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Introduction
@00

An Example

Consider the functional linear model:
1
Y =« +/ X (t)B(t)dt + e,
0

where
e € W3*(0,1), the Sobolev space of order m
e X is a random process

@ c is zero-mean error
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covariance kernel and reproducing kernel to share common
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o The existing methods for inference rely on functional
principle component analysis (FPCA), which requires the
covariance kernel and reproducing kernel to share common
ordered eigenfunctions, i.e., perfectly aligned; Miiller and
Stadtmiiller (2005), Cai and Hall (2006), Hall and
Horowitz (2007), etc.

@ There is a lack of unified treatment for various inference
problems such as confidence/prediction interval
construction, (adaptive) hypothesis testing, and functional
contrast testing.
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Model and Assumptions:

o Model:
=a+ / Xi( t)dt + €,
where (Y7, X1),..., (Y, X,) are éid samples and E{¢;} =0,
E{2} =1
e Functional parameter: 3 € W3"(0, 1), the m-order Sobolev
space

e Covariance function: C(s,t) = E{X(s)X(t)} satisfies

/Cst s)ds =0 B=0



FPCA vs. Penalization
0e000

FPCA Estimation

e Sample covariance function:

n

Cls,t) = - D2 (Xils) — X()(Xi(t) — X(0)
=1
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FPCA Estimation

e Sample covariance function:
Bls,t) = - S (Xils) ~ X()(Xilt) ~ X(1)

n-
=1

o KarhunenLoéve decomposition:
o C(s,t) = Zl?;l AWk (8)Yr(t) with Ay > A > ...

o C(s,t) = 3272, Arthi(s)tn(t) with Ay > Ag > ...

o Estimate § by B = ?)\11/#\1 +/521/b\2 + - +an7$kn, where Zj are
estimated basis coefficients.
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Penalized Estimation:

a,p) = ln
(047/6> argaERﬁrélI}élm(O 1) ( 75)7

where
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Advantage of Penalized Estimation

No perfect alignment assumption

Provides a unified framework for inference

(]

Easy to make nonparametric inference within
regularization framework

Estimation performance is better
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A Graphical Comparison of FPCA and Penalized

Estimation: Cai and Yuan (2012)

ko controls the alignment between covariance and reproducing
kernels. Larger value of kg yields more misalignment.
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Assumption: Simultaneous Diagonalization

There exists functions ¢, and nondecreasing sequences p,, =< v2*

for some k > 0 such that for any v, u > 1,

1,1
/ / C(s,t)pu(s)pu(t)dsdt = 6y,
o Jo
and
1
| Ao = b,

Furthermore, any 5 € W3"(0,1) satisfies 8 =) b,p, for some
real sequence b,,.



Construction of CI

Let po = a+ fol xo(t)B(t)dt be the regression mean at X = xg.
The 95% confidence interval for g is

CI : fip £ 1.960,/v/n,

where ,L/l\,o =a-+ fol xO(t)B\(t)dta 0721 =1+ Zu 14:6)%01/’
2y = [y zo(t)pu(t)dt.



Construction of PI

Let Yy be future response generated from Yy = pg + ¢, then the
95% prediction interval for Yj is

PI : fig +1.96/1 + 02 /n.



CI/PI
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Theoretical Validity

Theorem

If € is sub-exponential, the true function By is suitably smooth,
and A is properly tuned, e.g., A < n~k/ kD) - Then as n — oo,

P(uo € CI) — 0.95, and P(Yy € PI) — 0.95.
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Penalized Likelihood Ratio Test

Testing hypotheses Hy : a = oy, 8 = fg versus Hy : Hy is not
true. Define the penalized likelihood ratio test (PLRT)

PLRT,, = {, (00, Bo) — lux(@, B),

where (@, B\) is the penalized MLE.



Wilks Phenomenon

Wilks phenomenon means that the null limit distribution of the
likelihood ratio is free of any nuisance parameters and design
distribution.

Theorem

|

Suppose Hy holds and E{e*} < oo, and ) is suitably tuned, e.g.,
X < n~4k/(4k+1) - Then

d
o PLRT, =~ X, ,

where

52— Joo (1 + 2*)~dw v L (Jo (1 + 229)~1dz)?
Joo(U+a)=2de’ " oz (f)(1+ 22%)~2dz)

c is constant free of ag, By, distribution of X .
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Minimax Property of PLRT

Suppose we want to test Hy : 8 = 0, but the following local
alternative hypothesis is true:

Hln:ﬂzﬁna

where $3, satisfies ||,z > cn=2k/(4k+1),

For arbitrary € > 0, there exist ¢ such that for any n > 1:

inf Pg (reject Hy) > 1 — €.
BnEWém(O71):Hﬁn||L2ch—2k/(4k+1) ﬁ’ﬂ( ] )
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An Example: Standard Brownian Motion

When m = 2 (cubic spline) and X is Brownian motion with
covariance function

C(s,t) = min{s,t}, s,t € (0,1),

we have 02 ~ 1.08 and u,, ~ 0.31\"1/6, Therefore,

d
2n(1.08) - PLRT,, ~ X2 .
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An Adaptive Testing Procedure Based on Likelihood

Ratio

If the smoothness degrees of both X and 8 are unknown, how
well can we do? We will propose a testing procedure adaptive
to these smoothness degrees and show that our procedure
achieves the minimax rate of testing.



Adaptive Test
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Let PLRT (k) be the penalized likelihood ratio test associated
with &, and

_ PLRT(k) — E{PLRT(k)}
B /Var(PLRT(k))

Ck=1,2,... kn.

Tk

Define
AT = B,( max 7, — B
(1<k<kn k n);

where B, satisfies 27 B2 exp(B2) = k2.

n



Adaptive Test
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Size of the Test

A valid test should achieve the correct size.
Theorem

Under Hy : 8 =0, if k, < (logn)%, for some constant
do € (0,1/2), then for any v € (0,1),

P(AT <cy) =+ 1—7, asn— oo,

where ¢y = —log(—log(1 —7)).




Adaptive Test
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Adaptive Minimax Rate

Suppose k* is the true value of k. Let

6(,“’ k*) _ n—2k*/(4k*+1)(10g logn)k*/(%*"'l).

Theorem

Suppose ky, = (logn)®, for some constant dy € (0,1/2). Then,
for any € € (0,1), there exists ¢ > 0 s.t. for anyn > 1,

in Pg(reject Hyp) > 1 — €.
I8l ota(n k) T2 )
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Simulation Setup

o X(t 100 1V AN Vj(t), where

Aj= (4 —0.5) 2172 Vi(t) = V2sin((j — 0.5)mt),

iid

M- --smoo ~ N(0,1).
@ The test function is 3 e \/ﬁ 2]1.0:01 05V (1),

where B = 0,0.1,1 and £ = 0.1, 0.5, 1.

e Draw n iid samples from Y = fol X (t)Bo(t)dt + N(0,1) for
n = 100, 500.
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Figure: Plots of fy(t) when B =1
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Coverage Proportion of Confidence Interval

Table: 100x coverage proportion (average length) of CI when
B=¢=1

n = 100 n = 500
95.11(0.56)  94.99(0.39)
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Size Comparison with Hilgert, Mas and Verzelen (2013)

Hilgert, Mas and Verzelen (2013) proposed an FPCA-based
testing procedure which is adaptive to the truncation parameter
ky. We compare our approaches with theirs, denoted HMV.

Table: 100xsize when B =0

n =100 n =500
HMV 4.97 5.26

PLRT 0.45 5.19
AT 5.13 5.04
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Power Comparison with Hilgert, Mas and Verzelen

(2013)

Table: 100xpower when n = 100

Test B=01 B=1

£=01 HMV 5.80 81.78
AT 6.12 81.56

PLRT  20.00 84.20

¢&E=1 HMV 7.07 99.84
AT 9.47 99.98

PLRT  23.95 99.98
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Power Comparison with Hilgert, Mas and Verzelen

(2013)

Table: 100xpower when n = 500

Test B=01 B=1

£=01 HMV 8.48 100
AT 9.57 100

PLRT  21.27 100

¢&E=1 HMV 16.13 100
AT 26.51 100

PLRT  34.08 100
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Summary

We propose applicable procedures for inference in
functional data analysis

Our approaches do not require perfect alignment

Our approaches are asymptotic valid, i.e., desired size and
coverage probability

o The PLRT and adaptive testing procedures are more
powerful than existing ones.

Extensions to general cases not reported here:
o quasi-likelihood framework
e composite hypotheses
o adaptive testing in non-Gaussian error



Thank you for your attention!
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