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An Example

Consider the functional linear model:

Y = α+

∫ 1

0
X(t)β(t)dt+ ε,

where

β ∈Wm
2 (0, 1), the Sobolev space of order m

X is a random process

ε is zero-mean error
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General Aim

In this talk, we address the following questions in a unified
framework:

how to construct confidence interval for the regression
mean µ = α+

∫ 1
0 x(t)β(t)dt?

how to construct prediction interval for Yfuture?

how to test H0 : β = β0 versus H1 : β 6= β0?



Introduction FPCA vs. Penalization CI/PI Hypothesis Testing Adaptive Test Simulation Summary

General Aim

In this talk, we address the following questions in a unified
framework:

how to construct confidence interval for the regression
mean µ = α+

∫ 1
0 x(t)β(t)dt?

how to construct prediction interval for Yfuture?

how to test H0 : β = β0 versus H1 : β 6= β0?



Introduction FPCA vs. Penalization CI/PI Hypothesis Testing Adaptive Test Simulation Summary

General Aim

In this talk, we address the following questions in a unified
framework:

how to construct confidence interval for the regression
mean µ = α+

∫ 1
0 x(t)β(t)dt?

how to construct prediction interval for Yfuture?

how to test H0 : β = β0 versus H1 : β 6= β0?



Introduction FPCA vs. Penalization CI/PI Hypothesis Testing Adaptive Test Simulation Summary

General Aim

In this talk, we address the following questions in a unified
framework:

how to construct confidence interval for the regression
mean µ = α+

∫ 1
0 x(t)β(t)dt?

how to construct prediction interval for Yfuture?

how to test H0 : β = β0 versus H1 : β 6= β0?



Introduction FPCA vs. Penalization CI/PI Hypothesis Testing Adaptive Test Simulation Summary

Literature Review

The existing methods for inference rely on functional
principle component analysis (FPCA), which requires the
covariance kernel and reproducing kernel to share common
ordered eigenfunctions, i.e., perfectly aligned; Müller and
Stadtmüller (2005), Cai and Hall (2006), Hall and
Horowitz (2007), etc.

There is a lack of unified treatment for various inference
problems such as confidence/prediction interval
construction, (adaptive) hypothesis testing, and functional
contrast testing.
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Model and Assumptions:

Model:

Yi = α+

∫ 1

0
Xi(t)β(t)dt+ εi,

where (Y1, X1), . . . , (Yn, Xn) are iid samples and E{εi} = 0,
E{ε2i } = 1

Functional parameter: β ∈Wm
2 (0, 1), the m-order Sobolev

space

Covariance function: C(s, t) = E{X(s)X(t)} satisfies∫ 1

0
C(s, t)β(s)ds = 0⇔ β = 0
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FPCA Estimation

Sample covariance function:

Ĉ(s, t) =
1

n

n∑
i=1

(Xi(s)− X̄(s))(Xi(t)− X̄(t))

KarhunenLoéve decomposition:

C(s, t) =
∑∞

k=1 λkψk(s)ψk(t) with λ1 ≥ λ2 ≥ . . .

Ĉ(s, t) =
∑∞

k=1 λ̂kψ̂k(s)ψ̂k(t) with λ̂1 ≥ λ̂2 ≥ . . .
Estimate β by β̂ = b̂1ψ̂1 + b̂2ψ̂2 + · · ·+ b̂knψ̂kn , where b̂j are
estimated basis coefficients.
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Penalized Estimation:

(α̂, β̂) = arg min
α∈R,β∈Wm

2 (0,1)
`n,λ(α, β),

where

`n,λ(α, β) =
1

2n

n∑
i=1

(Yi − α−
∫ 1

0
Xi(t)β(t)dt)2

+
λ

2

∫ 1

0
|β(m)(t)|2dt.
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Advantage of Penalized Estimation

No perfect alignment assumption

Provides a unified framework for inference

Easy to make nonparametric inference within
regularization framework

Estimation performance is better
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A Graphical Comparison of FPCA and Penalized
Estimation: Cai and Yuan (2012)

k0 controls the alignment between covariance and reproducing
kernels. Larger value of k0 yields more misalignment.

50 100 200 500 1000

0.
00

1
0.

00
5

0.
02

0
0.

05
0

0.
20

0

Roughness Regularization

n

E
xc

es
s 

R
is

k

k0= 5
k0= 10
k0= 15
k0= 20

50 100 200 500 1000

0.
00

1
0.

00
5

0.
02

0
0.

05
0

0.
20

0

Functional PCA

n

E
xc

es
s 

R
is

k

50 100 200 500 1000

2
5

10
20

Relative Efficiency

n

R
el

at
iv

e 
E

ffi
ci

en
cy

50 100 200 500 1000

1e
−

04
5e

−
04

2e
−

03
5e

−
03

2e
−

02

Roughness Regularization

n

E
xc

es
s 

R
is

k

r= 1
r= 1.5
r= 2
r= 2.5

50 100 200 500 1000

1e
−

04
5e

−
04

2e
−

03
5e

−
03

2e
−

02

Functional PCA

n

E
xc

es
s 

R
is

k

50 100 200 500 1000

6
8

10
12

14
16

18

Relative Efficiency

n

R
el

at
iv

e 
E

ffi
ci

en
cy

Figure 3: Effect of alignment of eigenfunctions between the reproducing kernel and the covariance

function: For the top panels, 200 datasets were simulated for each combination of sample size

n = 32, 64, 128, 256, 512 or 1024 and the location of the first principal component k0 = 5, 10, 15

or 20. For the bottom panels, 200 datasets were simulated for each combination of sample size

n = 32, 64, 128, 256, 512 or 1024 and the decay rate of the eigenvalues of C, r2 = 1, 1.5, 2, 2.5. In

the left and middle panels, the circle corresponds to the excess risk averaged over 200 datasets and

error bars correspond to the mean ± one standard error. In the rightmost panels, median relative

efficiency of the roughness regularization method over functional principal component based method

is given for the two simulation settings. Both axes are in log scale.
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Assumption: Simultaneous Diagonalization

There exists functions ϕν and nondecreasing sequences ρν � ν2k
for some k > 0 such that for any ν, µ ≥ 1,∫ 1

0

∫ 1

0
C(s, t)ϕν(s)ϕµ(t)dsdt = δνµ,

and ∫ 1

0
ϕ(m)
ν (t)ϕ(m)

µ (t)dt = ρνδνµ.

Furthermore, any β ∈Wm
2 (0, 1) satisfies β =

∑
ν bνϕν for some

real sequence bν .
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Construction of CI

Let µ0 = α+
∫ 1
0 x0(t)β(t)dt be the regression mean at X = x0.

The 95% confidence interval for µ0 is

CI : µ̂0 ± 1.96σn/
√
n,

where µ̂0 = α̂+
∫ 1
0 x0(t)β̂(t)dt, σ2n = 1 +

∑
ν

x2ν
1+λρν

,

xν =
∫ 1
0 x0(t)ϕν(t)dt.
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Construction of PI

Let Y0 be future response generated from Y0 = µ0 + ε, then the
95% prediction interval for Y0 is

PI : µ̂0 ± 1.96
√

1 + σ2n/n.
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Theoretical Validity

Theorem

If ε is sub-exponential, the true function β0 is suitably smooth,
and λ is properly tuned, e.g., λ � n−k/(2k+1). Then as n→∞,

P (µ0 ∈ CI)→ 0.95, and P (Y0 ∈ PI)→ 0.95.
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Penalized Likelihood Ratio Test

Testing hypotheses H0 : α = α0, β = β0 versus H1 : H0 is not
true. Define the penalized likelihood ratio test (PLRT)

PLRTn = `n,λ(α0, β0)− `n,λ(α̂, β̂),

where (α̂, β̂) is the penalized MLE.
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Wilks Phenomenon

Wilks phenomenon means that the null limit distribution of the
likelihood ratio is free of any nuisance parameters and design
distribution.

Theorem

Suppose H0 holds and E{ε4} <∞, and λ is suitably tuned, e.g.,
λ � n−4k/(4k+1). Then

2nσ2 · PLRTn
d≈ χ2

un ,

where

σ2 =

∫∞
0 (1 + x2k)−1dx∫∞
0 (1 + x2k)−2dx

, un =
1

cλ
1
2k

(
∫ 1
0 (1 + x2k)−1dx)2

(
∫ 1
0 (1 + x2k)−2dx)

,

c is constant free of α0, β0, distribution of X.
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Minimax Property of PLRT

Suppose we want to test H0 : β = 0, but the following local
alternative hypothesis is true:

H1n : β = βn,

where βn satisfies ‖βn‖L2 ≥ cn−2k/(4k+1).

Theorem

For arbitrary ε > 0, there exist c such that for any n ≥ 1:

inf
βn∈Wm

2 (0,1):‖βn‖L2≥cn−2k/(4k+1)
Pβn(reject H0) ≥ 1− ε.
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An Example: Standard Brownian Motion

When m = 2 (cubic spline) and X is Brownian motion with
covariance function

C(s, t) = min{s, t}, s, t ∈ (0, 1),

we have σ2 ≈ 1.08 and un ≈ 0.31λ−1/6. Therefore,

2n(1.08) · PLRTn
d≈ χ2

un .
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An Adaptive Testing Procedure Based on Likelihood
Ratio

If the smoothness degrees of both X and β are unknown, how
well can we do? We will propose a testing procedure adaptive
to these smoothness degrees and show that our procedure
achieves the minimax rate of testing.
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Let PLRT (k) be the penalized likelihood ratio test associated
with k, and

τk =
PLRT (k)− E{PLRT (k)}√

V ar(PLRT (k))
, k = 1, 2, . . . , kn.

Define
AT = Bn( max

1≤k≤kn
τk −Bn),

where Bn satisfies 2πB2
n exp(B2

n) = k2n.
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Size of the Test

A valid test should achieve the correct size.

Theorem

Under H0 : β = 0, if kn � (log n)d0, for some constant
d0 ∈ (0, 1/2), then for any γ ∈ (0, 1),

P (AT ≤ cγ)→ 1− γ, as n→∞,

where cγ = − log(− log(1− γ)).
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Adaptive Minimax Rate

Suppose k∗ is the true value of k. Let

δ(n, k∗) = n−2k
∗/(4k∗+1)(log log n)k

∗/(4k∗+1).

Theorem

Suppose kn � (log n)d0, for some constant d0 ∈ (0, 1/2). Then,
for any ε ∈ (0, 1), there exists c > 0 s.t. for any n ≥ 1,

inf
‖β‖L2≥cδ(n,k∗)

Pβ(reject H0) ≥ 1− ε.
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Simulation Setup

X(t) =
∑100

j=1

√
λjηjVj(t), where

λj = (j − 0.5)−2π−2, Vj(t) =
√

2 sin((j − 0.5)πt),

η1, . . . , η100
iid∼ N(0, 1).

The test function is βB,ξ0 = B√∑∞
k=1 k

−2ξ−1

∑100
j=1 j

−ξ−0.5Vj(t),

where B = 0, 0.1, 1 and ξ = 0.1, 0.5, 1.

Draw n iid samples from Y =
∫ 1
0 X(t)β0(t)dt+N(0, 1) for

n = 100, 500.
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Figure: Plots of β0(t) when B = 1
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Coverage Proportion of Confidence Interval

Table: 100× coverage proportion (average length) of CI when
B = ξ = 1

n = 100 n = 500

95.11(0.56) 94.99(0.39)
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Size Comparison with Hilgert, Mas and Verzelen (2013)

Hilgert, Mas and Verzelen (2013) proposed an FPCA-based
testing procedure which is adaptive to the truncation parameter
kn. We compare our approaches with theirs, denoted HMV.

Table: 100×size when B = 0

n = 100 n = 500

HMV 4.97 5.26
PLRT 5.45 5.19
AT 5.13 5.04
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Power Comparison with Hilgert, Mas and Verzelen
(2013)

Table: 100×power when n = 100

Test B = 0.1 B = 1

ξ = 0.1 HMV 5.80 81.78
AT 6.12 81.56

PLRT 20.00 84.20
ξ = 1 HMV 7.07 99.84

AT 9.47 99.98
PLRT 23.95 99.98
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Power Comparison with Hilgert, Mas and Verzelen
(2013)

Table: 100×power when n = 500

Test B = 0.1 B = 1

ξ = 0.1 HMV 8.48 100
AT 9.57 100

PLRT 21.27 100
ξ = 1 HMV 16.13 100

AT 26.51 100
PLRT 34.08 100
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Summary

We propose applicable procedures for inference in
functional data analysis

Our approaches do not require perfect alignment

Our approaches are asymptotic valid, i.e., desired size and
coverage probability

The PLRT and adaptive testing procedures are more
powerful than existing ones.

Extensions to general cases not reported here:

quasi-likelihood framework
composite hypotheses
adaptive testing in non-Gaussian error
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Thank you for your attention!
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