopt the same setting
used in their paper. We simulate the current status data from the partly linear additive Cox model
which is a special case of general transformation model. We chooseH(u) = log A(eu) where
A(u) = ek0(exp(u/3) − 1) with k0 = 0.06516. The errorsε follow an extreme value distri-
bution withF (s) = 1 − exp(−es). The regression coefficientsβ1 = 0.3 andβ2 = 0.25. The
covariateZ1 is Uniform[0.5, 1.5] andZ2 is Bernoulli with success probability0.5. We chooseW
as Uniform[1, 10] andh(w) = sin(w/1.2 − 1) − k0. Censoring times are standard exponential
distribution conditional on being in the interval[0.2, 1.8]. The sample sizes aren = 400 and
n = 1600. We simulate400 realizations for both sample sizes.

In practice, the location and the numbers of knots forH andhj need to be determined. For
simplicity, we will use the equal-spaced knots for all functions. Common model selection meth-
ods such as the Akaike information criterion (AIC), and the Bayesian information criterion (BIC)
can be employed for selecting the number of knots. In this paper, we determineK0, K1, . . . , Kd

by the AIC, given by

AIC = −2
n∑

i=1

`i(α̂) + 2(` +
d∑

j=0

Kj)

In our simulation, we use a quadratic spline to approximate both functionh and functiong in
H. Then,AIC = −2

∑n
i=1 `i(α̂) + 2(K0 + K1 + 2). Based on our experiences, it is generally

adequate to choose less than ten knots to achieve reasonable approximation, provided thath and
H are not overly erratic. Figure1 shows the AIC scores under different combinations ofK0 and
K1 for one realization of the simulation with the sample sizen = 1600. It shows that the optimal
choices forK0 andK1 are5 and5, respectively. The estimatedh andH with various values of
K0 andK1 are plotted in Figure2. In the left panel of Figure2, we fix K0 = 5 and plot the
estimatedh with K1 = 3, 5, 10. WhenK1 is small (e.g.,K1 = 3), there seems be to a big bias
in our estimator. On the other hand, whenK1 is large (e.g.,K1 = 10), the estimator displays a
wiggly behavior. In the right panel of Figure2, we fix K1 = 5 and plot the estimatedH with
K0 = 5, 7, 10. As the number of knots is increasing, the estimatedH shows a similar wiggly
shape. Hence, the numbers of knots should be chosen with caution. It is worth noting that the
selected valuesK0, K1, . . . , Kd based the AIC criterion can be regarded only as the minimum
numbers of knots required. They may not be the optimal choices since the concept of optimality
is not well defined here. SeeXue et al.(2004) for similar discussions.

Simulation results show that our B-spline estimation procedure performs quite well in the
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Table 1:Monte Carlo results for the partly linear Cox model with current status data based on
400 replicates

Sample size400 Sample size1600

β̂1 Bias 0.0318 0.0100
SD 0.2919 0.1246
ESD 0.3102 0.1325
Coverage 0.9620 0.9690
ESD-WB 0.3547 0.1575

β̂2 Bias 0.0168 0.0074
SD 0.1533 0.0797
ESD 0.1612 0.0803
Coverage 0.9710 0.9680
ESD-WB 0.1836 0.0936

Joint Coverage 0.9620 0.9550

SD: Standard error; ESD: Estimated standard error; ESD-WB: Estimated standard error from the
weighted bootstrap method

semiparametric transformation model. The bias and standard errors of the spline estimates of
β1 andβ2 are given in Table1. The table shows that the sample biases of bothβ̂1 and β̂2 are
small. The ratio of the standard errors for the two sample sizes is close to2, a result consistent
with a

√
n-convergence rate for̂β1 andβ̂2. The estimated standard errors from (18) (denoted as

ESD) are also displayed in Table1, which are very close to the simulation results. Although our
proposed method tends to overestimate the standard error slightly but the overestimation lessens
as sample size increases. We also compare our results with the weighted bootstrap method in
Ma & Kosorok (2005b). The weights are from the exponential distribution with mean one.
The estimated standard errors are also similar to the results obtained using our explicit B-spline
estimate. The 95% confidence interval constructed from (18) generally have coverage close to
the nominal value. Histograms of̂β1 andβ̂2 are shown in Figure3. It is clear that the marginal
distributions ofβ̂1 andβ̂2 are Gaussian. The left panel of Figure4 displays the spline estimate of
h(w) and the monotone estimatêH is given in the right panel of Figure4. The dashed line is the
true function, the solid line is the average estimate over400 realizations, and the dash-dotted line
is the 95% pointwise confidence band forh(w) or H(v) when we know the true model, which is
obtained by taking2.5 percentile and97.5 percentile of these400 estimates at eachw or v.

As suggested by one of the referees, we also perform a Monte-Carlo study by including
two nonparametric functions in the model. Under the same setting as in the last study, the
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two nonparametric functions areh1(w1) = sin(w1/1.2 − 1) − k0 with w1 following a uniform
distribution on[1, 10] andh2(w2) = 3w2

2−1 with w2 following a uniform distribution on[−1, 1].
Figure6 shows the AIC scores under different combinations ofK0, K1 andK2 for one realization
of the simulation with the sample sizen = 1600. For illustration, we only plot two choices ofK0

where the top surface is forK0 = 10 and the bottom surface is forK0 = 4. The optimal choice
by the AIC criterion is(K0, K1, K2) = (4, 5, 3). The spline estimates ofh1, h2 andH under the
optimal number of knots are displayed in Figure6, and the dotted lines are the true functions.

To compare our spline based method with the penalized method inMa & Kosorok(2005a),
there are four obvious advantages of our method. First, the computational cost of our spline esti-
mateĤ is much less expensive than that used inMa & Kosorok(2005a), i.e. the cumulative sum
diagram approach. This is because the number of basis B-splines, i.e.,K0, is often taken much
smaller than the sample sizen, thus the dimension of the estimation problem is greatly reduced.
Secondly, our estimate of the transformation functionH is smooth with a higher convergence
rate. We obtain a narrower confidence interval forH shown in the right panel of Figure4.
Thirdly, we can obtain an explicit consistent estimateÎ. However, the block jackknife approach
proposed inMa & Kosorok(2005a) is not theoretically justified. At last, we do not require the
constrained optimization in our implementations.
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Table 2:The estimates and their corresponding estimated standard errors for the parametric part
for the calcification data

extreme value distribution logistic distribution
β̂1 −0.1870 −0.2562

ESD(β̂1) 0.2322 0.2119

β̂2 0.3502 0.3573

ESD(β̂2) 0.3481 0.3280

ESD: Estimated standard error

6.2 Application: Calcification data

We illustrate the proposed method in a dataset from the calcification study.Yu et al.(2001) in-
vestigated the calcification of intraocular lenses, which is an infrequently reported complication
of cataract treatment. Understanding the effect of some clinical variables on the time to calcifi-
cation of the lenses after implantation is the objective of the study. The patients were examined
by an ophthalmologist to determine the status of calcification at a random time ranging from
zero to thirty six months after implantation of the intraocular lenses. The severity of calcification
was graded into five categories ranging from zero to four. In our analysis, we simply treat those
with severity> 1 as calcified and those with severity≤ 1 as not calcified. This dataset can be
treated as the current status dataset because only the examination time and the calcification status
at examination are available. The covariates of interest includeZ1 incision length,Z2 gender (0
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distribution: extreme value distribution (solid) and logistic distribution (small dashes).

for female and1 for male), andW age at implantation/10. The original dataset has379 records.
We remove the one record with missing measurement, resulting the sample sizen = 378. This
dataset has been studied byXue et al.(2004), Lam & Xue (2005), andMa (2009). Xue et al.
(2004) andLam & Xue(2005) modeled the event time by the log-transformation. A straightfor-
ward estimation of the hazard function is not available.Ma (2009) used the cure model to fit the
data, and assumed a generalized linear model for the cure probability. For subjects not cured, the
linear and partly linear Cox proportional hazards models are used to model the survival risk.

We fit this dateset using the semiparametric additive transformation model. We assume the
error distributionF to be one of the two distributions: extreme value distribution and logistic
distribution. We approximateh andlog Ḣ by quadratic splines. The optimal choices of knots for
h andlog Ḣ are6 and5, respectively. The estimates and their corresponding estimated standard
errors for the parametric part are summarized in Table2. The estimates forh(w) based on
different error distributions are displayed in the left panel of Figure7, and the estimates ofH(v)

are plotted in the right panel of Figure7. The analysis shows very similar results for these two
error distributions. From Table2, both incision length and gender are insignificant at the 5% level
of significance. From the left panel of Figure7, h(w) increases steadily from age 50, achieving a
peak at age 60, decreasing gradually thereafter, which means that patients ages around 60 tend to
enjoy a longer time to calcification. The estimated transformation functionĤ in the right panel
of Figure7 displays a nonlinear behavior and it shows that the transformation is necessary.

We can incorporate an unknown scale parameter into to the residual error distributionF (·) to
further improve the above analysis. Our general B-spline estimation framework can also handle
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this type of transformation models easily.

Acknowledgement

The first author’s research is supported by the National Science Foundation under grant DMS-
0906497. The second author’s research is supported by the National Science Foundation under
grant CMMI-1030246 and DMS-1042967. The authors would like to thank Professor Alexis K.
F. Yu for providing the Calcification data and Professor Donglin Zeng for helpful discussions.
The authors also would like to thank the editor, the associate editor, and two reviewers for their
helpful comments and suggestions which led to a much improved presentation.

Appendix

Some useful Lemmas

We defineε-covering number (ε-bracketing number) asN(ε,A, d) (NB(ε,A, d)). The corre-
spondingε-entropy (ε-bracketing entropy) is defined asH(ε,A, d) = log N(ε,A, d) (HB(ε,A, d) =

log NB(ε,A, d)). DefineGn(δ0; ‖ · ‖) = {g : g(v) = γ′0B0(v) satisfying ‖g‖ ≤ δ0} and
Hjn(δj; ‖ · ‖) = {hj : hj(wj) = γjBj(wj) satisfying ‖hj‖ ≤ δj and

∫ 1

0
hj(wj)dwj = 0}.

Obviously,Gn(c0; ‖ · ‖∞) = Gn andHjn(cj; ‖ · ‖∞) = Hjn. Lemma1 follows from the B-spline
approximation property (6). Lemma2 is directly implied by Lemma 2.5 in (Van de Geer, 2000).
Lemma4 is adapted from Proposition 1 in (Cheng & Huang, 2010).

LEMMA 1. There existgn ∈ Gn andhjn ∈ Hjn such that

‖gn − g0‖∞ ³ K−r0
0 , (A.1)

‖Hn −H0‖∞ = O(K−r0
0 ), (A.2)

‖hjn − hj0‖∞ ³ K
−rj

j , (A.3)∥∥∥∥∥
d∑

j=1

hjn −
d∑

j=1

hj0

∥∥∥∥∥
∞

= O

(
max

j=1,...,d
{K−rj

j }
)

, (A.4)

whereHn(v) =
∫ v

lv
exp(gn(s))ds.

LEMMA 2.

H(ε,Gn(δ0; ‖ · ‖), ‖ · ‖) <∼ K0 log(1 + 4δ0/ε), (A.5)

H(ε,Hjn(δj; ‖ · ‖), ‖ · ‖) <∼ Kj log(1 + 4δj/ε) (A.6)

for 1 ≤ j ≤ d.
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LEMMA 3. Leth = (h1, . . . , hd). DefineK = {ζ(β,h, H) : β ∈ B,h ∈ ∏d
j=1Hjn, g ∈ Gn},

where the form ofζ is defined in (A.12). We have

sup
ζ∈K

|Gnζ| = OP ( max
j=0,1,...,d

{K1/2
j }). (A.7)

Proof: Define l∗(β,h, H) = δF (β′z +
∑d

j=1 hj(wj) + H(v)) + (1 − δ)[1 − F (β′z +∑d
j=1 hj(wj) + H(v))]. The construction ofl∗(·) implies that

‖l∗(β0,hn, Hn)− l∗(β0,h0, H0)‖∞ = O( max
j=0,1,...,d

{K−rj

j }) (A.8)

based on (A.2), (A.4) and M4. Thus,l∗(β0,hn, Hn) is bounded away from zero for sufficiently
largen.

For anyβ1, β2 ∈ B, h1,h2 ∈
∏d

j=1Hjn andg1, g2 ∈ Gn, we have

|ζ(β1,h1, H1)− ζ(β2,h2, H2)|
<∼ |l∗(β1,h1, H1)− l∗(β2,h2, H2)|
<∼ ‖β1 − β2‖+

d∑
j=1

‖h1j − h2j‖∞ + ‖g1 − g2‖∞. (A.9)

The first and second inequalities in the above follow from the fact thatl∗(β0,hn, Hn) is strictly
positive for sufficiently largen by (A.8), and Condition M4(a), respectively. As shown in (A.9),
the functions in the classK are Lipschitz continuous in(β,h, g). Therefore, by combining
Lemma2 and Theorem 2.7.11 in (Van de Geer & Wellner, 1996), we obtain that

HB(ε,K, L2(P )) <∼ max
0≤j≤d

{Kj} log(1 + M/ε),

whereM = max0≤j≤d{4cj}. In the end, we apply Lemma 3.4.2 in (Van de Geer & Wellner,
1996) to this uniformly bounded class of functionsK to obtain (A.7). 2

LEMMA 4. Suppose the following Conditions (B1)-(B3) hold.

B1. Pn
˙̀
β̂ = oP (n−1/2), Pn

˙̀
ĝ[ā

†] = oP (n−1/2) andPn
˙̀̂
hj

[b̄†j] = oP (n−1/2);

B2. sup{α:d(α,α0)≤C1n−r/(2r+1)}Gn(˜̀β(X; α)− ˜̀
β(X; α0)) = oP (1);

B3. P (˜̀β(X; α) − ˜̀
β(X; α0)) = −Ĩ0(β − β0) + o(‖β − β0‖) + o(n−1/2) for α satisfying

d(α, α0) ≤ C1n
−r/(2r+1).
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If α̂ is consistent and̃I0 is invertible, then we have

√
n(β̂ − β0) =

1√
n

n∑
i=1

Ĩ−1
0

˜̀
β0(Xi) + oP (1)

d−→ N(0, Ĩ−1
0 ).

LEMMA 5. (i) If a(s, t) = a(s1, s2, t) ∈ Hr
c(S1 × S2 × T ) in t relative tos1 and s2, then∫

S1
a(s1, s2, t) ds1 ∈ Hr

c′(S2 × T ) in t relative tos2.
(ii) If a(s, t), b(s, t) ∈ Hr

c(S×T ) in t relative tos, thenc(s, t) ≡ a(s, t)b(s, t) ∈ Hr
c′(S×T )

in t relative tos.
(iii) If a(s, t) ∈ Hr

c(S × T ) in t relative tos andf(·) ∈ Cdβe, thenf(a(s, t)) ∈ Hr
c′(S × T )

in t relative tos.

Proof: Let brc be the largest integer smaller thanr. Denote them-th derivative ofa(s, t)

w.r.t. t asDm
t a(s, t) for m = 0, 1, . . . , brc.

(i) Note thatDm
t a(s1, s2, t) is bounded for0 ≤ m ≤ brc, by the dominated convergence

theorem, we can take derivative inside the integral to obtain

Dm
t

(∫

S1

a(s1, s2, t) ds1

)
=

∫

S1

Dm
t a(s1, s2, t) ds1,

which implies thatDm
t (

∫
S1

a(s1, s2, t) ds1) is bounded for0 ≤ m ≤ brc. Using this and the fact
that

∣∣Dbrc
t

(∫
S1

a(s1, s2, t2) ds1

)−D
brc
t

(∫
S1

a(s1, s2, t1) ds1

)∣∣
|t2 − t1|r−brc

≤
∫

S1

sup
s1,s2

sup
t1 6=t2

|Dbrc
t a(s1, s2, t2)−Dmα

t a(s1, s2, t1)|
|t2 − t1|r−brc ds1 ≤ c′ < ∞,

for all s2 andt1 6= t2, we conclude that
∫
S1

a(s1, s2, t) ds1 ∈ Hr
c′(S2 × T ) in t relative tos2 for

somec′ < ∞.
(ii) The result is true because

Dm
t c =

∑
i+j=m

Di
taDj

t b

is bounded for0 ≤ m ≤ brc. Also we note that fori < brc,
|Di

ta(s, t2)−Di
ta(s, t1)|

|t2 − t1|r−brc =
| ∫ t2

t1
Di+1

t a(s, t) dt|
|t2 − t1|r−brc .

It can then be easily verified that

sup
s

sup
t1 6=t2

|Dbrc
t c(s, t2)−D

brc
t c(s, t1)|

|t2 − t1|r−brc < ∞.
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(iii) When 0 < α ≤ 1, the result follows from the observation that

f(a(s, t2))− f(a(s, t1))

|t2 − t1|β =
f(a(s, t2))− f(a(s, t1))

|a(s, t2)− a(s, t1)| · |a(s, t2)− a(s, t1)|
|t2 − t1|β .

Using the chain rule, the above observation and part (ii) of the lemma, the desired result can be
obtained by induction for generalβ. 2

Denote

Sk(X; α,wk) = [ ˙̀β(X; α)]k − ˙̀
g[ak](X; α)−

d∑
j=1

˙̀
hj

[bjk](X; α),

wherewk = (ak, b1k, . . . , bdk). LetWn = Gn×
∏d

j=1Hjn andN0 = {α ∈ A : d(α, α0) = o(1)}.
LEMMA 6. Under Conditions M1-M7 & P1-P2, we have

E sup
wk∈Wn

|Sk(X; α, wk)− Sk(X; α0, wk)|2 <∼ d2(α, α0) (A.10)

for all α ∈ N0 andk = 1, . . . , l.

Proof: In view of (12)-(14) , we can bound the left hand side of (A.10) by

<∼ ‖Qθ −Qθ0‖2
2 + E

{
sup

ak∈Gn

[∫ V

lv

(exp(g(s))− exp(g0(s)))ak(s)ds

]2

(Qθ −Qθ0)
2

}

+E sup
ak∈Gn

[∫ V

lv

exp(g0(s))ak(s)ds(Qθ −Qθ0)

]2

+E sup
ak∈Gn

[∫ V

lv

(exp(g(s))− exp(g0(s)))ak(s)dsQθ0

]2

+
d∑

j=1

E sup
bjk∈Hjn

[
b2
jk(Qθ −Qθ0)

2
]

after some algebra. The compactness ofGn andHjn imply that the third and fifth term in the
above are both of the order‖Qθ −Qθ0‖2

2. For the second term, we can further bound it by

E

[
sup

ak∈Gn

∫ V

lV

a2
k(s)ds

∫ V

lV

[exp(g(s))− exp(g0(s))]
2ds(Qθ −Qθ0)

2

]
.

Considering the compactness ofG andGn, we know the second term is also of the order‖Qθ −
Qθ0‖2

2. Assumption M4(a) together with Cauchy-Schwartz inequality implies that‖Qθ−Qθ0‖2
2

<∼‖β−
β0‖2 + ‖H −H0‖2

2 + ‖∑d
j=1(hj − hj0)‖2

2. Since we assume that the density forW is bounded

away from zero and infinity, we have that‖∑d
j=1(hj − hj0)‖2

2
<∼

∑d
j=1 ‖hj − hj0‖2

2 considering

the identifiability condition
∫ 1

0
hj(wj)dwj = 0. Assumption M7 implies that the fourth term is

of the order‖H −H0‖2
2. Considering the form ofd(α, α0), we conclude the whole proof.2
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Proof of Theorem1

We show the estimation consistency (9) by first establishing

P

{
(β̂ − β0)

′Z +
d∑

j=1

(ĥj − hjn)(Wj) + Ĥ(V )−Hn(V )

}2

= oP (1). (A.11)

Combining (A.11) with the identifiability Condition M3, we directly obtain(β̂ − β0) = oP (1)

which, in turn, implies thatP
{∑d

j=1(ĥj − hjn)(Wj) + Ĥ(V )−Hn(V )
}2

= oP (1). Consider-

ing the assumption M2(b) and that
∫ 1

0
hj(wj)dwj = 0 for hj ∈ Hj ∪ Hjn, we can further show∑d

j=1 ‖ĥj − hjn‖2 + ‖Ĥ − Hn‖2 = oP (1). The spline approximation result (A.2) and (A.3)
conclude the proof of (9).

In the below, we will show (A.11) to complete the proof of (9). Recall thath = (h1, . . . , hd).
Denoteh0, hn andĥ as the corresponding true value, B-spline approximation and sieve estimate,
respectively. Recall thatl∗(β0,hn, Hn) is bounded away from zero for sufficiently largen as
implied by (A.8). Then, by the definition of̂α, we have

Pn log{l∗(β̂, ĥ, Ĥ)/l∗(β0,hn, Hn)} ≥ 0,

which implies that, by the inequality thatα log(x) ≤ log(1 + α(x − 1)) for any x > 0 and
α ∈ (0, 1),

0 ≤ Pn log

[
1 + α

{
l∗(β̂, ĥ, Ĥ)

l∗(β0,hn, Hn)
− 1

}]
≡ Pnζ(β̂, ĥ, Ĥ). (A.12)

Lemma3 implies that(Pn − P )ζ(β̂, ĥ, Ĥ) = oP (1) sinceKj/n = o(1) for anyj = 0, 1, . . . , d.
Thus,Pζ(β̂, ĥ, Ĥ) ≥ oP (1) based on (A.12). Let Un(X) = l∗(β̂, ĥ, Ĥ)/l∗(β0,hn, Hn). Based
on (A.8) we know PUn(X) = 1 + oP (1), which further impliesPζ(β̂, ĥ, Ĥ) ≤ oP (1) by
the concavity ofs 7→ log(s). This in turn implies thatPζ(β̂, ĥ, Ĥ) = oP (1). This forces
P |(β′0Z +

∑d
j=1 hjn(Wj) + Hn(V )) − (β̂′Z +

∑d
j=1 ĥj(Wj) + Ĥ(V ))| = oP (1) by the strict

concavity ofs 7→ log s, Conditions M4(a), P1 and P2. It is easy to verify thatER2
n = oP (1) if

E|Rn| = oP (1). Thus, we have shown (A.11) in the end.
As for the convergence rate results (10) & (11), we first apply Theorem 3.2.5 inVan de Geer

& Wellner (1996) to establish

‖θ̂ − θ0‖2 = OP (δ1n ∨ δ2n), (A.13)

whereθ̂ is the plug-in sieve estimate ofθ and

δ1n = max
0≤j≤d

{
√

Kj}/
√

n and δ2n = max
0≤j≤d

{K−rj

j }. (A.14)
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Following similar arguments in proving the consistency, we know that (A.13) implies (10) and
(11) by choosingKj ³ n1/(2rj+1).

In the below, we show (A.13) by verifying the conditions of Theorem 3.2.5 inVan de Geer
& Wellner (1996). We first need to show that

P [`(α0)− `(α)] >∼ ‖θ − θ0‖2
2 (A.15)

for everyα in the neighborhood ofα0. Defineq(δ, t) = δ log(F (t)) + (1− δ) log(1− F (t)) and
q̈(δ, t) as its second derivative w.r.t.t. Sinceα0 maximizesα 7→ P`(α), we have

P [`(α0)− `(α)] = P

[
−q̈(δ, θ̃)

2
(θ − θ0)

2

]
,

whereθ̃ is on the line segment betweenθ andθ0. The compactness of the parameter spaces imply
thatP [`(α0) − `(α)] ³ ‖θ − θ0‖2

2. This completes the proof of (A.15). We next calculate the
order ofE sup‖θ−θ0‖2≤δ |Gn(`(α) − `(α0))| as a function ofδ, denoted asφn(δ), by the use of
Lemma 3.4.2 ofVan de Geer & Wellner(1996). Let F1n(δ) = {`(α) − `(α0) : g ∈ Gn, hj ∈
Hjn, ‖θ − θ0‖2 ≤ δ}. Using the same argument as that in the proof of Lemma3, we obtain that
HB(ε,F1n(δ), L2(P )) is bounded byC max0≤j≤d{Kj} log(1 + δ/ε). This leads to

JB(δ,F1n(δ), L2(P )) =

∫ δ

0

√
1 + HB(ε,F1n(δ), L2(P ))dε ≤ C max

0≤j≤d
{
√

Kj}δ.

The compactness ofGn andHjn implies the uniform boundedness of anyf ∈ F1n(δ). Thus,
Lemma 3.4.2 ofVan de Geer & Wellner(1996) gives

φn(δ) = max
0≤j≤d

{
√

Kj}δ + max
0≤j≤d

{Kj}/
√

n.

By solvingδ−2
1n φn(δ1n) ≤ √

n, we get the form ofδ1n in (A.14).
We next show thatPn`(α̂)−Pn`(α0) ≥ −OP (δ2

2n). The definition of̂α implies thatPn[`(α̂)−
`(α0)] ≥ An +Bn, whereAn = (Pn−P ){`(β0, Hn,hn)− `(α0)} andBn = P{`(β0, Hn,hn)−
`(α0)}. A straightforward Taylor expansion gives

An = (Pn − P )

{
˙̀
2(β0, H̃n, h̃n)(Hn −H0) +

d∑
j=1

˙̀
2+j(β0, H̃n, h̃n)(hjn − hj0)

}
,

where ˙̀
t is the Fréchet derivative of̀(β0, Hn,hn) w.r.t. thet-th argument. Considering (A.2),

(A.3) and the fact that0 < ε1 ≤ |q̇(δ, t)| ≤ ε2 < ∞ for t in some compacta ofR1, we have

P

{
˙̀
2(β0, H̃n, h̃n)(Hn −H0) +

∑d
j=1

˙̀
2+j(β0, H̃n, h̃n)(hjn − hj0)

max0≤j≤d{K−rj

j }nε

}2

→ 0 (A.16)
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for anyε > 0. LetF2n = {`(β0, H,h)− `(α0) : g ∈ Gn, hj ∈ Hjn, ‖g− g0‖∞ ≤ C0K
−r0
0 , ‖hj −

hj0‖∞ ≤ CjK
−rj

j }. Similar analysis in Lemma3 show that the bracketing entropy integral (in
terms ofL2(P )) for F2n is finite, thus yields thatF2n is P-Donsker. Combining this P-Donsker
result and (A.16), we use Corollary 2.3.12 ofVan de Geer & Wellner(1996) to conclude that√

nAn/(max0≤j≤d{K−rj

j }nε) = oP (1). By choosing some proper0 < ε < 1/2 satisfying

nε−1/2 = max0≤j≤d{K−rj

j }, we haveAn = oP (max0≤j≤d{K−2rj

j }). We can also showBn ≥
−O(max0≤j≤d{K−2rj

j }) by similar analysis of (A.15). This gives the form ofδ2n in (A.14), and
thus concludes the whole proof.2

Proof of Theorem2

We apply Lemma4 to prove this theorem by checking their Conditions B1 – B3. To facilitate
the understanding, we first sketch the verification of Condition B1 and then provide the details.
To verify B1, we first know thatPn

˙̀
β̂ = 0 sinceβ̂ maximizesl(β, ĝ, ĥ1, . . . , ĥd), β̂ is consistent

andβ0 is an interior point ofB. We next show thatb†jk (a†k) belongs toHrj

c̃j
[0, 1] (Hr0

c̃0
[lv, uv]) for

some0 < c̃j < ∞ andj = 0, 1, . . . , d such that there exists ab†jkn ∈ Hjn (a†kn ∈ Gn) satisfying

‖b†jk − b†jkn‖∞ = O(n−rj/(2rj+1)) (A.17)

‖a†kn − a†k‖∞ = O(n−r0/(2r0+1)) (A.18)

by (6) and the assumption thatKj ³ n1/(2rj+1). SincePn
˙̀̂
hj

[bjkn] = 0 andPn
˙̀
ĝ[akn] = 0 for any

bjkn ∈ Hjn andakn ∈ Gn, it remains to show

Pn

{
˙̀̂
hj

[b†jkn]− ˙̀̂
hj

[b†jk]
}

= oP (n−1/2), (A.19)

Pn

{
˙̀
ĝ[a

†
kn]− ˙̀

ĝ[a
†
k]

}
= oP (n−1/2) (A.20)

for verifying Condition B1.
Now we showb†jk ∈ H

rj

c̃j
[0, 1] and (A.19). Following the analysis in Page 2282 ofMa &

Kosorok(2005a), we can write, with̄a†I(v) =
∫ v

lv
exp(g0(s))ā

†(s)ds,

b̄†j = ΠjD(v, w)− Πj ā
†
I(v)−

∑

i6=j

Πj b̄
†
i

= ΠjD(v, w)−
∫ uv

lv

ā†I(v)Sf(v, wj)dv −
∑

i6=j

∫ 1

0

b̄†i (wi)Tf(wi, wj)dwi.

According to Lemma5 and dominated convergence theorem, we know thatb†jk(wj) ∈ H
rj

c̃j
[0, 1]

under Condition M5,b†jk ∈ L0
2(wj) anda†k ∈ L2(H) (thusa†Ik is uniformly bounded) for some
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0 < c̃j < ∞. As for (A.19), we first decompose its left hand side asI1n + I2n, where

I1n = P
{

˙̀̂
hj

[b†jkn − b†jk]− ˙̀
hj0

[b†jkn − b†jk]
}

,

I2n = (Pn − P )
{

˙̀̂
hj

[b†jkn − b†jk]
}

.

By Cauchy-Schwartz Inequality, we haveI1n
<∼ ‖b†kjn − b†kj‖∞‖θ̂ − θ0‖2 based on Conditions

M4(a), P1 & P2. Thus, (A.13) and (A.17) imply thatI1n = OP (n−2r/(2r+1)) = oP (n−1/2) since
r > 1/2.

To showI2n = oP (n−1/2), we need to make use of Lemma 3.4.2 inVan de Geer & Wellner
(1996). We first construct the following class of functions:

In =

{
fθ,bjkn

(x) = ˙̀
hj

[bjkn − b†jk](x; α) : α ∈ An(n
−r

2r+1 ) andbjkn ∈ H′
jn

(
n

−rj
2rj+1

)}
,

whereAn(δ) ≡ {α ∈ An : d(α, α0) ≤ C1δ} andH′
jn(δ) ≡ {bjkn ∈ Hjn : ‖bjkn−b†jk‖∞ ≤ C2δ}

for some0 < C1, C2 < ∞. Let Θn(δ) = {β′z + H(v) +
∑d

j=1 hj(wj) : α ∈ An(δ)}. It is easy
to verify that, for everyx,

|fθ1,bjkn1
(x)− fθ2,bjkn2

(x)| <∼ ‖θ1 − θ2‖∞ + ‖bjkn1 − bjkn2‖∞, (A.21)

whereθj ∈ Θn(n−r/(2r+1)) for j = 1, 2. Let θ1, . . . , θN(ε,Θn(n−r/(2r+1)),‖·‖∞) and

b1
jkn, . . . , b

N(ε,H′jn(n−rj/(2rj+1)),‖·‖∞)

jkn

be theε-cover forΘn(n−r/(2r+1)) andH′
jn(n−rj/(2rj+1)), respectively. Thus, we can construct the

bracket[fθi,bl
jkn
− 2Cε, fθi,bl

jkn
+ 2Cε] coveringIn. The bracket size is4Cε. Hence, we obtain

HB(ε, In, L2(PX))

≤ H(ε/(4C), Θn(n
−r

2r+1 ), ‖ · ‖∞) + H(ε/(4C),H′
jn(n

−rj
2rj+1 ), ‖ · ‖∞)

<∼ max
0≤j≤d

{Kj} log(1 + n−r/(2r+1)/ε)

based on Lemma2. The correspondingδ-bracketing entropy integral is calculated as

JB(δ, In, L2(PX)) ≡
∫ δ

0

√
1 + HB(ε, In, L2(PX)) <∼ max

0≤j≤d
{
√

Kj}n−
r

4r+2 δ1/2. (A.22)

Now, it is ready to apply Lemma 3.4.2 inVan de Geer & Wellner(1996) to showE‖Gn‖In =

o(1) implying I2n = oP (n−1/2). Note that‖f‖2
<∼ ‖bjkn − bjk†‖2 and‖f‖∞ ≤ ‖bjkn − bjk†‖∞

for anyf ∈ In, and thusδ andM in Lemma 3.4.2 ofVan de Geer & Wellner(1996) are both
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chosen asK−rj

j , i.e.,n−rj/(2rj+1). Then, by Lemma 3.4.2 ofVan de Geer & Wellner(1996) and
(A.22), we have that

E‖Gn‖In = O

(
n
−

(
r−1
4r+2

+
rj

4rj+2

)

∨ n−
4r−1
4r+2

)
= o(1).

This completes the proof of (A.19).
We next show (A.20) by similar arguments. Similarly, we have

ā†I(v) = ΠaD(v, w)−
d∑

j=1

∫ 1

0

b̄†j(wj)Uf(wj, v)dwj.

Recall that̄a†I(v) =
∫ v

lv
exp(g0(s))ā

†(s)ds. Under Condition M6 and the assumption thatg0 ∈
Hr0

c0
[lv, uv], we can show thata†Ik ∈ Hr0+1

c̃0
[lv, uv], which implies thata†k ∈ Hr0

c̃0
[lv, uv] for some

0 < c̃0 < ∞, based on Lemma5. We next show thatI ′1n = oP (n−1/2) andI ′2n = oP (n−1/2),
where

I ′1n = P
{

˙̀
ĝ[a

†
kn − a†k]− ˙̀

g0 [a
†
kn − a†k]

}
,

I ′2n = (Pn − P )
{

˙̀
ĝ[a

†
kn − a†k]

}
.

Similarly, by Cauchy-Schwartz Inequality, we can show that

I ′1n
<∼ ‖a†kn − a†k‖∞‖θ̂ − θ0‖2 + P

[∫ v

lv

(exp(ĝ)− exp(g0))(s)(a
†
kn − a†k)(s)ds

]

<∼ ‖a†kn − a†k‖∞
(
‖θ̂ − θ0‖2 + ‖Ĥ −H0‖2

)

<∼ OP (n−r/(2r+1)) = oP (n−1/2)

by choosingKj ³ n1/(2rj+1). Following similar arguments in analyzingI2n, we can show that
I ′2n = oP (n−1/2). Thus, we have verified Condition B1 in Lemma4. We again apply Lemma
3.4.2 ofVan de Geer & Wellner(1996) to verify Assumption B2. The details are skipped due to
the similarity of the previous analysis.

It remains to verify Assumption B3. This can be easily established using the Taylor expansion
in Banach space. However, we first need to reparameterize the efficient score function˜̀

β(X; α)

as

˜̀
β(X; α∗) = ZQθ(X)−

[∫ V

lv

ā†(s)dH(s) +
d∑

j=1

b̄†j(Wj)

]
Qθ(X)

≡ ˙̀
β(X; α∗)− ˙̀

η[c̄
†](X; α∗),
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whereα∗ = (β, H, h1, . . . , hd), η = (H, h1, . . . , hd) and c̄† = (ā†, b̄†1, . . . , b̄
†
d). We first derive

two useful equalities (A.26)-(A.27). LetEα∗ be the expectation corresponding to the reparametrized
likelihood under the parameterα∗. SinceEα∗ ˜̀β(X; α∗) = 0, we have

∂

∂t
|t=0Eα∗t

˜̀
β(X; α∗t ) = 0, (A.23)

whereα∗t = α∗0 + tε. Define˜̀
β,β and˜̀

β,η[c] as the first derivative of̀̃β w.r.t. β andη (along the
directionc), respectively. By settingε = (ε′β, 0, . . . , 0)′ andε = (0, e)′ = (0, ∆H, b1, . . . , bd)

′,
respectively, some calculations reveal that

E
{˜̀

β,β(X; α∗0)εβ

}
+ E

{˜̀
β(X; α∗0) ˙̀′

β(X; α∗0)εβ

}
= 0, (A.24)

E
{˜̀

β,η[e](X; α∗0)
}

+ E
{˜̀

β(X; α∗0) ˙̀′
η[e](X; α∗0)

}
= 0 (A.25)

based on (A.23). By considering the orthogonal property of˜̀
β0 and the above reparametrization,

we obtain the following two useful facts:

Ĩ0 = −E
{˜̀

β,β(X; α∗0)
}

, (A.26)

E
{˜̀

β,η[e](X; α∗0)
}

= 0 (A.27)

based on (A.24) and (A.25).
Define˜̀

β,α∗,α∗ [h1, h2](X; α∗) as the second order Fréchet derivative of˜̀
β w.r.t. α∗ along the

direction [h1, h2] at the pointα∗. The same notation rule applies to˙̀β,α∗,α∗ [h1, h2](X; α∗) and
˙̀
η,α∗,α∗ [h1, h2, h3](X; α∗). Now we are ready to express the Taylor expansion as follows.

E[˜̀β(X; α)− ˜̀
β(X; α0)]

= E[˜̀β(X; α∗)− ˜̀
β(X; α∗0)]

= E
{˜̀

β,β(X; α∗0)
}

(β − β0) + E
{˜̀

β,η[η − η0](X; α∗0)
}

+
1

2
E

{˜̀
β,α∗,α∗ [∆α∗, ∆α∗](X; α̃∗)

}

= −Ĩ0(β − β0)

+
1

2
E

{
˙̀
β,α∗,α∗ [∆α∗, ∆α∗](X; α̃∗)− ˙̀

η,α∗,α∗ [c̄
†, ∆α∗, ∆α∗](X; α̃∗)

}
,

where∆α∗ = α∗ − α∗0 andα̃∗ lies betweenα∗ andα∗0. The last equation in the above follows
from (A.26) & (A.27). Now we only need to show that the second term in the last equation is of
the order

o(‖β − β0‖) + o(n−1/2).
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Let ∆H = H −H0 and∆hj = hj − hj0. After some algebra, we obtain

˙̀
β,α∗,α∗ [∆α∗, ∆α∗](X; α̃∗)

= ZQ̈θ̃

[
Z ′(β − β0) + ∆H(V ) +

d∑
j=1

∆hj(Wj)

]2

,

˙̀
η,α∗,α∗ [c̄

†, ∆α∗, ∆α∗](X; α̃∗)

=

[∫ V

lv

ā†(s)dH(s) +
d∑

j=1

b̄†j(Wj)

]
Q̈θ̃

[
Z ′(β − β0) + ∆H(V ) +

d∑
j=1

∆hj(Wj)

]2

+2

[∫ V

lv

ā†(s)d∆H(s)

]
Q̇θ̃

[
Z ′(β − β0) + ∆H(V ) +

d∑
j=1

∆hj(Wj)

]
,

whereθ̃ lies betweenθ andθ0. Considering the assumption thatd(α, α0) ≤ C1n
−r/(2r+1) and the

previously shown result thata†k andb†jk are both uniformly bounded, we can verify Assumption
B3 based on the above expressions. This completes the proof of Theorem2. 2

Proof of Theorem3

To facilitate the understanding, we first provide the roadmap of our proof here. For simplicity,
we write Sk(X; α0, wk) and Sk(X; α̂, wk) as S0

k [wk] and Ŝk[wk], respectively. Based on the
definitions ofĨ0 and (19), we know their(k, k′)-th entry can be written as

Ĩ0(k, k′) = ES0
k [w

†
k]S

0
k′ [w

†
k′ ], (A.28)

Î(k, k′) = PnŜk[ŵ
†
k]Ŝk′ [ŵ

†
k′ ], (A.29)

wherew†
k = (a†k, b

†
1k, . . . , b

†
dk) andŵ†

k = ((γ†0k)
′B0, (γ

†
1k)

′B1, . . . , (γ
†
dk)

′Bd). Recall thatWn =

Gn ×
∏d

j=1Hjn. Definew̃†
k ≡ arg minwk∈Wn E{S0

k [wk]}2. To establisĥI
P→ Ĩ0, we need to

establish the following three equations step by step:

Î(k, k′) = ES0
k [ŵ

†
k]S

0
k′ [ŵ

†
k′ ] + oP (1), (A.30)

ES0
k [ŵ

†
k]S

0
k′ [ŵ

†
k′ ]− ES0

k [w̃
†
k]S

0
k′ [w̃

†
k′ ] = oP (1), (A.31)

ES0
k [w̃

†
k]S

0
k′ [w̃

†
k′ ]− Ĩ0(k, k′) = o(1). (A.32)

We first consider (A.30). It is easy to show that

E

[
sup

α∈N0,wk∈Wn

|Sk(X; α, wk)|2
]
≤ const.< ∞ (A.33)
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sinceA andWk are both assumed to be compact. Note that (A.33) implies that{Sk(x; α,wk) :

α ∈ N0, wk ∈ Wn} is P-Glivenko-Cantelli. Then, we know that, uniformly overwk, wk′ ∈ Wn,

PnŜk[wk]Ŝk′ [wk′ ] = EŜk[wk]Ŝk′ [wk′ ] + oP (1) (A.34)

by considering Corollary 9.27 ofKosorok(2008). Uniformly overwk, wk′ ∈ Wn, we have
∣∣∣EŜk[wk]Ŝk′ [wk′ ]− ES0

k [wk]S
0
k′ [wk′ ]

∣∣∣
≤ E

∣∣∣Ŝk[wk](Ŝk′ [wk′ ]− S0
k′ [wk′ ])

∣∣∣ + E
∣∣∣S0

k′ [wk′ ](Ŝk[wk]− S0
k [wk])

∣∣∣
≤ ‖Ŝ2

k [wk]‖2‖Ŝk′ [wk′ ]− S0
k′ [wk′ ]‖2 + ‖S0

k′ [wk′ ]‖2‖Ŝk[wk]− S0
k [wk]‖2

≤ oP (1), (A.35)

where the last inequality follows from Lemma6 (together with the consistency of̂α) & (A.33).
Combining (A.34) and (A.35), we have obtained that

sup
wk,wk′∈Wn

∣∣∣PnŜk[wk]Ŝk′ [wk′ ]− ES0
k [wk]S

0
k′ [wk′ ]

∣∣∣ = oP (1), (A.36)

which implies (A.30).
We next consider (A.31). By similar analysis applied to (A.35), we know that (A.31) holds if

‖S0
k [w̃

†
k]−S0

k [ŵ
†
k]‖2 = oP (1). DenoteMn(w) andM(w) asPnŜ

2
k [w] and‖S0

k [w]‖2
2, respectively.

The definition ofw̃†
k further implies that

‖S0
k [w̃

†
k]− S0

k [ŵ
†
k]‖2

2 = ‖S0
k [ŵ

†
k]‖2

2 − ‖S0
k [w̃

†
k]‖2

2,

= PnŜ
2
k [ŵ

†
k]− ‖S0

k [w̃
†
k]‖2

2 + op(1),

= Mn(ŵ†
k)−M(w̃†

k) + oP (1),

where the second equality follows from (A.36). By the definitions of̂w†
k andw̃†

k, we have

Mn(ŵ†
k)−M(ŵ†

k) ≤ Mn(ŵ†
k)−M(w̃†

k) ≤ Mn(w̃†
k)−M(w̃†

k).

Therefore, we conclude the proof of (A.31) by applying (A.36) to the above inequality.
In the end, we consider (A.32). Again, by the form of̃I0(k, k′) given in (A.28) and similar

analysis in (A.31), we only need to show‖S0
k [w̃

†
k] − S0

k [w
†
k]‖2 = o(1). By the definitions ofw̃†

k
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andw†
k, we have

‖S0
k [w̃

†
k]− S0

k [w
†
k]‖2

2 = inf
wk∈Wn

E

[
˙̀
g0 [a

†
k]− ˙̀

g0 [ak] +
d∑

j=1

( ˙̀
hj0

[b†jk]− ˙̀
hj0

[bjk])

]2

<∼ inf
wk∈Wn

{
‖ ˙̀

g0 [a
†
k]− ˙̀

g0 [ak]‖2
2 +

d∑
j=1

‖ ˙̀
hj0

[b†jk]− ˙̀
hj0

[bjk]‖2
2

}

<∼ inf
ak∈Gn

‖ ˙̀
g0 [a

†
k]− ˙̀

g0 [ak]‖2
2 +

d∑
j=1

inf
bjk∈Hjn

‖ ˙̀
hj0

[b†jk]− ˙̀
hj0

[bjk]‖2
2

<∼ inf
ak∈Gn

‖a†k − ak‖2
∞ +

d∑
j=1

{
inf

bjk∈Hjn

‖b†jk − bjk‖2
∞

}
,

where the last inequality trivially follows from the form of˙̀g[a] and ˙̀
hj

[bj]. In the proof of
Theorem2, we show thata†k ∈ Hr0

c̃0
[lv, uv] and b†jk ∈ H

rj

c̃j
[0, 1]. Thus, we have‖S0

k [w̃
†
k] −

S0
k [w

†
k]‖2 → 0 based on the last inequality in the above. This completes the whole proof.2
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