FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Summary

Nonparametric Inference In Functional Data

Zuofeng Shang

Purdue University

Joint work with Guang Cheng from Purdue Univ.

ション ふゆ マ キャット キャット しょう

Introduction $\bullet 00$	FPCA vs. Penalization	CI/PI 0000	Hypothesis Testing 0000	Adaptive Test 0000	Simulation 000000	Summary 00
An Ex	ample					

Consider the functional linear model:

$$Y = \alpha + \int_0^1 X(t)\beta(t)dt + \epsilon,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

where

- $\beta \in W_2^m(0,1)$, the Sobolev space of order m
- X is a random process
- ϵ is zero-mean error

Introduction $0 \bullet 0$	FPCA vs. Penalization	CI/PI 0000	Hypothesis Testing 0000	Adaptive Test 0000	Simulation 000000	Summary 00
Gener	al Aim					

• how to construct confidence interval for the regression mean $\mu = \alpha + \int_0^1 x(t)\beta(t)dt$?

うして ふゆう ふほう ふほう ふしつ

• how to construct prediction interval for Y_{future} ?

• how to test $H_0: \beta = \beta_0$ versus $H_1: \beta \neq \beta_0$?

Introduction $0 \bullet 0$	FPCA vs. Penalization	CI/PI 0000	Hypothesis Testing 0000	Adaptive Test 0000	Simulation 000000	Summary 00
Gener	al Aim					

• how to construct confidence interval for the regression mean $\mu = \alpha + \int_0^1 x(t)\beta(t)dt$?

うして ふゆう ふほう ふほう ふしつ

• how to construct prediction interval for Y_{future} ?

• how to test $H_0: \beta = \beta_0$ versus $H_1: \beta \neq \beta_0$?

Introduction $0 \bullet 0$	FPCA vs. Penalization	CI/PI 0000	Hypothesis Testing 0000	Adaptive Test 0000	Simulation 000000	Summary 00
Gener	al Aim					

• how to construct confidence interval for the regression mean $\mu = \alpha + \int_0^1 x(t)\beta(t)dt$?

- how to construct prediction interval for Y_{future} ?
- how to test $H_0: \beta = \beta_0$ versus $H_1: \beta \neq \beta_0$?

Introduction $0 \bullet 0$	FPCA vs. Penalization	CI/PI 0000	Hypothesis Testing 0000	Adaptive Test 0000	Simulation 000000	Summary 00
Gener	al Aim					

• how to construct confidence interval for the regression mean $\mu = \alpha + \int_0^1 x(t)\beta(t)dt$?

うして ふゆう ふほう ふほう ふしつ

- how to construct prediction interval for Y_{future} ?
- how to test $H_0: \beta = \beta_0$ versus $H_1: \beta \neq \beta_0$?

000	00000	0000	0000	0000	000000	00		
Literature Review								

- The existing methods for inference rely on functional principle component analysis (FPCA), which requires the covariance kernel and reproducing kernel to share common ordered eigenfunctions, i.e., perfectly aligned; Müller and Stadtmüller (2005), Cai and Hall (2006), Hall and Horowitz (2007), etc.
- There is a lack of unified treatment for various inference problems such as confidence/prediction interval construction, (adaptive) hypothesis testing, and functional contrast testing.

Introduction $00 \bullet$	FPCA vs. Penalization 00000	CI/PI 0000	Hypothesis Testing 0000	Adaptive Test 0000	Simulation 000000	Summary 00
Litera	ture Review	7				

- The existing methods for inference rely on functional principle component analysis (FPCA), which requires the covariance kernel and reproducing kernel to share common ordered eigenfunctions, i.e., perfectly aligned; Müller and Stadtmüller (2005), Cai and Hall (2006), Hall and Horowitz (2007), etc.
- There is a lack of unified treatment for various inference problems such as confidence/prediction interval construction, (adaptive) hypothesis testing, and functional contrast testing.

Introduction	FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	$\underset{000000}{\text{Simulation}}$	Summary
000	•0000	0000	0000	0000		00

Model and Assumptions:

• Model:

$$Y_i = \alpha + \int_0^1 X_i(t)\beta(t)dt + \epsilon_i,$$

where $(Y_1, X_1), \ldots, (Y_n, X_n)$ are *iid* samples and $E\{\epsilon_i\} = 0$, $E\{\epsilon_i^2\} = 1$

- Functional parameter: $\beta \in W_2^m(0,1)$, the *m*-order Sobolev space
- Covariance function: $C(s,t) = E\{X(s)X(t)\}$ satisfies

$$\int_0^1 C(s,t)\beta(s)ds = 0 \Leftrightarrow \beta = 0$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Introduction	FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Simulation	Summary
000	•0000	0000	0000	0000	000000	00

Model and Assumptions:

• Model:

$$Y_i = \alpha + \int_0^1 X_i(t)\beta(t)dt + \epsilon_i,$$

where $(Y_1, X_1), \ldots, (Y_n, X_n)$ are *iid* samples and $E\{\epsilon_i\} = 0$, $E\{\epsilon_i^2\} = 1$

- Functional parameter: $\beta \in W_2^m(0,1)$, the *m*-order Sobolev space
- Covariance function: $C(s,t) = E\{X(s)X(t)\}$ satisfies

$$\int_0^1 C(s,t)\beta(s)ds = 0 \Leftrightarrow \beta = 0$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Introduction	FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Simulation	Summary
000	•0000	0000	0000	0000	000000	00
		•				

Model and Assumptions:

• Model:

$$Y_i = \alpha + \int_0^1 X_i(t)\beta(t)dt + \epsilon_i,$$

where $(Y_1, X_1), \ldots, (Y_n, X_n)$ are *iid* samples and $E\{\epsilon_i\} = 0$, $E\{\epsilon_i^2\} = 1$

- Functional parameter: $\beta \in W_2^m(0,1)$, the *m*-order Sobolev space
- Covariance function: $C(s,t) = E\{X(s)X(t)\}$ satisfies

$$\int_0^1 C(s,t)\beta(s)ds = 0 \Leftrightarrow \beta = 0$$

Introduction	FPCA vs. Penalization 00000	CI/PI	Hypothesis Testing	Adaptive Test	Simulation	Summary
000		0000	0000	0000	000000	00
FDCA	Fatimation					

• Sample covariance function:

$$\widehat{C}(s,t) = \frac{1}{n} \sum_{i=1}^{n} (X_i(s) - \bar{X}(s))(X_i(t) - \bar{X}(t))$$

• KarhunenLoéve decomposition:

• $C(s,t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s) \psi_k(t)$ with $\lambda_1 \ge \lambda_2 \ge \dots$

• $\widehat{C}(s,t) = \sum_{k=1}^{\infty} \widehat{\lambda}_k \widehat{\psi}_k(s) \widehat{\psi}_k(t)$ with $\widehat{\lambda}_1 \ge \widehat{\lambda}_2 \ge \dots$

• Estimate β by $\hat{\beta} = \hat{b}_1 \hat{\psi}_1 + \hat{b}_2 \hat{\psi}_2 + \dots + \hat{b}_{k_n} \hat{\psi}_{k_n}$, where \hat{b}_j are estimated basis coefficients.

Introduction 000	FPCA vs. Penalization 00000	CI/PI 0000	Hypothesis Testing 0000	Adaptive Test 0000	$\underset{000000}{\text{Simulation}}$	Summary 00
FPCA	Estimation					

• Sample covariance function:

$$\widehat{C}(s,t) = \frac{1}{n} \sum_{i=1}^{n} (X_i(s) - \bar{X}(s))(X_i(t) - \bar{X}(t))$$

- KarhunenLoéve decomposition:
 - $C(s,t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s) \psi_k(t)$ with $\lambda_1 \ge \lambda_2 \ge \dots$
 - $\widehat{C}(s,t) = \sum_{k=1}^{\infty} \widehat{\lambda}_k \widehat{\psi}_k(s) \widehat{\psi}_k(t)$ with $\widehat{\lambda}_1 \ge \widehat{\lambda}_2 \ge \dots$
- Estimate β by $\hat{\beta} = \hat{b}_1 \hat{\psi}_1 + \hat{b}_2 \hat{\psi}_2 + \dots + \hat{b}_{k_n} \hat{\psi}_{k_n}$, where \hat{b}_j are estimated basis coefficients.

Introduction 000	FPCA vs. Penalization 00000	CI/PI 0000	Hypothesis Testing 0000	Adaptive Test 0000	$\underset{000000}{\text{Simulation}}$	Summary 00
FPCA	Estimation					

• Sample covariance function:

$$\widehat{C}(s,t) = \frac{1}{n} \sum_{i=1}^{n} (X_i(s) - \bar{X}(s))(X_i(t) - \bar{X}(t))$$

- KarhunenLoéve decomposition:
 - $C(s,t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s) \psi_k(t)$ with $\lambda_1 \ge \lambda_2 \ge \dots$
 - $\widehat{C}(s,t) = \sum_{k=1}^{\infty} \widehat{\lambda}_k \widehat{\psi}_k(s) \widehat{\psi}_k(t)$ with $\widehat{\lambda}_1 \ge \widehat{\lambda}_2 \ge \dots$
- Estimate β by $\hat{\beta} = \hat{b}_1 \hat{\psi}_1 + \hat{b}_2 \hat{\psi}_2 + \dots + \hat{b}_{k_n} \hat{\psi}_{k_n}$, where \hat{b}_j are estimated basis coefficients.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Summary
00000				

Penalized Estimation:

$$(\widehat{\alpha}, \widehat{\beta}) = \arg \min_{\alpha \in \mathbb{R}, \beta \in W_2^m(0,1)} \ell_{n,\lambda}(\alpha, \beta),$$

where

$$\ell_{n,\lambda}(\alpha,\beta) = \frac{1}{2n} \sum_{i=1}^{n} (Y_i - \alpha - \int_0^1 X_i(t)\beta(t)dt)^2 + \frac{\lambda}{2} \int_0^1 |\beta^{(m)}(t)|^2 dt.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Advantage of Penalized Estimation

• No perfect alignment assumption

- Provides a unified framework for inference
- Easy to make nonparametric inference within regularization framework

うして ふゆう ふほう ふほう ふしつ

Introduction FPCA vs. Penalization CI/PI Hypothesis Testing Adaptive Test Simulation Summary 0000

Advantage of Penalized Estimation

- No perfect alignment assumption
- Provides a unified framework for inference
- Easy to make nonparametric inference within regularization framework

ション ふゆ マ キャット マックシン

Advantage of Penalized Estimation

- No perfect alignment assumption
- Provides a unified framework for inference
- Easy to make nonparametric inference within regularization framework

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Introduction FPCA vs. Penalization CI/PI Hypothesis Testing Adaptive Test Simulation Summary 0000

Advantage of Penalized Estimation

- No perfect alignment assumption
- Provides a unified framework for inference
- Easy to make nonparametric inference within regularization framework

ション ふゆ マ キャット マックシン

Introduction FPCA vs. Penalization CI/PI Hypothesis Testing Adaptive Test Simulation Summar A Graphical Comparison of FPCA and Penalized Estimation: Cai and Yuan (2012)

 k_0 controls the alignment between covariance and reproducing kernels. Larger value of k_0 yields more misalignment.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

There exists functions φ_{ν} and nondecreasing sequences $\rho_{\nu} \simeq \nu^{2k}$ for some k > 0 such that for any $\nu, \mu \ge 1$,

$$\int_0^1 \int_0^1 C(s,t)\varphi_\nu(s)\varphi_\mu(t)dsdt = \delta_{\nu\mu},$$

and

$$\int_0^1 \varphi_{\nu}^{(m)}(t)\varphi_{\mu}^{(m)}(t)dt = \rho_{\nu}\delta_{\nu\mu}.$$

Furthermore, any $\beta \in W_2^m(0,1)$ satisfies $\beta = \sum_{\nu} b_{\nu} \varphi_{\nu}$ for some real sequence b_{ν} .

Introduction	FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Simulation	Summary
000	00000	o●oo	0000	0000	000000	00
Constru	uction of CI					

Let $\mu_0 = \alpha + \int_0^1 x_0(t)\beta(t)dt$ be the regression mean at $X = x_0$. The 95% confidence interval for μ_0 is

 $CI: \hat{\mu}_0 \pm 1.96\sigma_n/\sqrt{n},$

うつう 山田 エル・エー・ 山田 うらう

where $\widehat{\mu}_0 = \widehat{\alpha} + \int_0^1 x_0(t)\widehat{\beta}(t)dt, \ \sigma_n^2 = 1 + \sum_{\nu} \frac{x_{\nu}^2}{1+\lambda\rho_{\nu}}, \ x_{\nu} = \int_0^1 x_0(t)\varphi_{\nu}(t)dt.$

Introduction	FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Simulation	Summary
000	00000	oo●o	0000	0000	000000	00
Constru	uction of PI					

Let Y_0 be future response generated from $Y_0 = \mu_0 + \epsilon$, then the 95% prediction interval for Y_0 is

 $PI: \hat{\mu}_0 \pm 1.96\sqrt{1 + \sigma_n^2/n}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Simulation	Summary
		0000				

Theoretical Validity

Theorem

If ϵ is sub-exponential, the true function β_0 is suitably smooth, and λ is properly tuned, e.g., $\lambda \simeq n^{-k/(2k+1)}$. Then as $n \to \infty$,

 $P(\mu_0 \in CI) \to 0.95, \text{ and } P(Y_0 \in PI) \to 0.95.$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Penalized Likelihood Ratio Test

Testing hypotheses $H_0: \alpha = \alpha_0, \beta = \beta_0$ versus $H_1: H_0$ is not true. Define the penalized likelihood ratio test (PLRT)

$$PLRT_n = \ell_{n,\lambda}(\alpha_0,\beta_0) - \ell_{n,\lambda}(\widehat{\alpha},\widehat{\beta}),$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

where $(\widehat{\alpha}, \widehat{\beta})$ is the penalized MLE.

	FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test		Summary
000	00000	0000	0000	0000	000000	00

Wilks Phenomenon

Wilks phenomenon means that the null limit distribution of the likelihood ratio is free of any nuisance parameters and design distribution.

Theorem

Suppose H_0 holds and $E\{\epsilon^4\} < \infty$, and λ is suitably tuned, e.g., $\lambda \simeq n^{-4k/(4k+1)}$. Then

$$2n\sigma^2 \cdot PLRT_n \stackrel{d}{\approx} \chi^2_{u_n},$$

where

$$\sigma^{2} = \frac{\int_{0}^{\infty} (1+x^{2k})^{-1} dx}{\int_{0}^{\infty} (1+x^{2k})^{-2} dx}, \ u_{n} = \frac{1}{c\lambda^{\frac{1}{2k}}} \frac{(\int_{0}^{1} (1+x^{2k})^{-1} dx)^{2}}{(\int_{0}^{1} (1+x^{2k})^{-2} dx)},$$

c is constant free of α_0, β_0 , distribution of X.

Suppose we want to test $H_0: \beta = 0$, but the following local alternative hypothesis is true:

$$H_{1n}:\beta=\beta_n,$$

where β_n satisfies $\|\beta_n\|_{L^2} \ge cn^{-2k/(4k+1)}$.

Theorem

For arbitrary $\varepsilon > 0$, there exist c such that for any $n \ge 1$:

$$\inf_{\beta_n \in W_2^m(0,1): \|\beta_n\|_{L^2} \ge cn^{-2k/(4k+1)}} P_{\beta_n}(reject \ H_0) \ge 1 - \varepsilon.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

When m = 2 (cubic spline) and X is Brownian motion with covariance function

$$C(s,t) = \min\{s,t\}, \ s,t \in (0,1),$$

we have $\sigma^2 \approx 1.08$ and $u_n \approx 0.31 \lambda^{-1/6}$. Therefore,

$$2n(1.08) \cdot PLRT_n \stackrel{d}{\approx} \chi^2_{u_n}.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Introduction FPCA vs. Penalization CI/PI Hypothesis Testing Adaptive Test Simulation Summary 0000 An Adaptive Testing Procedure Based on Likelihood Ratio

If the smoothness degrees of both X and β are unknown, how well can we do? We will propose a testing procedure adaptive to these smoothness degrees and show that our procedure achieves the minimax rate of testing.

FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Summary
			0000	

Let PLRT(k) be the penalized likelihood ratio test associated with k, and

$$\tau_k = \frac{PLRT(k) - E\{PLRT(k)\}}{\sqrt{Var(PLRT(k))}}, \ k = 1, 2, \dots, k_n.$$

Define

$$AT = B_n(\max_{1 \le k \le k_n} \tau_k - B_n),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

where B_n satisfies $2\pi B_n^2 \exp(B_n^2) = k_n^2$.

Introduction	FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test 0000	Simulation	Summary
000	00000	0000	0000		000000	00

Size of the Test

A valid test should achieve the correct size.

Theorem

Under $H_0: \beta = 0$, if $k_n \asymp (\log n)^{d_0}$, for some constant $d_0 \in (0, 1/2)$, then for any $\gamma \in (0, 1)$,

$$P(AT \le c_{\gamma}) \to 1 - \gamma, \text{ as } n \to \infty,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

where $c_{\gamma} = -\log(-\log(1-\gamma))$.

Adaptive Minimax Rate

Suppose k^* is the true value of k. Let

$$\delta(n,k^*) = n^{-2k^*/(4k^*+1)} (\log \log n)^{k^*/(4k^*+1)}$$

Theorem

Suppose $k_n \asymp (\log n)^{d_0}$, for some constant $d_0 \in (0, 1/2)$. Then, for any $\varepsilon \in (0, 1)$, there exists c > 0 s.t. for any $n \ge 1$,

$$\inf_{\|\beta\|_{L^2} \ge c\delta(n,k^*)} P_\beta(reject \ H_0) \ge 1 - \varepsilon.$$

000	00000	0000	0000	0000	000000	00
Introduction	FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Simulation	Summary

Simulation Setup

•
$$X(t) = \sum_{j=1}^{100} \sqrt{\lambda_j} \eta_j V_j(t)$$
, where
 $\lambda_j = (j - 0.5)^{-2} \pi^{-2}, \quad V_j(t) = \sqrt{2} \sin((j - 0.5)\pi t),$
 $\eta_1, \dots, \eta_{100} \stackrel{iid}{\sim} N(0, 1).$
• The test function is $\beta_0^{B,\xi} = \frac{B}{\sqrt{\sum_{k=1}^{k} k^{-2\xi-1}}} \sum_{j=1}^{100} j^{-\xi-0.5} V_j(t),$
where $B = 0, 0.1, 1$ and $\xi = 0.1, 0.5, 1.$

• Draw *n* iid samples from $Y = \int_0^1 X(t)\beta_0(t)dt + N(0,1)$ for n = 100,500.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

FPCA vs.	Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Simulation	Summary
					00000	

Figure: Plots of $\beta_0(t)$ when B = 1

Time

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Table: 100× coverage proportion (average length) of CI when $B=\xi=1$

 $\begin{array}{ll} n = 100 & n = 500 \\ \hline 95.11(0.56) & 94.99(0.39) \end{array}$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Hilgert, Mas and Verzelen (2013) proposed an FPCA-based testing procedure which is adaptive to the truncation parameter k_n . We compare our approaches with theirs, denoted HMV.

	n = 100	n = 500
HMV	4.97	5.26
PLRT	5.45	5.19
AT	5.13	5.04

うして ふゆう ふほう ふほう ふしつ

Table: 100×size when B = 0

Table: 100×power when $n = 100$				
	Test	B = 0.1	B = 1	
$\xi = 0.1$	HMV	5.80	81.78	
	AT	6.12	81.56	
	PLRT	20.00	84.20	
$\xi = 1$	HMV	7.07	99.84	
	AT	9.47	99.98	
	PLBT	23.95	99 98	

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

Table: 100×power when $n = 500$				
	Test	B = 0.1	B = 1	
$\xi = 0.1$	HMV	8.48	100	
	AT	9.57	100	
	PLRT	21.27	100	
$\xi = 1$	HMV	16.13	100	
	AT	26.51	100	
	PLRT	34.08	100	

Introduction	FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Simulation	Summary
000		0000	0000	0000	000000	●0
Summe	arv					

- We propose applicable procedures for inference in functional data analysis
- Our approaches do not require perfect alignment
- Our approaches are asymptotic valid, i.e., desired size and coverage probability

ション ふゆ マ キャット マックシン

- The PLRT and adaptive testing procedures are more powerful than existing ones.
- Extensions to general cases not reported here:
 - quasi-likelihood framework
 - composite hypotheses
 - adaptive testing in non-Gaussian error

FPCA vs. Penalization	CI/PI	Hypothesis Testing	Adaptive Test	Summary
				00

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ