GAUSSIAN APPROXIMATION FOR HIGH DIMENSIONAL VECTOR
UNDER PHYSICAL DEPENDENCE
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We develop a Gaussian approximation result for the maximum
of a sum of weakly dependent vectors, where the data dimension
is allowed to be exponentially larger than sample size. Our result
is established under the physical/functional dependence framework.
This work can be viewed as a substantive extension of Chernozhukov
et al. (2013) to time series based on a variant of Stein’s method

developed therein.

1. Introduction. Let {¢;};cz be independent and identically distributed (i.i.d) random ele-

ments. Consider a p-dimensional random vector with the following causal representation:
(1) zi = (Ti1, .., 2p) = Gi(L .. €61, 6),

where G; = (Gi1, ..., Gip)' is ameasurable function such that z; is well defined. Let y; = (yi1, - -, Yip)’
be a Gaussian sequence which is independent of x; and preserves the autocovariance structure of
x;. Suppose Ez; = Ey; = 0. The major goal of this paper is to quantify the Kolmogorov distance
between T'x and Ty:

(2) pn i=sup |P(Tx <t) — P(Ty <t)],

1 & 1
X=(X,....X,) =— . Y =(Y1,....Y,) = — i
( 1 ’ ;D) \/ﬁ;xu ( 1 ) ;D) \/ﬁ;yl

Here, n is the sample size and p is allowed to be exponentially larger than n. Throughout this

paper, {z;} is not necessarily assumed to be stationary (as G; is allowed to change with 7).
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The distribution of T is of great interest in high dimensional statistical inference such as model
selection, simultaneous inference, and multiple testing [7-9, 25, 31]. When p increases slowly with
n, the convergence of p, to zero follows from the multivariate Central Limit Theorem with growing
dimension, see e.g. [6, 17, 23]. When p = O(exp(n®)) for some ¢ > 0, Chernozhukov et al. (2013)
recently showed that p,, decays to zero at a polynomial rate if {x;} is an independent sequence. This
result provides an astounding improvement over the previous results in [6] by allowing the data
dimension to diverge exponentially fast. In this paper, we shall establish a similar high dimensional
Gaussian approximation result in the more general setup where x; admits the causal representation
(1). It is worth pointing out that our results require non-trivial modifications of the technical tools
developed in [14] in order to overcome the difficulties arising from the dependence across data
vectors. In particular, we develop some new techniques in dealing with high dimensional dependent
data such as the use of dependency graph, leave one-block-out argument, self-normalization and
M-dependent approximation, which are also of interest in their own right.

To quantify the strength of dependence for time series, we adapt the physical dependence measure
in [27, 30] for low dimensional time series to the high dimensional setting. Specifically, we allow
the structure of the physical system or filter G; = G;, to change with sample size, i.e., we are
dealing with triangular array. Compared to the classical mixing type conditions which involve
complicated manipulation of taking the supremum over two sigma algebras, the framework of
physical dependence (or its variants) is known to be very general and easy to verify for both linear
and nonlinear data-generating mechanisms. One example given in [27] is a simple AR(1) process
X; = (X;-1 +€)/2, where ¢; are i.i.d Bernoulli random variables with success probability 1/2. The
process X; is not strong mixing [1], while it can be conveniently studied under the framework of

+00 5—(j+1
j:082 (+1)

physical dependence [27] as it admits the causal representation X; = €;—j. We also
remark that the physical dependence measure and mixing type conditions do not nest each other.
Our results thus complement [13] which established a Gaussian approximation result for S-mixing
time series around the same time when this manuscript was under preparation. While our work is
being carried out, we note an arXiv work [32] which establishes the Gaussian approximation theory
for stationary high-dimensional time series under different physical dependence assumptions.

Finally, we point out that although high dimensional statistics has witnessed unprecedented
development, statistical inference for high dimensional time series remains largely untouched so far.
The Gaussian approximation theory developed in this paper represents an initial step along this
direction. In particular, it provides a theoretical framework in studying high dimensional bootstrap
that works even when the autocovariance structure of {x;} is unknown. Also see [11, 15, 18, 19] for
some other recent studies on high dimensional time series.

The rest of the article is organized as follows. Section 2.1 establishes a general result in the
framework of dependency graph, which leads to delicate bounds in Section 2.2 on the Kolmogorov

distance for weakly dependent time series under physical dependence. Some concrete examples such
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as non-stationary linear models and GARCH models are studied in Section 2.3, while Section 3
presents some numerical results. All the proofs are gathered in Section 4.

Let |- | := ||, be the Euclidean norm of R?. Denote by C*(R) the class of k times continuously
differentiable functions from R to itself, and denote by CF(R) a sub-class of C¥(R) such that
Sup,eg |07 f(2)/027| < oo for j = 0,1,...,k. For a sequence of random variables {z;}7",, define
E[z] = 31" Ez;/n. For a random variable z, let ||2||, = (E|2|9)!/9. Write a < b if a is smaller than
or equal to b up to a universal positive constant. For two sequences a,, and b,,, denote by a,, < b,,,
if ap, < by, and by, < ap. For a,b € R, let a Vb = max{a,b} and a A b = min{a, b}. For two matrices

~

A and B, denote by A ® B their Kronecker product.
2. Gaussian Approximation Theory.

2.1. Dependency graph. In this subsection, we introduce a generic framework in modeling the
dependence among a sequence of p-dimensional (not necessarily identically distributed) random
vectors {z;}I' ;. We call it as dependency graph G, = (V,, Ey), where V,, = {1,2,...,n} is a
set of vertices and F, is the corresponding set of undirected edges. For any two disjoint subsets
of vertices S, T C V,,, if there is no edge from any vertex in S to any vertex in 7', the collections
{x;}ies and {z; }icr are independent. Let Diax, = maxi<i<p Zyzl I{{i,j} € E,} be the maximum
degree of Gy, and denote D,, = 1 4+ Dpax . Throughout the paper, we allow D,, to grow with the
sample size n. For example, if an array {z;,}/-, is a M := M, dependent sequence (i.e. z;y
and x;, are independent if |i — j| > M), then we have D, = 2M + 1. Within this framework,
the dependence structure of the underlying sequence is directly associated with the graph G,
which allows a more general characterization for various forms of dependence such as temporal
dependence, spatial dependence and dependence driven by other variables. In the low-dimensional
setting, the dependency graph has been used for studying Central Limit Theorem of dependent
data when D,, is not too large; see [3-5, 22]. To further illustrate this concept, we provide the

following example.

ExamPLE 2.1 (U-statistics). Let {€;}!"_; be ni.i.d random variables. Given a symmetric function

h(-,...,-) on R™ the degenerate U-statistic is defined as (TZO)_th(Eil, .+« +€im, ), Where the
sum extends over all (JLLO) subsets of indices from {1,2,...,n}. Let z; = h(€iys -+ Eip,) With
© ={i1,...,9m, }- The dependence of z; can be characterized through the corresponding dependence

graph. Specifically, {i,7} € E with ¢ = {i1,...,im,} and 7 = {Jj1,...,Jm} if and only if N 5 # 0.

Recall that Ty = max;<j<, X; and Ty = max;<j<, Y;. The problem of comparing distributions
of maxima is nontrivial since the maximum function z = (z1,...,2p) — maxj<j<,z; is non-

differentiable. To overcome this difficulty, we consider a smooth approximation of the maximum
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function,
P
Fs(z) := B~ log Zexp(ﬁzj) , 2= 1(z1,... ,zp)/,
j=1
where 8 > 0 is the smoothing parameter that controls the level of approximation. Simple algebra
yields that (see [10]),
(3) 0 < Fs(z) — gljz_xécpzj < B~ logp.

To handle unbounded random variables, we employ the truncation argument which is slightly
different from the one used in [14]. Denote the truncated variables z;; = (z;; A M) V (—=M,) —
El(zij A My) V (=My)] and y;; = (yi; A My) V (—M,) for some M,, M, > 0. Note that the map
x — (x AN M)V (—M,) is lipschitz continuous which facilitates our derivations in Section 2.2. Let
T = (Tir, ..., Tip) and ¥; = (Yi1,---,Yip)'- For 1 < i < mn,let N; ={j:{i,j} € E,} be the set of
neighbors of i, and N; = {i} UN;. Let ¢(M,) be a constant depending on the threshold parameter
M, such that

n

1
— Ex.:. —Ez::1 < M.
1%3;};1) n ;:1: lzﬁ: ( Lij Tk $zy$lk) —(JS( x)

Analogous quantity ¢(M,) can be defined for {y;}. Set ¢(M,, M) = ¢(My) + ¢(M,). Define

= k1 /k = k1 /k
My = (E fgjf_ié(p\xij\ YWE S myp = (E fgjagp‘yij‘ )Lk,

— - kN1/k - o EN1/k
My f = 121?%(]3(E|$ij| WWE iy = gfgp(Elyijl )Lk,

Note that m, < m,  and my , < my . Further define an indicator function,

I:=1a 1{112%% Xjl < A, max [Y; YJI_A},

where X = (X1,...,X,) = ﬁ S Fand Y = (Y1,...,Y,) = ﬁ > Ui

We next approximate the indicator function I{- <t} by a suitable smooth function g(-) € C3(R),
and thus set m(-) = goFjp(-). As an intermediate step, we derive in Proposition 2.1 a non-asymptotic
upper bound for the quantity |E[m(X) — m(Y)]| using the Slepian interpolation [24]. The proof of
Proposition 2.1 generalizes that of Theorem 2.1 in [14] by modifying Stein’s leave-one-out argument

[26] to the leave-one-block-out argument that captures the local dependence of the data.

PROPOSITION 2.1.  Assume that 2v/53D2 My, //n < 1 with M, = max{M,, M,}. Then we have
for any A >0,
2
NG

D3
+ (G3 + G283 + G152)\/_%(m§,3 +m5) + G1A + GoE[l — T,

E[m(X) —m(Y)]| S(G2 + G18)¢(My, My) + (G5 + GoB + G15%) (1 5 + 17ty 3)

(4)
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where Gy = sup,cg |0%9(2)/0z%| for k > 0. In addition, if 24/58D3 My, /\/n < 1, we can replace

m§73 + m:lg/’g by m§.73 + m;g m (4)
When specializing to a M-dependent sequence, we obtain the following result.

COROLLARY 2.1.  When {z;} is a M -dependent sequence, under the assumption that 2v/53(6M +
1)Myy/+/n < 1, we have

(2M +1)? 4

[E[m(X) = m(Y)]| S(Gs + G2 + G15%) (M35 + 77y 3)

(5) vn
+ (G2 + G1B8)p(My, My) + G1 A + GoE[1 — I).

We remark that the upper bound in (5) can be further simplified using the self-normalization
technique (see Lemma 4.1) and certain arguments under weak dependence assumption.
Considering the approximation properties of g and g, Proposition 2.1 leads to an upper bound
on the Kolmogorov distance p,, defined in (2). In particular, we obtain an explicit upper bound of p,,
for the M-dependence sequence based on Corollary 2.1. Such a result is viewed as an intermediate

one, and thus deferred to Section 4.2.

REMARK 2.1. In view of the proof of Proposition 2.1 (see e.g. (31)), the assumption that {y;}

preserves the autocovariance structure of {x;} can be weakened by assuming that for all 4,

kEN; keN;
Thus {y;} is allowed to be a sequence of independent (mean-zero) p-dimensional Gaussian random
variables such that cov(y;) = >_, 5 Ex;x) provided that 3, 5 Ex;x) is positive-definite. In fact,
when {z;} is M-dependent and stationary, we can construct {y;} as i.i.d Gaussian sequence with
the covariance Z;Z%M Ez;2’. In this case, we need to replace ¢(M,, M) in (5) by ¢(My, M) +
maxi<; k<p le\il l|Ex;jxit k| /n due to the edge effect.

2.2. Weakly dependent time series under physical dependence. In this subsection, we shall de-
velop Gaussian approximation theory for weakly dependent time series, which is the major interest
of this paper. To this end, we need to introduce suitable dependence measure for high dimensional
vector. We adapt the concept of physical dependence measure for non-stationary causal process in
[30] to the high-dimensional setting for its broad applicability to linear and nonlinear processes as
well as its theoretical convenience and elegance.

Recall that z; = G;(F;), where F; = (...,€i—1,¢) and G; = (Gi1,...,Gip). To measure the
strength of dependence, we let {€;} be an i.i.d copy of {¢;}. For ||z;;||, < oo, define

“+oo
(6) Okjg = sup ||Gij (Fi) = Gij (Fii-i)llgy Okjig= Y O1jas
v I=k
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where F; 1, = (... ,ek_l,eﬁg,ekﬂ, ...,€—1,€) is a coupled version of F;. In the subsequent discus-
sions, we assume that the dependence measure sup;<;<, O jq, < oo for some g > 0. We point out
that the dimension of G; (i.e. p) is allowed to grow with n, which makes our setting different from
the one in [30].

Before presenting our main result, we introduce the following assumptions which will be verified
under specific models in Section 2.3. Let h : [0,4+00) — [0,400) be a strictly increasing convex
function with h(0) = 0. Denote by h~1(+) the inverse function of h(-). Let l,, := l,,(p, ) = log(pn/v)V

1. Define o, = cov(X;, Xi) = D201 cov(wiz, zur.) /n.

AssumpTION 2.1, Assume that maxi<;<, maxi<j<p E:Effj < ¢1 for cp > 0 and there exists ©, >0

such that one of the following two conditions holds

(7) max Eh(max |24j]/Dn) < O,
(8) max max Eexp(|z;;|/Dy) < Co,

1<i<n 1<j<p
for C1,Cy > 0.

AssUMPTION 2.2.  Assume there exist M = M(n) > 0 and v = y(n) € (0,1) such that

n3EMY2-58 > Cymax{®,h 7 (n/7), 1Y%} under Condition (7),
n3EMV21-58 > Oy max{D,1,, 112} under Condition (8),

for C5,Cy > 0, where ®,, is given in Assumption 2.1.

Assumption 2.2 imposes constraints on the intermediate quantities M, [,, and ~ so that the upper
bound in (11) holds. These quantities are later on chosen to optimize the upper bound. We remark
that the quantity M in Assumption 2.2 corresponds to an M-dependent sequence used in the proof
of Theorem 2.1 for approximating the weakly dependent sequence {x;}; see the end of this section.
A larger value of M leads to a better approximation to the original data sequence, but also to an

increasing upper bound given in Corollary 2.1. Hence, a proper choice of M is needed.

ASSUMPTION 2.3.  Assume that

9 c1 < min 0;; < max g;; < Co

©) 1<j<p P T ’
—+oco

10 g max j6;rL3 <c

for some constants 0 < ¢; < ¢ and ¢ > 0.

Note (10) and the condition that maxi<j<, 2 >°7 | ||zi;|[3 < ¢ for some ¢ > 0 imply the second
part of (9), i.e., maxi<j<,0j; < ca.

We are now in position to present the main result of this paper.
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THEOREM 2.1.  Under Assumptions 2.1-2.3, we have for q > 2,

) 1/(1+9)

~1/87271/277/8 1/8 3 r—1/27-3/8\a/(1+ q
an pn SnTVSMARITIS oy (0} M Y/2173/8)0/ (4) Z:l@M,j,q
]:

—1/3 —
+ 2y (1V log(p/En))*?,
where =) = maxi<p<p E v d0ik2(x), and M and v satisfy Assumption 2.2.

The key strategy in the proof of Theorem 2.1 is M-dependent approximation, which will be sketched
in the end of this section.

Note that the conditions in Theorem 2.1 can be categorized into two types: tail restrictions and
weak dependence assumptions. Assumptions 2.1 and 2.2 impose restrictions on the tail of {z;;}
uniformly across j, which are needed even in the independence case [14]. Note that Assumption
2.1 is satisfied if z;; = ©,(; with max; ; Eexp(|¢;;]) < C2. Assumption 2.3 essentially requires
weak dependence uniformly across all the components of {x;}. We verify (10) for both linear and
nonlinear time series models in the next section.

Under the assumption that p < exp(n?) for 0 < b < 1/11, we obtain that p, < n~(1-110)/8 i
Corollary 2.2 by optimizing the upper bound in (11) w.r.t. M and ~. In fact, the optimization is

—(1—11b)

achieved when v < n /8 and M = Cn® for some large enough C.

COROLLARY 2.2.  Assume that maxi<j<p Oy jq S 0" for some o <1 and g > 2, andp S exp(n®)

for some 0 < b < 1/11. Suppose one of the following two conditions holds

< <, (3—-25b)/32

(12) 1121%11[3(121]21}( 24| /D) < C1, D, S ,
< < . (3—17b)/8
(13) [nax. 121;2( Eexp(|zij|/Dn) < Cay Dp S0 ,

for C1,Cy > 0. Under (9), we have p, < n~(1=110)/8,

REMARK 2.2. In general, we can assume that

(3—9b)k—(9—11b)
(14) lrgl%IE(fng 23 /Dn)F < C1, Dy S

In this case, one can again choose v =< n~(1=118)/8 and M = cnb to obtain the polynomial decay
rate n~(1=110)/8,

In the end of this section, we discuss the M-approximation technique used in the proof of
Theorem 2.1. Let a;(M) = (x({w),...,xgljy))’ = Elx;l€i—nry .-, €] be a M-dependent approxima-

(M)

tion sequence for {x;}. Define X (M) in the same way as X by replacing z; with z;, . Because
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Im(xz) —m(y)| < 2Gy and |m(z) — m(y)| < Gimaxi<j<p |z; — y;| by the Lipschitz property of Fj
(see e.g. [14]), we have
[E[m(X) — m(X)]| <[E[(m(X) — m(XY))Iy]| + [E[(m(X) — m(XM))(1 —Za)]|
<G1ApN + G(]E[l — IM],

(15)

where Ty = Za,, v = H{maxi<j<p, |X; — X](-M)] < Ayp} for some Apr > 0 depending on M.
Suppose maxi<j<pE||zi;||; < oo for all i and some ¢ > 0. By Lemma A.1 of [20], we have

M / ] !
E1X; - X710 < Ot e,

where ¢’ = min(2, ¢) and Cy is a positive constant depending on ¢ (note that the results in Lemma
A.1 of [20] are still valid for nonstationary process in view of their arguments). For any ¢ > 2, we

obtain

hS]

p
E[l - Zy] <> P(X; - X<My>AM)gZ
‘7: :

P CQ/QGQ ) Cq/2 +00 q
R A
j=

7j=1

1 (M)
@nyj — X

Optimizing the bound with respect to Ajs in (15), we deduce that

1/(1+q)
(16) [Em(X) — m(XOD)]| GGV 0+ Zeq W
which along with (3) implies that
1/(1+q)
Elg(Tx) — 9(Txon)]| S(GoGH)Y I+ Z 0% + B Gy logp,

: M
with Tyon = maxi<j<p Y, 2" /v

REMARK 2.3. Our results can also be combined with the notion of dependence adjusted norm
recently proposed in Zhang and Wu (2016). We merely illustrate the idea here but do not intend
to obtain the sharp possible result. Define

(17) wjq = max|||Gi(Fi) — Gi(Fij)loollq:

and Qprq = EjzooM wjq- Using the Burkholder type inequality in Theorem 4.1 of Pinelis (1994)
[also see Lemma C.5 of Zhang and Wu (2016)], we have for any x > 0,

(log(p)) Q1 a
x4

E[l - Zn] = P(IX - XM| 2 2) S
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Choosing Ajs to optimize the bound, we obtain

E[m(X) — m(X)]| SG1AM + GoP(1X — XM > Ay)
(108(p)"*11

Aly
<(GoGHYV D ((log(p)) /2 Qg4 1,4) 7 OHD).

SGiAy + Gy

Combining with the arguments in the proof of Theorem 2.1, we have

q/(1+q)
pn S nTSMRLS oy (nVEMY )1 040 ((log(p) Y2004, )

+ 23 (1 log(p/Zar))??

When p < exp(n), suppose Q414 < M~ with a > (1 + b)/(1 — 7b). Then by picking M =< n¢
for some max{(1 +b)/(8a +4),2b/(a — 1)} < ¢ < (1 —7b)/4, we can still obtain the polynomial

decay rate.

2.3. FExample. To illustrate the applicability of our general theory, we verify assumptions in

several commonly used time series models.

ExamPLE 2.2 (Nonstationary linear model). Consider a nonstationary linear model

+oo
(18) zi=> A€,
1=0
where {A;;} is a sequence of p x p matrices with A;; = (ai7l7jk)§k:1, and € = (€1,...,€p) is a

sequence of i.i.d p-dimensional random vectors with Ee; = 0. In this case, G; is a linear function on
the inputs (..., €—1,€). It is easy to see that Gi(F;) — Gi(Fii—1) = A, (€i—; — €;_;) which implies

O1j.2q = sup; || 227y @i j(€i-tk — € 1)||2g- Suppose maxi<j<p [[€oj|[2g < oo for some ¢ > 1, and

» 1/2
max sup Za?ljk < o', for some p < 1.
1<<p o \f= ™"

By Rosenthal’s inequality, we further have
P q P q
91273,2(1 < sup {Z aip rB(eimi, — Eé’—l,k)z} < sup (Z a?,z,jk) :
! o \k=1
which induces that maxi<j<, O, 2, S 0. Further assume

k=1
oo p
E Eai,z,jkéi—l,k < (y,
1=0 k=1

and minlSjSP%ZZkzl cov(xij, xg;) > ¢ for ¢,d/,Cy > 0. By Jensen’s inequality, (19) holds pro-

1
(19) max max Eexp (—
1<i<n 1<j<p C

vided that maxi<j<n, maxi<j<p > jog 2 peq @ik < 00 and maxi<j<pEexp(|eg;]/c") < Cy for
some ¢’,Cy > 0. Then by Corollary 2.2, we have p, < n~(1=10/8 for p < exp(n’) with b < 1/11.
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ExampLE 2.3 (Random coefficient autoregressive process). Let A; be a p x p random matrix

and B; be a p x 1 random vector. Define a random coefficient autoregressive process as
(20) z; = Az + Bj,

where (A;, B;) are i.i.d which ensures that {z;} is stationary. It can be shown that x; has a causal
representation x; = G(...,€,_1,¢;) for ¢, = (A4, B;). Note that Bilinear and GARCH models fall
within the framework of (20). We assume that A; is block diagonal?, i.e.

A
A
(21) A = o ,
Aip
where A;1,...,A;p are D x D random matrices with D x B = p. For a p X p matrix A, denote
by A2(A) the eigenvalue of A’A. Let x} = G(Fii—1) such that 7 = Az} | + B;. Suppose z; =
(21, 2p) and xf = (25, ..., 255) according to the partition in (21), where 2, z; € RP. Then
we have
-1
|2ik — 2] = |AirAi 1k Ak (ziook — 200 < T AAG ) zioie — 2l
j=0
For any j belonging to the k-th block,
-1
l
(22) O1jq = llwig — 25llg < llzin — 2llg < TTIMADallzioik = 25kl < 20AA)I 20k lg-
j=0
Suppose that
l l
(23) IA(A0)llg max [[zokllg S o o<1

Usjng the representatjon €T, = Ezio AiAi—l o 'Ai—k+lBi—k7 it can be verified that (23) holds
/
0B

if |[A(Ap)|lg < 0 and maxi<k<p||Bok|lq < ¢ for some ¢ > 0, where By = (B{,..., ) with

By; € RP. By (22) and (23), we have maxi<j<, Oy jq S 0%

REMARK 2.4. Motivated by Example 2.3, let z; = (zl1,...,2/5)" with z;; € RP for 1 < j < B.

Consider the blockwise model
(24) 2zij = Gij(... €1 ,€5), 1<j<B,

where ¢; = (€}, ..., €, 5) is a sequence of i.i.d random vectors. In particular, when D = 1, we have

the following model,

(25) Tij = g@g( o €im1j,65), 1 <7 <p.

2The block structure only needs to hold up to an unknown permutation of the components of z;.
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Because z;; only depends on {¢;;}, we shall call (25) the componentwise model. Although the time
series model is defined in a componentwise fashion, the components of x; are dependent through
the sequence {¢;}. For componentwise model, the analysis in the univariate case (see [28, 30]) can
be applied separately for each component, and Conditions (8)-(10) can be translated into suitable

restrictions on @j and the tail behavior of {¢;;} uniformly across the index j.

REMARK 2.5.  The block assumption in Example 2.3 can be replaced by (26) below. For a matrix

A= (aij)f,j:l’ define ||A||sc = maxi<i<p Z§:1 la;j|. Using the fact that |Adale < [|Allsc]t]oo, We

have

i
[Zi — 27 oo <IAGAG_1 - A1 (T — 7|0 < H [ Aglool @it — 27_]co-
k=il+1

Hence we obtain for any 1 < j <p
0150 =llwij — 2jllg < lllzi — 7loollg

i
< IT IAwlscllglllzimt —25_iloollq
k=i—l+1

<2|[[|Aollool gl i-1ls0lg-

An alternative assumption is given by

l l
(26) [[Aolloollglllzoloolly S €' @ < 1.

Here we impose constraint on the coefficient matrix A in terms of the ||-||oo norm. This assumption

is weaker than those in Example 2.3 as we drop the block assumption but it can be stronger when
AA) < [|A]|oo-

ExamMpPLE 2.4 (Nonlinear Markov chain). Consider a nonlinear Markov chain defined by an

iterated random function H;(-, €;),
i = Hi(xi—1,€).

Here ¢;’s are i.i.d. innovations, and H;(-,-) is an RP-valued and jointly measurable function, which
satisfies the following two conditions: (i) there exists some x( such that ¥ := sup, ||H;(xo, €9)||q < o0

for ¢ > 2, and (ii)

HZ bl - H’l /7
(27) v&‘supHLiHé <o <1, L;=sup |Hi(, €) : (z 60)\.

Then it can be shown that maxi<j<, ©;,(x) = O(g") (see the derivations in [29]). In fact, (27) is

a relatively strong assumption as ¢ generally grows with p, and the Lipschitz constant sup; ||L;||,
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can also be large when p is large. Assume a block structure on H; (as in Remark 2.4): H; =
(H!,...,H!p) with H;; € RP. Then, we have

Ty = Hij(Ti-15,€5), 1<j< B,

where z; = (Zly,...,7.5) and ¢ = (€4, ..., ¢ ) with Z;;,¢; € RP. Under the above block struc-
ture, (27) can be weakened by replacing ¥ with max;<;<p sup; ||H;;(xo, €0)||q- Under tail conditions
(12) or (13), and that minj<j<p = > i k=1 COV(2ij, wgj) > ¢ for ¢ > 0, Corollary 2.2 can be applied,

which suggests that the Kolmogorov distance decreases to zero at some polynomial rate.

In the high-dimensional setting, certain characteristics of time series models (such as the struc-
tures of the coefficient matrices) are allowed to vary with the dimension p. Regularity conditions
are thus required to account for such high dimensionality. These conditions are usually case-by-case
and their suitability depends on the problem of interest. One set of assumptions may be replaced by
others which concern a different aspect of the time series models. Here we focus on three concrete
examples and discuss some sufficient conditions for our theory to hold. It is of interest to consider
a broader class of time series models. Again we expect certain regularity conditions to hold besides

those commonly assumed in the low dimensional setting.

3. Numerical studies. In this section, some numerical experiments are conducted to verify
the Gaussian approximation phenomenon predicted by our general theory. We consider the following
three linear models and one nonlinear model, where the designs are mainly motivated by the

examples in [21].

1. VAR(2): z; = Ajx;—1 + Agzi—o + €;, where A; = L3 ® A; with I,/3 being the p/3 X p/3

identity matrix and

0.7 0.1 0.0 0.2 0.0 0.0
Ar=100 04 01|, As=1| 00 01 01
0.9 0.0 0.8 0.0 0.0 0.0

2. VARMA(2,1): x; = Ayx;—1 + Agw;_o+¢€;+ Bie;_1, where A; = L, ®Ai and By =1, ®]§1

with
~ 0.5 0.1 ~ 0 O ~ 0.6 0.2
Al = ; A2 = N B1 = .
0.4 0.5 0.25 0 0.0 0.3

3. Time-varying VAR(1): z; = A;x;—1 + €;, where A; = sin(2mi/ n)g Here A is symmetric and
its entries are i.i.d realizations from the Bernoulli distribution with success probability 0.25.
We rescale A such that its largest eigenvalue is equal to 0.5.

4. BEKK-ARCH(1): z; = 2%2_162-, where €; ~4 N(0,1,) or ¢ = (€1, .., €) with e;;/v/3 + 1
being i.i.d uniform random variables on [0, 2], and ¥;,_; = B + Az;z}A’. Here B = I,,®B
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(04 0 - (08 05
A= , B= .
0 0.3 05 0.7

For models (1)-(3), we consider the following data generating processes for the errors. In cases

(a)-(d) below, ¢ = I''/2¢; where &; = (gi1,---,€ip) With &;;/v/3 + 1 being i.i.d uniform random

and A =I,), ® A with

variables on [0,2]. We consider four covariance structures (a) AR(1): T’ = (Fij) for F;; = 0.25/°771;
(b) Block diagonal: T = L,o®C for C = (Cij)%j:l, where ¢11 = ¢o2 = 1 and ¢13 = c91 = 0.8; (¢)
Banded: T = (7ij),where ;5 = 1 for i = j, 755 = 0.4 for |i — j| =1, 3;; = 0.2 for |i — j| = 2,3,
¥ij = 0.1 for |i — j| = 4, and 7;; = 0 otherwise; (d) Exchangeable: T = (7ij), where 7;; = 1 for
i = j and 7;; = 0.25 for i # j. In cases (e) & (f) below, ¢ = r;je;, where r;;’s are fixed i.i.d
realizations generated from the uniform distribution on [0,1] and and {e;} is a sequence of i.i.d
univariate random variables. For the distribution of e;, we consider (e) e¢; = (v; — 5)/v/5 with v;
being a Gamma distribution with shape parameter 5 and scale parameter 1; (f) e; = v]/v/2 with
v} being a t distribution with degrees of freedom 4.

In all cases, we generate a Gaussian sequence {y;} which preserves the autocovariance structure
of the non-Gaussian sequence {z;}. We consider n = 100 and p = 120,240,480, 960. The results
are obtained based on 10000 Monte Carlo replications. Figures 1-3 show the P-P plots comparing
the distributions of Tx and Ty in linear models (1)-(3). Moreover, we present in Table 1 the
probability P(T'x < Q7 (a)) with o = 90%,95%,97.5% and 99%, where Qr, (o) denotes the ath
quantile of Ty. The results suggest that the Gaussian approximation is quite accurate in all the
linear cases considered here. Figure 4 and Table 2 present the results for BEKK-ARCH(1) model.
The approximation is again accurate in the nonlinear case. It is also worth pointing out that the
Gaussian approximation is in general very precise for the tail of T, which is most relevant in
statistical inference. Overall, the numerical results clearly demonstrate the practical relevance of

the Gaussian approximation theory.

4. Technical appendix. Define the generic constants C and C’ that are independent of n

and p. For a set A, denote by |A| its cardinality.
4.1. Proofs of the main results in Section 2.1.

PROOF OF PROPOSITION 2.1. We first prove (4). Define Z(t) = > | Z;(t) with the Slepian
interpolation Z;(t) = (VtZ; + T — t3;)/v/n and 0 < t < 1. Let U(t) = Em(Z(t)). Define V@ (t) =
Zjeﬁi Z;(t) and ZO(t) = Z(t) — VO (t). Write 0;m(z) = Om(x)/0z;, Ojpm(z) = 0*m(x)/dx;0xy
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and Ojym(z) = 83m(z)/0x;0x0x for j, k.1 =1,2,...,p, where x = (21,2, ..., ;). Note that

o 1
o Em(X) — Em(7) =T<1> v = [ v ZZ / E[0ym(Z (1)) Z; (1)) dt
25(11 + Iy + I3),
where Z;;(t) = {Zij/Vt — §i;/V1 = t}/v/n, and
= 2;21/ E[0,m(20(8)) Zi; (1),
o) L=3% / O0m (29 (0) Z (VL (D),

zlk]l

D3PS / / (1= T)E00k0;m(Z2 (1) + 7V (1) Zis (V" (V" (D) b

i=1k,l,j=1
Using the fact that Z()(t) and Z;;(t) are independent, and EZ;;(t) = 0, we have I; = 0. To
bound the second term, define the expanded neighborhood around N;,

Ni={j:{j,k} € E, for some k € N;},

and Z0(t) = Z(t) =X e, Z1(0) = ZO () =VO (1), where VO () = 35, 5, Zi(t t) with NG\ N; =
{k € N; : k ¢ N;}. By Taylor expansion, we have

-3 Y / Dhdym (29 (0) Z; (VO ()]t

z—lkg 1

/ / 10:0,0im (29 (t) + TV () Zi; (VD ()W ()] dtdr
1= 1k]l 1

Z Z / / [0:0;0m(ZD (1) + TVO () Zi (VS (), (8))dtdr

1 k,j,l=1

E[0,0;m(Z9 (8))JE[Zy; () VL (¢)]dt

\

=1I>1 + 92,

where we have used the fact that Zij(t)Vki) (t) and Z()(t) are independent.
Let M,, = max{M,, M,}. By the assumption that 2v/58D2M,,/v/n < 1,

> Zi(t)

1EN;UN;

<max Y |Z;(t)] < Dy sup (2VE+ V1T =) Myy//n

1<j<p - te[0,1
leEN;UN; [0,1]

<VBD2M,,/v/n < B71/2 < B,

max
1<5<p
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where the second inequality comes from the facts that |z;;| < 2My,, |yi;| < My, and IN;UN;| < D2.
By Lemma A.5 in [14], we have for every 1 < j, k,1 < p,

10;0km(2)] < Uj(2),  [0;000m(2)| < Uja(2),
where Uj(z) and Uji(2) satisfy that
Z Uji(2) < (Ga +2G1 ), Z Uji(2) < (Gs + 6Gaf3 + 6G152),
7,k=1 7,k =1
with G, = sup,cg |0¥g(2)/02"| for k > 0. Along with Lemma A.6 in [14], we obtain

A [ B ez 00 O

zlk]l

533 / DIELZ OV Bl

i=1k,j=1

<(Gy+G1B) [ max Zm—z OV ()] dt.

o 1<, k<p

Since ZﬁﬁD%Mmy/\/ﬁ < 1, we have

IESSY / / 1060;0m(ZD(t) + VO ()] - 1 Zi; OV )V ()| dedr

i= 1k,]l 1
<Z Z / / Uk (ZD (1) + 70 ()| Zi; () )V (8) | dtdr
1= 1k,jl 1
3353 / Uit (Z(0)| 25OV 0V () e
i=1 k,j,l=1
i
/0 [;1[]'“” 1<’?2?’5<le% W, ()] dtdr
2 (7)
(30) <(Ga+ GaB + G137 / EKIE?%Z% oV (1) dtdr.

To bound the integration on (30), we let w(t) = 1/(v/t A /1 —t) and note that

i) z)
E Z;i(t
/ 1<I£{?¥<p§?| SOV OV (0)]dt

(OFANE] DFANE:
< ['® s, (S0 ) (Sweer) (Sopr)
1 1/3
< 3 3 i
<, (El%z'zw ut 'El@,?fZ'V 'Elnzﬂxil"l ) -
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As for I»;, by the assumption that Ey;;yi, = Exj;zy, (in fact, we only need to require that
> oken, Brizy, = 30, .5, Byiyy, for all 1), we have
1 n
max Zmz SOV @] = max D EEG T — B t)

1<jk<p 1<jk<p n = =
=1 [1en,

1 -~ ~ -
= max — > | (EdyZuw — Brijaw) + Y (Byijyw — B i)

1Siksen | =~ =
(31) 1<
_11%%}21)”; g];{ Y (Yi; — Uij) + Eyij(vie — Uie) }

n

1 - ~ ~
+ 15’,&%1) ; ; l% {Exlk(xij — a:ij) + Ea:ij(a:lk — xlk)}
=1 |i1eN;

S¢(MI7 My)

Using similar arguments as above, we have |I3| < (G3 + G2 + G18%)I3; with

. 1/3
< 3 3
I3 < /0 w(t (Elgl?gpz:yz,] (t)/w(t)| Eg}gngyv t)| E1H<lla<)§) Z\V ) dt.
We first consider the term Emaxi<j<p >, |Zi;(t)/w(t)]?. Using the fact that |Z;;(t)/w(t)] <
(5] + Iﬂijl)/ﬁ we get

n

E max |ZZJ )/w(t )|3 S —2E max (|$zy| + |ym| ) S (m ?:;,3 +m2,3)-
n3/2 " 1<j<p f
i=1

On the other hand, notice that

E max Z|V )] <D?RE maXZZ| /5 3)
1<h<p* 1<h<p = n/ 1<k<p & =
J Lj
3
3 3
57%(mx,3 +my, 3).

Similarly, we have

3 4
Elng?gZIV t)* <D nggz > 1Zut)f < WEFQ?E Z > Fl + lgl)
i=1 jeN; i=1 jeN;
6
57%(”@,3 + m‘Z,g)-

Note that fo t)dt < 1. Summarizing the above results, we have
Iy S (G2 + G18)p(My, My) + (G3 + G2 + 0152)7( m 5+ mg ),

S (Gs+ GaB+ G1*) 2 (md 5 + mg,s)-

Dy
7t
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Alternatively, we can bound I3 in the following way. By Lemmas A.5 and A.6 in [14], we have

usr—i / / (1 = )E[00:0;m(ZO(t) + 7V O () Zy; 1)V, )V, (1)) dtdr

i= lk,l,] 1

3305 / Uit (29 (1)) 245 () V2 ()i (1)t
i= 1k,]l 1

n

<> Z / [Unje(ZA)E|Zi; )V () VD (8) it

i=1 k,j,l=1

1 , s

<n(Gs +Gab + Gif) / w(t) max (B2 (0)/w) ) @V OF) P EVO 0t
0 TR0

Notice that

1 _ 1
3 ~ ~ 3 _ 3 _ 3
1n<1;»§pE|Zw( Vwt)” <5 max B(|Zi] + [5is])" S 57 (7 5+, 3).

It is not hard to see that

3

(@) 3 <2 3 —3

Joax ElV,”(1)° <Dj glggEE |Zjn(t) 3/2( 3 T My 3).
JENz

Thus we derive that
< (Gs+GaB + C1D 2

Therefore, we obtain

E[m(X) — m(V)]| S(Ga + G18)$(Ma, M,) + (Gs + GaB + G182 2 ( 23+ my3)

(32) D2 vr
+ (G3 + G + G1ﬁ2)\/—2( S s+ md ).

Using the above arguments, we can show that
D; m3 3
(33) Io S (G3 + G2B + G15° )\/ﬁ( 23+ My 3),

provided that 2\/55D2Mmy /+/n < 1. This proves the last statement of Proposition 2.1.
Note that [m(z) —m(y)| < 2Go and |m(z) —m(y)| < Gi maxi<j<p |z; —y;| with z = (z1,...,2p)
and y = (y1,...,¥p)". So
[E[m(X) — m(X)]| <[E[(m(X) —m(X))Z]| + [E[(m(X) — m(X))(1 - T))|
(34) <G1A + GoE[1 -1,
IE[m(Y) — m(Y)]| SG1A + GoE[1 — 7).

Therefore, (4) follows by combining (32), (33) and (34). &
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PROOF OF COROLLARY 2.1. Notice that D, = 2M +1, |N;| < 2M +1 and |N; UN;| < 4M +1.
Define the 0 = {j : {j, k} € B, for some k € N;}. Then |9 UN; U N;| < 6M + 1. Following the
arguments in the proof of Proposition 2.1, we can show that

3
=y B <« Pn -3 | _3
llgz%EWz OF S /53 + 1y ),

which implies that
2

D
Iy S (G + GaB + GLB%) 2 (5 + ) 5).

Vn

The conclusion follows from the proof of Proposition 2.1. &

4.2. Some results for M-dependent time series. This subsection is devoted to the analysis of
M-dependent time series, which fits in the framework of dependency graph. Here, we allow M to
grow slowly with the sample size n. Let n = (N + M)r, where N > M and N, M,r — 400 as

n — +oo. Define the block sums

IN+(i—1)M t(N+M)
(35) Aij = Z xlj, Bij = Z a:lj.
I=iN+(i—1)M—N+1 I=i(N+M)—M+1

It is not hard to see that {A;;}/_; and {B;;}]_; with 1 < j < p are two sequences of independent
+ V22ng with Vlznj = 22:1 Azzj and V22nj = Zgzl Bzzj By general-

izing Theorem 2.16 of de la Pena et al (2009), we obtain the following lemma, which is particularly

i — 2
random variables. Let Vi,; =/ V7,

useful in controlling the last two terms in (5).

LEmMA 4.1, Suppose {x;} is a p-dimensional M-dependent sequence. Assume that there exist

aj,bj >0 such that
P (Z T > aj> <1/4, P(V7 >b3) <1/4.
i=1
Then we have

(36) p <

for any 1 < j < p. In particular, we can choose a? = Zb? = SEVnzj.

n
E :Eij

i=1

> z(a; + b; + an)) < 8exp(—z?/8),

PrROOF OF LEMMA 4.1. We only need to prove the result for x > 1 as the inequality holds
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trivially for < 1. Suppose that the distributions of A; and B; are both symmetric, then we have

P (Z Tij > ZEan) <P (Z(Aij + Bjj) > anj)
i=1 i=1

T

<P ( Aij > l’an/2> + P <Z Bij > $an/2>
i=1

i=1
<P (Z Aij > l’Vlnj/2> + P <Z Bij > $V2nj/2>
i=1 i=1
§2 eXp(_$2/8)v

where we have used Theorem 2.15 in [16].

Let {&;}7—; be an independent copy of {x;;}7"_; in the sense that {{;;}I", have the same joint
distribution as that for {x;;}j", and define V;}; (A}; and Bj;) in the same way as Vy,; (4;; and B;;)
by replacing {x;;}1_, with {&;;}i,. Following the arguments in the proof of Theorem 2.16 in [16],
we deduce that for x > 1,

{Z$ij > w(a; +bj + an),z&'j < aj, Vo, < bj}

i=1 i=1

- {Z(fﬂij —&ij) 2 wlaj +bj + Voy) — a5, Vi < bj}

1=1

3 |l

- {Z(ﬂfz’j —&;j) = wlaj + b+ Vi = Vi) —a;, Vy; < b]}

i=1

C {Z(ﬂczg —&ij) > xv;]} 5

i=1

3 |

where we have used the fact that

Vioj = Z(Alj — AL+ Z(Blj = Bj;)? < Vaj + Vi
=1 I=1

We note that Aj; — A;j and Bj; — Bl’j are symmetric, and

P <Z§” < CL]’,VAJ < bj> > 1/2
i=1
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Thus we obtain

P <Z xij > x(aj + bj + Vi )
1=1

P my > w(ag b+ Vi), 200 & < aj, Vi S b))
P& < aj, Vy; < bj)

<2pP (Zl’w > w(a; + by + Vg), > &ij < a5, Vil < bj)

i=1 i=1
i=1

<4exp(—z?/8).

Hence we get

n
E inj

i=1

‘|

In particular, we can choose b? = 4EVn2j and a? = Zb? = SEVan because

> x(a; + b; + an)> < 8exp(—z?/8).

n 2 s 2 s 2
AR <Z g;j> <SE | A;j| +8E(D B;| =S8EV;.
i=1 j=1 j=1
¢

Let (M) := ¢n,m(M;) be the smallest finite constant which satisfies that uniformly for ¢ and
Js
(37) E(Ayj - Aj)? < No*(My),  E(Byj — By)® < M@*(M,),

where /L-j and Bij are the truncated versions of A;; and B;; defined as follows:

iN+(i—1)M
Ay = > (z1j N My) V (M),
I=iN+(i—1)M—N+1
i(N+M)
Bij = Z (xlj VAN Mx) vV (—Mx)

I=i(N+M)—M+1

Similarly, we can define the quantity ¢(M,) for the Gaussian sequence {y;}. Set ¢(M,, M,) =
©(My) V o(My). Further let ug(y) and uy,(y) be the smallest quantities such that
(38) P <1n<"‘?<’% jax || < w(v)) >1-v, P (113?2% oax Jyi| < uy(7)> >1-7.

Building on the above results, we are ready to derive an upper bound for p,,. Consider a “smooth”
indicator function gy € C3(R) : R — [0,1] such that go(s) = 1 for s < 0 and go(s) = 0 for s > 1.
Fix any ¢t € R and define g(s) = go(¢(s —t — eg)) with eg = 87! log p. For this function g, Gy = 1,
G <, Gy <92 and Gz < 93, Here, 9 is a smoothing parameter we will choose carefully in the
proof. Lemma 4.1 and Corollary (2.1) imply the following result.
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ProprosITION 4.1.  Consider a M-dependent time series {z;} and its Gaussian counterpart {y;}.
Suppose 2v/58(6M + 1)My,//n < 1 with My, = max{M,, M,}, and M, > u.(y) and M, >
uy(y) for some v € (0,1). Further suppose that there exists constants 0 < c¢1 < ca such that
c1 < minj<j<p 0 < maxi<j<p0jj < c2 uniformly holds for all large enough M and p, where

ok = cov(X;, Xy). Then for any 1 > 0,
p =sup|P(Ty < 1) — P(Ty < 1)

teR
S + 0B)(My, M) + (6 + 025 + W)%

+ (Mg, My)\/log(p/v) + v + (B~ log(p) + ¥~ 1)\/1 V log(pt)).

(m 33—|—m 3)

PROOF OF PROPOSITION 4.1. Note that

E[l — 7] <P(max |X; — X]>A)+P(max\Y Y| > A)
1<5<p

Zp:{ P(X; - X;| > A) + P(|Y; — Y|>A)}

j=1
Let
Aj52+2\/_ ZE ij — Aij /n—I—ZE ij — U)2/n
+ Z( ij — Aij) /”"‘Z i — Bij)?/n = Aij + Ay,
i=1
where
B iN+(i—1)M B i(N+M)
Aij = > Ty, Bij= > ;.
1=(i—1)(N+M)+1 I=iN+(i—1)M+1

Applying Lemma 4.1 and using the union bound, we have with probability at least 1 — 8,

1X; — X;| < Aj/8log(p/y), 1<j<p.

By the assumption,

< >1- < >1—-7.
Plgs, g, bl = Ma) 2 1=, P, g bl < M) 21 =7

Therefore with probability at least 1 — ~,

2+2\/_ ZE ij — 2] /n“‘ZE ij — zy /’I’L

+ | @A/ + D (BBi;)2/n,

i=1 i=1

<(34 2v2)o(M,)\/Nr/n+ Mr/n < p(M,),
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where we have used the fact that EA;; = EB;; = 0 and the Cauchy-Schwarz inequality. The same
argument applies to the Gaussian sequence {yz}

Summarizing the above results and along with (5), we deduce that

Em(X) — m(V)]| S(Ga + GBS, My) + (Go + Gaft + Gy ) Z2L L
(39) 7

+ Gr(My, My)+/8log(p/v) + Go,

(mi,:’, + mz,za)

which also implies that

Blo(Tx) ~ (T )l S(Ca + Gu)(Mz. My) + (G + o + Gt P L.
(a0 '

+ G1p(My, My)+\/8log(p/v) + Goy + B1G1logp,

(mi,:’, + mg,za)

for M-dependent sequence, provided that 2v/53(6M + 1)M,, //n < 1. Consider a “smooth” indi-
cator function gy € C3(R) : R — [0, 1] such that gg(s) = 1 for s < 0 and go(s) = 0 for s > 1. Fix
any t € R and define g(s) = go(¢)(s —t — eg)) with eg = 87! log p. The conclusion follows from the
proof of Corollary F.1 in [14] and Lemma 2.1 in [12] regarding the anti-concentration property for

Gaussian distribution. We omit the details to conserve the space. &
4.3. Proofs of the main results in Section 2.2.

PROOF OF THEOREM 2.1. For clarity, we present the proof in the following five steps.
Step 1: Construct the M-dependent sequence as

Ty =x; = = EG(... €—1,€)|€—Ms €M1y -5 €.

~U . are independent for any 1 < j, k& < p. The triangle inequality and

(t
By construction, x1; and (141

(16) imply that
1/(1+9)
[E[m(X) —m(Y )| S[Em(XM) —m(yMD)][ 4 (GoGHY I+ Z@q M,jq )

where X(M) = S Z /\/ﬁ and YM) = 7 1yZ /\/_ with yl M) being the M-dependent
approximation for {y;}. By (39)

(2M +1)?

E[m(X) — m(Y®)]| <(Ga + G18)¢M) (M, My) + (G3 + GoB + G152) 7

(mi,za + mg,?,)

1/(1+9)
p
+ GrpM (M, M,)\/Blog(p/v) + Goy + (GoGY)Y/ 1+ Z Y
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where ¢M) (M, M,) and M) (M,, M,) are defined based on {xEM)} and {yZ(M)}. Following the

arguments in the proof of Proposition 4.1, we have

2
pn S+ B (Mo, My) + (5% + 478+ w%%mig +md )
(41) + ™) (M, Myy)/Tog(p/~) + v+ (87" log(p) + ¥~ 1)v/1 V log(py))

1/(1+q)
+¢q/(1+q Z@qu 7

where ¢, M, M,, M, and 3 will be chosen properly.
Step 2: Next we quantify ¢(™)(M,) and ¢M)(M,). To this end, define the projection operator

,ijik = E[xiklei_j, . ,ei] — E[azik\ei_jﬂ, e ,ei].
Note that
Pizi =E[Gir (..., €i-1,€) — Gin(- - €1 €ijy1s. s €1, € )€, .. €]

Jensen’s inequality yields that ||P;xii|le < 0iko(x). Let &;; = x5 — ;5 and x5 = (255 A My) V
J q :kyq J J J J J
(—M,,). Based on {xEM)}, we define the variables AZ(-;»VI), fTZ(-;VI), AZ(-;VI), BZ(JM ), Ez(jM ) in a similar way as

before. Similarly we can define :%(;) and XZ(;) based on a;x) For M > [, we note that xgliw) — xEQ =
Z] —14+1 Pjzi. Because xEJM) and xE +l1))k are independent for any 1 < j, k < p and Ez;; = Ex;; = 0,

we obtain for [ > 0,

o (M M) M -1 -1
B2l =BG @y — 2y < 18G50 2l 1@y, — 2l l2
M
l
<Nl 3G, — wlialle/Me S 3 0502/ M,
7=l

where we have used the fact that Ha; H2 < E(z;; (M) XU )21{\x \ > M,} < Ez} /M2 Using
the fact that the map x — (x A M) V (—M,) is hpschltz continuous, we deduce that

M -1 M 1-1)
Ealy V)] =Bl (i), — i, — (iine = X Izl > Mo or el ] > Mo}
l l
S(Ele; |>1/3<E|wz+lk 2l +EN G — X'

{P (’x(2+lk’ > M, )+P(‘x z+lk‘ > M, )}1/3

M -1
Sllzisllslle oy, — 26 mllsl @l /M < Z 003/ M.
j=l

Note ]Eigw)x%v[)] < ||zi;|[3||zix||2/Mz. Tt is not hard to show that the above result holds if azg‘/f)
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(M) (M) (o 7M)

(or x(i_H)k) is replaced by its z;; " (or x(i+l)k). Therefore, we have

L | Granan
e 15| S (mainagpn manzn)
=P 1= (- M)t

12 (i+M)An

< max —Z Z (Exgj ):El(,i‘/[)—l-E:E(M):El(,iw))

=1 [I=(i—M)V1

< max ZZHJkg/Mx S 1/M,.

=1 j=I

Next we consider ™) (M,,). Similar argument implies that for [ > 0,

B el =B (0 — e — B — X))
1{|z(})| > M or ya;§§+}k\ > M,}|
SElERD DYV B, i+;>>k|3+E|x,+l — XY
(42) (Pl )] > My) + P(|2 )| > My)}/0
SElal'/M2) 2200 — 2 s Elz) /M4+E\x PAAYENE

2/3 -1)
Szl Bllz el 72y, — 20 lls/ME? S 29 s/ M.
7=l

Note \Eaz i )zt i ] < 1/M2. Thus we obtain

N M
E(ADY — A0V N S 3N 00/ MIP 4 1/M2 S 1M

~

=1 j—i
Similarly E(BZ-(]M) — EZ(JM))2/M S 1/M$/3. Notice that
(M) _ X(M)\2 /a7 _my 4 (M) _ F(M)y2 {(M)\2
E(A;; — A )7 /N =E(A = A7) /N + (EA;)° /N

IN+(i—1) 2
S1/ME3 + 3 E(x)” — o el > My} ¢ /N
I=iN+(i—1)M—N+1

S/MJP + N (maxElay;|*/M])?
ij
We can choose M) (M,) = C”(l/M;?/6 + VN /M3) for some constant C’ > 0.
Step 3: We consider the quantities associated with {yZ(M)}. First note that

(43)
M M
E5G v < [BlwS” - Myl > M| + [ElwS” + Moy, 1 < -}



GAR FOR DEPENDENT VECTOR 25

Because ygﬁg) ;18 Gaussian conditional on yZ(JM) (ygﬁg) , and yZ(JM) are jointly Gaussian), we have
(M) (M)
Ely (M) | )] _ E[%’j L itk ]y(M)
’L+l k‘ EH.Z'(M)P] )

ij

which implies that

Bl — M)yl > Y| =[Elw]" - M1l > M B vl
Bl (il
= (Bl - )y T > 0|

M M M
Bl 2 Bl ]
E[|x<M’|21M2

M)
_3IBE ) Bl )
— My2 .

Due to the Gaussian tail, the degree of M, can be made arbitrarily larger but the current choice
suffices for our analysis. The same argument applies to the second term on the RHS of (43), which

leads to
o(M) (M)
(44) By S Bl el |/M2N20]k2/M
3=l

To deal with E[yl(] )A{(Aﬁ)k], we first state a result. For & ~ N(u,0?), it can be shown that

[El(e A M)V (~M)]| <[E[(x — w)I{|z] < MY)| + |ul + |MP(e > M) — MP(z < — M)
<l + Mlulfo.

Using this fact and the Gaussian assumption, we have

M
Elef) 2D JENSS" ) _ M0

E[l2 2|20 ~oM

M M M)
(45) Bl g0 =BG VEE s ) <

Therefore, using the same argument as that for z;, we can set ¢(M)(M,) = C/]Wy2 By (44) and
(45), we get

M
E[yij y(z’+l)k] S ]T
Yy

Similar arguments as before show that ™) (M) = C”/M2 for some C" > 0
Step 4: By the assumption that max; ; ||z;j||4 < co and the fact that ||yw ||2 = ||:17 ||2, we have
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E|x£]M)|3 (E|z;;|*)%/4, and E|y |3 < Elzyj]* < oo, which implies that m3 5 + m: v < oo. Thus

we ignore the constants and set
= SMTVAE My = My = u < MR,

Let 2v/58(6M +1)M,,//n = 1, that is 8 < \/n/(uM). Under the assumption that nT/AM 1,0 >
CsM, it is straightforward to check the following:

(46) (W? + B)P(My, My) S ¥° Ju+ vy/n/ (W M) S n~ MRS,
3.2 oM +1)* _p3M? P M s ams
(47) (W + 928+ 0B?) e S T S S S M,
1/2 1/2
(48) Wp(My, My)ai/3log(p/7) < Ws/ﬁ Yo 3\/N§n‘1/8M1/ZlZ/8,
3/2
@) (5 oap) + )TV gl S Mt T I S M,

By Lemma 4.2, we have ¢;/2 < minj<;<p 0'](-7]‘;[) < maxi<j<p 0](-7];-/[) < 2¢o for large enough M, where

0'5- k) = CO\/(X](- ), X]S: )) It remains to verify that the selected u Satisfying that
(M)
< >1- o < >1 -
(50) P(1121?<Xn 112982(10 ‘.Z'Z] ’ u) ! i P(fil% 1121?2(1) ‘yw ’ u) ! i

We first consider Condition (7). Using the convexity of h, we have

Eh(lrgfgplw /D) <ER(E [max il /Dnlei-ar,- ., &) < Bh(max |zy]/Dn) < C1.

By the fact that max;<;<, Eh(maxi<;<p \m ]/@ ) < (] and the arguments in the proof of Lemma
2.2 in [14], we have u;(y) < max{®,h~ (n/v), ks } and uy(y) S 11/, Because n3/8M~1/21,%/% >
Cmax{D,h~(n/v), l}/z}, we can always choose u = O(n3/8M_1/2l;5/8) such that (50) is fulfilled.
We can prove a similar result under Condition (8). Therefore by (41), (46), (47), (48) and (49), we
get
(51)

1/(1+q)

sup |P(Tx < t) — P(Tyan < )| Sn YEMY2IT® 4y 4+ (n'/8 M —1/273/8)a/(Fa) Z@qu
teR

Step 5: Let A = max;<;i<p [cov(X;, X;) — COV(XJ(»M), XI(M))]. With similar arguments in the proof
of Lemma 4.2, we have A < maxi<j<p > jons+1015.2(x) = Ep. Thus by Theorem 2 in [12], we
have

(52) sup|P(Ty < t) — P(Tyan < 1) S 3% (1Vlog(p/Za))??
teR

where we have used the fact that f(z) = x'/3(1 V log(p/z))*/? is monotonic increasing when

log(p/x) > 2. The conclusion follows by combining (51) and (52). &
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LEMMA 4.2. Consider the M -dependent approrimation sequence {x(M)}. Suppose that ¢; <
mini<j<,0j; < Maxi<j<p0j; < €2, max;;||zlla < e3, and z 2l maxi<g<p jbjk2(x) < oo.
Then we have ¢1/2 < minj<j<, 0](-71‘;[) < maxi<j<p 0](-71‘;[) < 2¢y for large enough M, where 0§f‘,f) =
cov(X](-M) , X,EM) ).

Proor. We claim that as M — 400,

(53) max 7" Z \Eaz a;k

— Ex; x| — 0,
sise A7 i3]

J

which implies that maxi<;<, ]aj(»’]y) — 0j;| = 0. The conclusion thus follows from the assumption

that ¢; < minj<j<,0;; < maxi<j<poj; < c2. To show (53), we note that

M M M M
Bz D2 — Baijang] <llel — zillallowglle + g — xkjuzuxijuz
—+o0
S D (1Psllz + [[Piaksll2) S Z 01,52,
I=M-+1 I=M+1
and for h > M,
h
E2ij2 (i4n)j| <[B2ij (2 (iqn); — EH‘h I < wijll2l|z i n); (Z+h HIPES 291,12

Thus we have

- Z
max n Em x — Ex;ixp;
1<j<p = 1| ’W i3
’l

— M) (M
< max n~ ! E |Em£ )xl(ﬂ, ) — Ea;j21;] + max n~! E |Ex;j2r;]
1<j<p bW 1<j<p
Ii—k|<M li—k|>M

n—1

“+o0
< 121&2( M Z 9l] 2+ max Z 2917]‘,2
SR SISP L S ish

1121&)( g 102 < E max 191]2,
SISP) 1=hr g SIS

which implies that max;<;j<,n ! Z?,k:l ]ExEJM)a;,(C]]VI) — Exjjxpi] — 0 as M — +oo. O
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TABLE 1
The simulated probability P(Tx < Qry («)), where o = 90%, 95%, 97.5%, 99%, and n = 100. The results are
obtained based on 10000 Monte Carlo replications.

VAR(2) VARMA(2,1) Time-varying VAR(1)
P 90% 95% 97.5% 99% 90% 95% 97.5% 99% 90% 95% 97.5%  99%
AR(1) 120 89.6 95.1 97.3 98.8 90.2 95.2 97.5 98.8 904 954 97.6 99.1

240  90.2 95.1 97.7 99.1 90.1 95.0 97.5 98.9 89.9 953 97.8 99.1
480 89.9 94.6 97.3 98.8 90.6 954 97.5 99.1  90.7 95.5 98.0 99.1
960 90.4 95.2 97.7 99.1 899 953 97.9 99.2  90.9 95.8 98.1 99.5
Block diagonal 120 89.9 95.3 97.6 99.1 90.5 95.2 97.5 98.9 90.1 95.5 97.9 99.1
240 904 94.8 97.3 99.0 89.8 94.8 97.3 99.0 90.5 954 97.9 99.2
480 90.5 95.5 97.9 99.2 90.2 95.0 97.5 99.1 904 95.3 97.8 99.2
960 90.0 949 97.6 99.3 90.7 96.0 98.2 99.3 90.6 95.3 97.9 99.2
Banded 120 90.6  95.5 97.6 99.1 89.3 947 974 98.9 89.7 953 97.9 99.3
240  89.7  95.0 97.6 99.2 899 948 97.8 99.0 89.8 95.0 97.8 99.0
480 90.1 953 97.6 99.2 90.3 95.1 97.5 99.1  90.2 953 97.9 99.2
960 90.7 95.3 97.5 99.1 90.2 95.1 97.5 99.1 90.8 95.6 97.8 99.3
Exchangeable 120 90.2 95.3 97.6 99.0 90.5 95.3 97.7  99.2 90.0 94.9 97.5 99.0
240 90.7  95.7 98.0 99.2 904 953 97.7 99.0 90.1 94.9 97.8 99.0
480  90.1  95.0 97.6 99.0 899 95.0 97.3 99.0 90.9 95.3 97.8 99.2
960 90.2 954 97.4 99.0 90.1 95.0 97.9 99.2  90.8 95.5 98.0 99.3
Gamma(5,1) 120 89.0 94.1 96.8 98.7 89.0 93.9 96.7 98.4 88.9 94.0 96.4 98.2
240 88.6 94.2 97.0 98.7 889 94.1 96.4 98.3 88.5 93.7 96.5 98.4
480 88.9 93.8 96.7 98.6 889 94.0 96.5 98.5 88.8 93.9 96.7  98.3
960 88.7 939 96.7 98.4 889 94.0 96.4 98.3 88.9 938 96.5 98.2
t(4) 120 90.0 94.7 97.1 98.6 90.2 95.1 97.5 98.8  90.7 95.3 97.3 98.6
240  90.2 94.8 97.3 98.9 90.1 95.5 97.7  98.7 90.8 95.0 97.4 98.6
480 909 95.1 97.3 98.8 90.3 95.0 97.5 98.9 90.0 94.7 97.3 98.8
960 90.9 95.2 97.4 98.8 90.3 95.3 97.4 98.8 90.8 954 97.6 98.8

TABLE 2
The simulated probability P(Tx < Qry («)), where a = 90%, 95%, 97.5%, 99%, and n = 100. The results are
obtained based on 10000 Monte Carlo replications.

BEKK-ARCH(1), Uniform(0,2) ~ BEKK-ARCH(1), N(0,1)
p 9% 95% 97.5%  99%  90% 95% 97.5% 99%

120 90.7 95.2 97.5 99.0 89.6 94.6 97.3 98.9

240 89.5 94.8 97.3 99.0 89.2 94.2 97.0 98.7

480 90.0 94.9 97.5 99.1 89.1 944 96.8 98.8

960 894 94.6 97.2 99.0 89.3 944 97.2 98.6
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COLLEGE STATION, TX 77843. WEST LAFAYETTE, IN 47906.
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Fig 1: P-P plots comparing the distributions of Tx and Ty, where the data are generated from the
VAR(2) model.
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Fig 2: P-P plots comparing the distributions of Tx and Ty, where the data are generated from the
VARMA(2,1) model.
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Fig 3: P-P plots comparing the distributions of Tx and Ty, where the data are generated from the
time-varying VAR(1) model.
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Fig 4: P-P plots comparing the distributions of Tx and Ty, where the data are generated from the
BEKK-ARCH(1) model.
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