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We develop a Gaussian approximation result for the maximum

of a sum of weakly dependent vectors, where the data dimension

is allowed to be exponentially larger than sample size. Our result

is established under the physical/functional dependence framework.

This work can be viewed as a substantive extension of Chernozhukov

et al. (2013) to time series based on a variant of Stein’s method

developed therein.

1. Introduction. Let {ǫi}i∈Z be independent and identically distributed (i.i.d) random ele-

ments. Consider a p-dimensional random vector with the following causal representation:

(1) xi := (xi1, . . . , xip)
′ = Gi(. . . , ǫi−1, ǫi),

where Gi = (Gi1, . . . ,Gip)
′ is a measurable function such that xi is well defined. Let yi = (yi1, . . . , yip)

′

be a Gaussian sequence which is independent of xi and preserves the autocovariance structure of

xi.
1 Suppose Exi = Eyi = 0. The major goal of this paper is to quantify the Kolmogorov distance

between TX and TY :

(2) ρn := sup
t∈R

|P (TX ≤ t)− P (TY ≤ t)|,

where TX = max1≤j≤pXj , TY = max1≤j≤p Yj, and

X = (X1, . . . ,Xp)
′ =

1√
n

n∑

i=1

xi, Y = (Y1, . . . , Yp)
′ =

1√
n

n∑

i=1

yi.

Here, n is the sample size and p is allowed to be exponentially larger than n. Throughout this

paper, {xi} is not necessarily assumed to be stationary (as Gi is allowed to change with i).
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The distribution of TX is of great interest in high dimensional statistical inference such as model

selection, simultaneous inference, and multiple testing [7–9, 25, 31]. When p increases slowly with

n, the convergence of ρn to zero follows from the multivariate Central Limit Theorem with growing

dimension, see e.g. [6, 17, 23]. When p = O(exp(nc)) for some c > 0, Chernozhukov et al. (2013)

recently showed that ρn decays to zero at a polynomial rate if {xi} is an independent sequence. This

result provides an astounding improvement over the previous results in [6] by allowing the data

dimension to diverge exponentially fast. In this paper, we shall establish a similar high dimensional

Gaussian approximation result in the more general setup where xi admits the causal representation

(1). It is worth pointing out that our results require non-trivial modifications of the technical tools

developed in [14] in order to overcome the difficulties arising from the dependence across data

vectors. In particular, we develop some new techniques in dealing with high dimensional dependent

data such as the use of dependency graph, leave one-block-out argument, self-normalization and

M -dependent approximation, which are also of interest in their own right.

To quantify the strength of dependence for time series, we adapt the physical dependence measure

in [27, 30] for low dimensional time series to the high dimensional setting. Specifically, we allow

the structure of the physical system or filter Gi = Gi,n to change with sample size, i.e., we are

dealing with triangular array. Compared to the classical mixing type conditions which involve

complicated manipulation of taking the supremum over two sigma algebras, the framework of

physical dependence (or its variants) is known to be very general and easy to verify for both linear

and nonlinear data-generating mechanisms. One example given in [27] is a simple AR(1) process

Xi = (Xi−1 + ǫi)/2, where ǫi are i.i.d Bernoulli random variables with success probability 1/2. The

process Xi is not strong mixing [1], while it can be conveniently studied under the framework of

physical dependence [27] as it admits the causal representation Xi =
∑+∞

j=0 2
−(j+1)ǫi−j . We also

remark that the physical dependence measure and mixing type conditions do not nest each other.

Our results thus complement [13] which established a Gaussian approximation result for β-mixing

time series around the same time when this manuscript was under preparation. While our work is

being carried out, we note an arXiv work [32] which establishes the Gaussian approximation theory

for stationary high-dimensional time series under different physical dependence assumptions.

Finally, we point out that although high dimensional statistics has witnessed unprecedented

development, statistical inference for high dimensional time series remains largely untouched so far.

The Gaussian approximation theory developed in this paper represents an initial step along this

direction. In particular, it provides a theoretical framework in studying high dimensional bootstrap

that works even when the autocovariance structure of {xi} is unknown. Also see [11, 15, 18, 19] for

some other recent studies on high dimensional time series.

The rest of the article is organized as follows. Section 2.1 establishes a general result in the

framework of dependency graph, which leads to delicate bounds in Section 2.2 on the Kolmogorov

distance for weakly dependent time series under physical dependence. Some concrete examples such
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as non-stationary linear models and GARCH models are studied in Section 2.3, while Section 3

presents some numerical results. All the proofs are gathered in Section 4.

Let | · | := | · |q be the Euclidean norm of Rq. Denote by Ck(R) the class of k times continuously

differentiable functions from R to itself, and denote by Ck
b (R) a sub-class of Ck(R) such that

supz∈R |∂jf(z)/∂zj | < ∞ for j = 0, 1, . . . , k. For a sequence of random variables {zi}ni=1, define

Ē[zi] =
∑n

i=1 Ezi/n. For a random variable z, let ||z||q = (E|z|q)1/q. Write a . b if a is smaller than

or equal to b up to a universal positive constant. For two sequences an and bn, denote by an ≍ bn,

if an . bn and bn . an. For a, b ∈ R, let a ∨ b = max{a, b} and a ∧ b = min{a, b}. For two matrices

A and B, denote by A⊗B their Kronecker product.

2. Gaussian Approximation Theory.

2.1. Dependency graph. In this subsection, we introduce a generic framework in modeling the

dependence among a sequence of p-dimensional (not necessarily identically distributed) random

vectors {xi}ni=1. We call it as dependency graph Gn = (Vn, En), where Vn = {1, 2, . . . , n} is a

set of vertices and En is the corresponding set of undirected edges. For any two disjoint subsets

of vertices S, T ⊆ Vn, if there is no edge from any vertex in S to any vertex in T , the collections

{xi}i∈S and {xi}i∈T are independent. LetDmax,n = max1≤i≤n
∑n

j=1 I{{i, j} ∈ En} be the maximum

degree of Gn and denote Dn = 1 +Dmax,n. Throughout the paper, we allow Dn to grow with the

sample size n. For example, if an array {xi,n}ni=1 is a M := Mn dependent sequence (i.e. xi,n

and xj,n are independent if |i − j| > M), then we have Dn = 2M + 1. Within this framework,

the dependence structure of the underlying sequence is directly associated with the graph Gn,

which allows a more general characterization for various forms of dependence such as temporal

dependence, spatial dependence and dependence driven by other variables. In the low-dimensional

setting, the dependency graph has been used for studying Central Limit Theorem of dependent

data when Dn is not too large; see [3–5, 22]. To further illustrate this concept, we provide the

following example.

Example 2.1 (U -statistics). Let {εi}ni=1 be n i.i.d random variables. Given a symmetric function

h(·, . . . , ·) on R
m0 , the degenerate U -statistic is defined as

(
n
m0

)−1∑
h(εi1 , . . . , εim0

), where the

sum extends over all
( n
m0

)
subsets of indices from {1, 2, . . . , n}. Let xi = h(εi1 , . . . , εim0

) with

i = {i1, . . . , im0}. The dependence of xi can be characterized through the corresponding dependence

graph. Specifically, {i, j} ∈ E with i = {i1, . . . , im0} and j = {j1, . . . , jm0} if and only if i ∩ j 6= ∅.

Recall that TX = max1≤j≤pXj and TY = max1≤j≤p Yj . The problem of comparing distributions

of maxima is nontrivial since the maximum function z = (z1, . . . , zp)
′ → max1≤j≤p zj is non-

differentiable. To overcome this difficulty, we consider a smooth approximation of the maximum
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function,

Fβ(z) := β−1 log




p∑

j=1

exp(βzj)


 , z = (z1, . . . , zp)

′,

where β > 0 is the smoothing parameter that controls the level of approximation. Simple algebra

yields that (see [10]),

0 ≤ Fβ(z) − max
1≤j≤p

zj ≤ β−1 log p.(3)

To handle unbounded random variables, we employ the truncation argument which is slightly

different from the one used in [14]. Denote the truncated variables x̃ij = (xij ∧Mx) ∨ (−Mx) −
E[(xij ∧Mx) ∨ (−Mx)] and ỹij = (yij ∧My) ∨ (−My) for some Mx,My > 0. Note that the map

x → (x ∧Mx) ∨ (−Mx) is lipschitz continuous which facilitates our derivations in Section 2.2. Let

x̃i = (x̃i1, . . . , x̃ip)
′ and ỹi = (ỹi1, . . . , ỹip)

′. For 1 ≤ i ≤ n, let Ni = {j : {i, j} ∈ En} be the set of

neighbors of i, and Ñi = {i} ∪Ni. Let φ(Mx) be a constant depending on the threshold parameter

Mx such that

max
1≤j,k≤p

1

n

n∑

i=1

∣∣∣∣∣∣

∑

l∈Ñi

(Exijxlk − Ex̃ijx̃lk)

∣∣∣∣∣∣
≤φ(Mx).

Analogous quantity φ(My) can be defined for {yi}. Set φ(Mx,My) = φ(Mx) + φ(My). Define

mx,k = (Ē max
1≤j≤p

|xij |k)1/k, my,k = (Ē max
1≤j≤p

|yij|k)1/k,

m̄x,k = max
1≤j≤p

(Ē|xij |k)1/k, m̄y,k = max
1≤j≤p

(Ē|yij|k)1/k.

Note that m̄x,k ≤ mx,k and m̄y,k ≤ my,k. Further define an indicator function,

I := I∆ = 1

{
max
1≤j≤p

|Xj − X̃j | ≤ ∆, max
1≤j≤p

|Yj − Ỹj| ≤ ∆

}
,

where X̃ = (X̃1, . . . , X̃p)
′ = 1√

n

∑n
i=1 x̃i and Ỹ = (Ỹ1, . . . , Ỹp)

′ = 1√
n

∑n
i=1 ỹi.

We next approximate the indicator function I{· ≤ t} by a suitable smooth function g(·) ∈ C3
b (R),

and thus setm(·) = g◦Fβ(·). As an intermediate step, we derive in Proposition 2.1 a non-asymptotic

upper bound for the quantity |E[m(X)−m(Y )]| using the Slepian interpolation [24]. The proof of

Proposition 2.1 generalizes that of Theorem 2.1 in [14] by modifying Stein’s leave-one-out argument

[26] to the leave-one-block-out argument that captures the local dependence of the data.

Proposition 2.1. Assume that 2
√
5βD2

nMxy/
√
n ≤ 1 with Mxy = max{Mx,My}. Then we have

for any ∆ > 0,

|E[m(X) −m(Y )]| .(G2 +G1β)φ(Mx,My) + (G3 +G2β +G1β
2)
D2

n√
n
(m̄3

x,3 + m̄3
y,3)

+ (G3 +G2β +G1β
2)
D3

n√
n
(m3

x,3 +m3
y,3) +G1∆+G0E[1− I],

(4)
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where Gk = supz∈R |∂kg(z)/∂zk | for k ≥ 0. In addition, if 2
√
5βD3

nMxy/
√
n ≤ 1, we can replace

m3
x,3 +m3

y,3 by m̄3
x,3 + m̄3

y,3 in (4).

When specializing to a M -dependent sequence, we obtain the following result.

Corollary 2.1. When {xi} is aM -dependent sequence, under the assumption that 2
√
5β(6M+

1)Mxy/
√
n ≤ 1, we have

|E[m(X)−m(Y )]| .(G3 +G2β +G1β
2)
(2M + 1)2√

n
(m̄3

x,3 + m̄3
y,3)

+ (G2 +G1β)φ(Mx,My) +G1∆+G0E[1− I].
(5)

We remark that the upper bound in (5) can be further simplified using the self-normalization

technique (see Lemma 4.1) and certain arguments under weak dependence assumption.

Considering the approximation properties of Fβ and g, Proposition 2.1 leads to an upper bound

on the Kolmogorov distance ρn defined in (2). In particular, we obtain an explicit upper bound of ρn

for the M-dependence sequence based on Corollary 2.1. Such a result is viewed as an intermediate

one, and thus deferred to Section 4.2.

Remark 2.1. In view of the proof of Proposition 2.1 (see e.g. (31)), the assumption that {yi}
preserves the autocovariance structure of {xi} can be weakened by assuming that for all i,

∑

k∈Ñi

Exix
′
k =

∑

k∈Ñi

Eyiy
′
k.

Thus {yi} is allowed to be a sequence of independent (mean-zero) p-dimensional Gaussian random

variables such that cov(yi) =
∑

k∈Ñi
Exix

′
k provided that

∑
k∈Ñi

Exix
′
k is positive-definite. In fact,

when {xi} is M -dependent and stationary, we can construct {yi} as i.i.d Gaussian sequence with

the covariance
∑i+M

j=i−M Exix
′
j. In this case, we need to replace φ(Mx,My) in (5) by φ(Mx,My) +

max1≤j,k≤p
∑M

l=1 l|Exijxi+l,k|/n due to the edge effect.

2.2. Weakly dependent time series under physical dependence. In this subsection, we shall de-

velop Gaussian approximation theory for weakly dependent time series, which is the major interest

of this paper. To this end, we need to introduce suitable dependence measure for high dimensional

vector. We adapt the concept of physical dependence measure for non-stationary causal process in

[30] to the high-dimensional setting for its broad applicability to linear and nonlinear processes as

well as its theoretical convenience and elegance.

Recall that xi = Gi(Fi), where Fi = (. . . , ǫi−1, ǫi) and Gi = (Gi1, . . . ,Gip)
′. To measure the

strength of dependence, we let {ǫ′i} be an i.i.d copy of {ǫi}. For ||xij ||q <∞, define

(6) θk,j,q = sup
i

||Gij(Fi)− Gij(Fi,i−k)||q, Θk,j,q =
+∞∑

l=k

θl,j,q,
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where Fi,k = (. . . , ǫk−1, ǫ
′
k, ǫk+1, . . . , ǫi−1, ǫi) is a coupled version of Fi. In the subsequent discus-

sions, we assume that the dependence measure sup1≤j≤pΘk,j,q < ∞ for some q > 0. We point out

that the dimension of Gi (i.e. p) is allowed to grow with n, which makes our setting different from

the one in [30].

Before presenting our main result, we introduce the following assumptions which will be verified

under specific models in Section 2.3. Let h : [0,+∞) → [0,+∞) be a strictly increasing convex

function with h(0) = 0. Denote by h−1(·) the inverse function of h(·). Let ln := ln(p, γ) = log(pn/γ)∨
1. Define σj,k = cov(Xj ,Xk) =

∑n
i,l=1 cov(xij , xlk)/n.

Assumption 2.1. Assume that max1≤i≤nmax1≤j≤p Ex
4
ij < c1 for c1 > 0 and there exists Dn > 0

such that one of the following two conditions holds

max
1≤i≤n

Eh( max
1≤j≤p

|xij |/Dn) ≤ C1,(7)

max
1≤i≤n

max
1≤j≤p

E exp(|xij |/Dn) ≤ C2,(8)

for C1, C2 > 0.

Assumption 2.2. Assume there exist M =M(n) > 0 and γ = γ(n) ∈ (0, 1) such that

n3/8M−1/2l−5/8
n ≥ C3 max{Dnh

−1(n/γ), l1/2n } under Condition (7),

n3/8M−1/2l−5/8
n ≥ C4 max{Dnln, l

1/2
n } under Condition (8),

for C3, C4 > 0, where Dn is given in Assumption 2.1.

Assumption 2.2 imposes constraints on the intermediate quantitiesM , ln and γ so that the upper

bound in (11) holds. These quantities are later on chosen to optimize the upper bound. We remark

that the quantity M in Assumption 2.2 corresponds to an M -dependent sequence used in the proof

of Theorem 2.1 for approximating the weakly dependent sequence {xi}; see the end of this section.

A larger value of M leads to a better approximation to the original data sequence, but also to an

increasing upper bound given in Corollary 2.1. Hence, a proper choice of M is needed.

Assumption 2.3. Assume that

c1 < min
1≤j≤p

σj,j ≤ max
1≤j≤p

σj,j < c2,(9)

+∞∑

j=1

max
1≤k≤p

jθj,k,3 < c3,(10)

for some constants 0 < c1 < c2 and c3 > 0.

Note (10) and the condition that max1≤j≤p
1
n

∑n
i=1 ||xij ||22 < c for some c > 0 imply the second

part of (9), i.e., max1≤j≤p σj,j < c2.

We are now in position to present the main result of this paper.
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Theorem 2.1. Under Assumptions 2.1-2.3, we have for q ≥ 2,

ρn .n−1/8M1/2l7/8n + γ + (n1/8M−1/2l−3/8
n )q/(1+q)




p∑

j=1

Θq
M,j,q




1/(1+q)

+ Ξ
1/3
M (1 ∨ log(p/ΞM ))2/3 ,

(11)

where ΞM = max1≤k≤p
∑+∞

j=M jθj,k,2(x), and M and γ satisfy Assumption 2.2.

The key strategy in the proof of Theorem 2.1 isM -dependent approximation, which will be sketched

in the end of this section.

Note that the conditions in Theorem 2.1 can be categorized into two types: tail restrictions and

weak dependence assumptions. Assumptions 2.1 and 2.2 impose restrictions on the tail of {xij}
uniformly across j, which are needed even in the independence case [14]. Note that Assumption

2.1 is satisfied if xij = Dnζij with maxi,j E exp(|ζij |) ≤ C2. Assumption 2.3 essentially requires

weak dependence uniformly across all the components of {xi}. We verify (10) for both linear and

nonlinear time series models in the next section.

Under the assumption that p . exp(nb) for 0 ≤ b < 1/11, we obtain that ρn . n−(1−11b)/8 in

Corollary 2.2 by optimizing the upper bound in (11) w.r.t. M and γ. In fact, the optimization is

achieved when γ ≍ n−(1−11b)/8 and M = Cnb for some large enough C.

Corollary 2.2. Assume that max1≤j≤pΘu,j,q . ̺u for some ̺ < 1 and q ≥ 2, and p . exp(nb)

for some 0 ≤ b < 1/11. Suppose one of the following two conditions holds

max
1≤i≤n

E( max
1≤j≤p

|xij |/Dn)
4 ≤ C1, Dn . n(3−25b)/32,(12)

max
1≤i≤n

max
1≤j≤p

E exp(|xij |/Dn) ≤ C2, Dn . n(3−17b)/8,(13)

for C1, C2 > 0. Under (9), we have ρn . n−(1−11b)/8.

Remark 2.2. In general, we can assume that

max
1≤i≤n

E( max
1≤j≤p

|xij |/Dn)
k ≤ C1, Dn . n

(3−9b)k−(9−11b)
8k .(14)

In this case, one can again choose γ ≍ n−(1−11b)/8 and M = cnb to obtain the polynomial decay

rate n−(1−11b)/8.

In the end of this section, we discuss the M-approximation technique used in the proof of

Theorem 2.1. Let x
(M)
i = (x

(M)
i1 , . . . , x

(M)
ip )′ = E[xi|ǫi−M , . . . , ǫi] be a M -dependent approxima-

tion sequence for {xi}. Define X(M) in the same way as X by replacing xi with x
(M)
i . Because
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|m(x) −m(y)| ≤ 2G0 and |m(x) −m(y)| ≤ G1 max1≤j≤p |xj − yj| by the Lipschitz property of Fβ

(see e.g. [14]), we have

|E[m(X)−m(X(M))]| ≤|E[(m(X) −m(X(M)))IM ]|+ |E[(m(X) −m(X(M)))(1 − IM)]|
.G1∆M +G0E[1− IM ],

(15)

where IM := I∆M ,M = 1{max1≤j≤p |Xj − X
(M)
j | ≤ ∆M} for some ∆M > 0 depending on M .

Suppose max1≤j≤p E||xij ||q <∞ for all i and some q > 0. By Lemma A.1 of [20], we have

(E|Xj −X
(M)
j |q)q′/q ≤ Cqn

1−q′/2Θq′

M,j,q,

where q′ = min(2, q) and Cq is a positive constant depending on q (note that the results in Lemma

A.1 of [20] are still valid for nonstationary process in view of their arguments). For any q ≥ 2, we

obtain

E[1− IM ] ≤
p∑

j=1

P (|Xj −X
(M)
j | ≥ ∆M ) ≤

p∑

j=1

1

∆q
M

E|Xj −X
(M)
j |q

≤
p∑

j=1

C
q/2
q Θq

M,j,q

∆q
M

=

p∑

j=1

C
q/2
q

∆q
M

(
+∞∑

l=M

θl,j,q

)q

.

Optimizing the bound with respect to ∆M in (15), we deduce that

|E[m(X)−m(X(M))]| .(G0G
q
1)

1/(1+q)




p∑

j=1

Θq
M,j,q




1/(1+q)

,(16)

which along with (3) implies that

|E[g(TX)− g(TX(M))]| .(G0G
q
1)

1/(1+q)




p∑

j=1

Θq
M,j,q




1/(1+q)

+ β−1G1 log p,

with TX(M) = max1≤j≤p
∑n

i=1 x
(M)
ij /

√
n.

Remark 2.3. Our results can also be combined with the notion of dependence adjusted norm

recently proposed in Zhang and Wu (2016). We merely illustrate the idea here but do not intend

to obtain the sharp possible result. Define

ωj,q = max
i

|||Gi(Fi)− Gi(Fi,j)|∞||q,(17)

and ΩM,q =
∑+∞

j=M ωj,q. Using the Burkholder type inequality in Theorem 4.1 of Pinelis (1994)

[also see Lemma C.5 of Zhang and Wu (2016)], we have for any x > 0,

E[1− IM ] = P (|X −X(M)|∞ ≥ x) .
(log(p))q/2Ωq

M+1,q

xq
.
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Choosing ∆M to optimize the bound, we obtain

|E[m(X)−m(X(M))]| .G1∆M +G0P (|X −X(M)|∞ ≥ ∆M )

.G1∆M +G0

(log(p))q/2Ωq
M+1,q

∆q
M

.(G0G
q
1)

1/(q+1)((log(p))1/2ΩM+1,q)
q/(1+q).

Combining with the arguments in the proof of Theorem 2.1, we have

ρn . n−1/8M1/2l7/8n + γ + (n1/8M−1/2l−3/8
n )q/(1+q)

(
(log(p))1/2ΩM+1,q

)q/(1+q)

+ Ξ
1/3
M (1 ∨ log(p/ΞM ))2/3 .

When p . exp(nb), suppose ΩM+1,q ≍ M−α with α > (1 + b)/(1 − 7b). Then by picking M ≍ nc

for some max{(1 + b)/(8α + 4), 2b/(α − 1)} < c < (1 − 7b)/4, we can still obtain the polynomial

decay rate.

2.3. Example. To illustrate the applicability of our general theory, we verify assumptions in

several commonly used time series models.

Example 2.2 (Nonstationary linear model). Consider a nonstationary linear model

xi =
+∞∑

l=0

Ai,lǫi−l,(18)

where {Ai,l} is a sequence of p × p matrices with Ai,l = (ai,l,jk)
p
j,k=1, and ǫi = (ǫi1, . . . , ǫip) is a

sequence of i.i.d p-dimensional random vectors with Eǫi = 0. In this case, Gi is a linear function on

the inputs (. . . , ǫi−1, ǫi). It is easy to see that Gi(Fi) − Gi(Fi,i−l) = Ai,l(ǫi−l − ǫ′i−l) which implies

θl,j,2q = supi ||
∑p

k=1 ai,l,jk(ǫi−l,k − ǫ′i−l,k)||2q. Suppose max1≤j≤p ||ǫ0j ||2q <∞ for some q > 1, and

max
1≤j≤p

sup
i

(
p∑

k=1

a2i,l,jk

)1/2

. ̺l, for some ̺ < 1.

By Rosenthal’s inequality, we further have

θ2ql,j,2q . sup
i

{
p∑

k=1

a2i,l,jkE(ǫi−l,k − ǫ′i−l,k)
2

}q

. sup
i

(
p∑

k=1

a2i,l,jk

)q

,

which induces that max1≤j≤pΘu,j,2q . ̺u. Further assume

(19) max
1≤i≤n

max
1≤j≤p

E exp

(
1

c

∣∣∣∣∣

∞∑

l=0

p∑

k=1

ai,l,jkǫi−l,k

∣∣∣∣∣

)
≤ C1,

and min1≤j≤p
1
n

∑n
i,k=1 cov(xij , xkj) > c′ for c, c′, C1 > 0. By Jensen’s inequality, (19) holds pro-

vided that max1≤i≤nmax1≤j≤p
∑∞

l=0

∑p
k=1 |ai,l,jk| < ∞ and max1≤j≤p E exp(|ǫ0j |/c′′) ≤ C2 for

some c′′, C2 > 0. Then by Corollary 2.2, we have ρn . n−(1−11b)/8 for p . exp(nb) with b < 1/11.
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Example 2.3 (Random coefficient autoregressive process). Let Ai be a p × p random matrix

and Bi be a p× 1 random vector. Define a random coefficient autoregressive process as

(20) xi = Aixi−1 +Bi,

where (Ai, Bi) are i.i.d which ensures that {xi} is stationary. It can be shown that xi has a causal

representation xi = G(. . . , ǫi−1, ǫi) for ǫi = (Ai, Bi). Note that Bilinear and GARCH models fall

within the framework of (20). We assume that Ai is block diagonal2, i.e.

(21) Ai =




Ai1

Ai2

. . .

AiB



,

where Ai1, . . . ,AiB are D × D random matrices with D × B = p. For a p × p matrix A, denote

by λ2(A) the eigenvalue of A′A. Let x∗i = G(Fi,i−l) such that x∗i = Aix
∗
i−1 + Bi. Suppose xi =

(z′i1, . . . , z
′
iB)

′ and x∗i = (z∗
′

i1, . . . , z
∗′
iB)

′ according to the partition in (21), where zik, z
∗
ik ∈ R

D. Then

we have

|zik − z∗ik| = |AikAi−1,k · · ·Ai−l+1,k(zi−l,k − z∗i−l,k)| ≤
l−1∏

j=0

λ(Ai−j)|zi−l,k − z∗i−l,k|.

For any j belonging to the k-th block,

(22) θl,j,q = ||xij − x∗ij||q ≤ ||zik − z∗ik||q ≤
l−1∏

j=0

||λ(Ai−j)||q||zi−l,k − z∗i−l,k||q ≤ 2||λ(A0)||lq||z0k||q.

Suppose that

(23) ||λ(A0)||lq max
1≤k≤B

||z0k||q . ̺l, ̺ < 1.

Using the representation xi =
∑∞

k=0AiAi−1 · · ·Ai−k+1Bi−k, it can be verified that (23) holds

if ||λ(A0)||q ≤ ̺ and max1≤k≤B ||B0k||q < c for some c > 0, where B0 = (B′
01, . . . , B

′
0B)

′ with

B0j ∈ R
D. By (22) and (23), we have max1≤j≤pΘu,j,q . ̺u.

Remark 2.4. Motivated by Example 2.3, let xi = (z′i1, . . . , z
′
iB)

′ with zij ∈ R
D for 1 ≤ j ≤ B.

Consider the blockwise model

(24) zij = G̃ij(. . . , ǫi−1,j , ǫij), 1 ≤ j ≤ B,

where ǫi = (ǫ′i1, . . . , ǫ
′
iB)

′ is a sequence of i.i.d random vectors. In particular, when D = 1, we have

the following model,

(25) xij = G̃ij(. . . , ǫi−1,j, ǫij), 1 ≤ j ≤ p.

2The block structure only needs to hold up to an unknown permutation of the components of xi.
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Because xij only depends on {ǫij}, we shall call (25) the componentwise model. Although the time

series model is defined in a componentwise fashion, the components of xi are dependent through

the sequence {ǫi}. For componentwise model, the analysis in the univariate case (see [28, 30]) can

be applied separately for each component, and Conditions (8)-(10) can be translated into suitable

restrictions on G̃ij and the tail behavior of {ǫij} uniformly across the index j.

Remark 2.5. The block assumption in Example 2.3 can be replaced by (26) below. For a matrix

A = (aij)
p
i,j=1, define ||A||∞ = max1≤i≤p

∑p
j=1 |aij |. Using the fact that |Aa|∞ ≤ ||A||∞|a|∞, we

have

|xi − x∗i |∞ ≤|AiAi−1 · · ·Ai−l+1(xi−l − x∗i−l)|∞ ≤
i∏

k=i−l+1

||Ak||∞|xi−l − x∗i−l|∞.

Hence we obtain for any 1 ≤ j ≤ p

θl,j,q =||xij − x∗ij ||q ≤ |||xi − x∗i |∞||q

≤
i∏

k=i−l+1

||||Ak||∞||q|||xi−l − x∗i−l|∞||q

≤2||||A0||∞||lq|||xi−1|∞||q.

An alternative assumption is given by

||||A0||∞||lq|||x0|∞||q . ̺l, ̺ < 1.(26)

Here we impose constraint on the coefficient matrix A0 in terms of the ||·||∞ norm. This assumption

is weaker than those in Example 2.3 as we drop the block assumption but it can be stronger when

λ(A) ≤ ||A||∞.

Example 2.4 (Nonlinear Markov chain). Consider a nonlinear Markov chain defined by an

iterated random function Hi(·, ǫi),

xi = Hi(xi−1, ǫi).

Here ǫi’s are i.i.d. innovations, and Hi(·, ·) is an R
p-valued and jointly measurable function, which

satisfies the following two conditions: (i) there exists some x0 such that ϑ := supi ||Hi(x0, ǫ0)||q <∞
for q > 2, and (ii)

ϑ sup
i

||Li||lq ≤ ̺l < 1, Li = sup
x 6=x′

|Hi(x, ǫ0)−Hi(x
′, ǫ0)|

|x− x′| .(27)

Then it can be shown that max1≤j≤pΘl,j,q(x) = O(̺l) (see the derivations in [29]). In fact, (27) is

a relatively strong assumption as ϑ generally grows with p, and the Lipschitz constant supi ||Li||q
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can also be large when p is large. Assume a block structure on Hi (as in Remark 2.4): Hi =

(H ′
i1, . . . ,H

′
iB)

′ with Hij ∈ R
D. Then, we have

x̃ij = Hij(x̃i−1,j , ǫ̃ij), 1 ≤ j ≤ B,

where xi = (x̃′i1, . . . , x̃
′
iB)

′ and ǫi = (ǫ̃′i1, . . . , ǫ̃
′
iB)

′ with x̃ij , ǫ̃ij ∈ R
D. Under the above block struc-

ture, (27) can be weakened by replacing ϑ with max1≤j≤B supi ||Hij(x0, ǫ0)||q. Under tail conditions
(12) or (13), and that min1≤j≤p

1
n

∑n
i,k=1 cov(xij , xkj) > c for c > 0, Corollary 2.2 can be applied,

which suggests that the Kolmogorov distance decreases to zero at some polynomial rate.

In the high-dimensional setting, certain characteristics of time series models (such as the struc-

tures of the coefficient matrices) are allowed to vary with the dimension p. Regularity conditions

are thus required to account for such high dimensionality. These conditions are usually case-by-case

and their suitability depends on the problem of interest. One set of assumptions may be replaced by

others which concern a different aspect of the time series models. Here we focus on three concrete

examples and discuss some sufficient conditions for our theory to hold. It is of interest to consider

a broader class of time series models. Again we expect certain regularity conditions to hold besides

those commonly assumed in the low dimensional setting.

3. Numerical studies. In this section, some numerical experiments are conducted to verify

the Gaussian approximation phenomenon predicted by our general theory. We consider the following

three linear models and one nonlinear model, where the designs are mainly motivated by the

examples in [21].

1. VAR(2): xi = A1xi−1 + A2xi−2 + ǫi, where Ai = Ip/3 ⊗ Ãi with Ip/3 being the p/3 × p/3

identity matrix and

Ã1 =




0.7 0.1 0.0

0.0 0.4 0.1

0.9 0.0 0.8


 , Ã2 =




−0.2 0.0 0.0

0.0 0.1 0.1

0.0 0.0 0.0


 .

2. VARMA(2,1): xi = A1xi−1+A2xi−2+ ǫi+B1ǫi−1, where Ai = Ip/2⊗ Ãi and B1 = Ip/2⊗ B̃1

with

Ã1 =

(
0.5 0.1

0.4 0.5

)
, Ã2 =

(
0 0

0.25 0

)
, B̃1 =

(
0.6 0.2

0.0 0.3

)
.

3. Time-varying VAR(1): xi = Aixi−1 + ǫi, where Ai = sin(2πi/n)Ã. Here Ã is symmetric and

its entries are i.i.d realizations from the Bernoulli distribution with success probability 0.25.

We rescale Ã such that its largest eigenvalue is equal to 0.5.

4. BEKK-ARCH(1): xi = Σ
1/2
i|i−1ǫi, where ǫi ∼i.i.d N(0, Ip) or ǫi = (ǫi1, . . . , ǫip)

′ with ǫij/
√
3 + 1

being i.i.d uniform random variables on [0, 2], and Σi|i−1 = B+Axix
′
iA

′. Here B = Ip/2 ⊗ B̃



GAR FOR DEPENDENT VECTOR 13

and A = Ip/2 ⊗ Ã with

Ã =

(
0.4 0

0 0.3

)
, B̃ =

(
0.8 0.5

0.5 0.7

)
.

For models (1)-(3), we consider the following data generating processes for the errors. In cases

(a)-(d) below, ǫi = Γ̃1/2εi where εi = (εi1, . . . , εip)
′ with εij/

√
3 + 1 being i.i.d uniform random

variables on [0, 2]. We consider four covariance structures (a) AR(1): Γ̃ = (γ̃ij) for γ̃ij = 0.25|i−j|;

(b) Block diagonal: Γ̃ = Ip/2 ⊗C for C = (cij)
2
i,j=1, where c11 = c22 = 1 and c12 = c21 = 0.8; (c)

Banded: Γ̃ = (γ̃ij),where γ̃ij = 1 for i = j, γ̃ij = 0.4 for |i − j| = 1, γ̃ij = 0.2 for |i − j| = 2, 3,

γ̃ij = 0.1 for |i − j| = 4, and γ̃ij = 0 otherwise; (d) Exchangeable: Γ̃ = (γ̃ij), where γ̃ij = 1 for

i = j and γ̃ij = 0.25 for i 6= j. In cases (e) & (f) below, ǫi = rijei, where rij’s are fixed i.i.d

realizations generated from the uniform distribution on [0,1] and and {ei} is a sequence of i.i.d

univariate random variables. For the distribution of ei, we consider (e) ei = (vi − 5)/
√
5 with vi

being a Gamma distribution with shape parameter 5 and scale parameter 1; (f) ei = v′i/
√
2 with

v′i being a t distribution with degrees of freedom 4.

In all cases, we generate a Gaussian sequence {yi} which preserves the autocovariance structure

of the non-Gaussian sequence {xi}. We consider n = 100 and p = 120, 240, 480, 960. The results

are obtained based on 10000 Monte Carlo replications. Figures 1-3 show the P-P plots comparing

the distributions of TX and TY in linear models (1)-(3). Moreover, we present in Table 1 the

probability P (TX ≤ QTY
(α)) with α = 90%, 95%, 97.5% and 99%, where QTY

(α) denotes the αth

quantile of TY . The results suggest that the Gaussian approximation is quite accurate in all the

linear cases considered here. Figure 4 and Table 2 present the results for BEKK-ARCH(1) model.

The approximation is again accurate in the nonlinear case. It is also worth pointing out that the

Gaussian approximation is in general very precise for the tail of TX , which is most relevant in

statistical inference. Overall, the numerical results clearly demonstrate the practical relevance of

the Gaussian approximation theory.

4. Technical appendix. Define the generic constants C and C ′ that are independent of n

and p. For a set A, denote by |A| its cardinality.

4.1. Proofs of the main results in Section 2.1.

Proof of Proposition 2.1. We first prove (4). Define Z(t) =
∑n

i=1 Zi(t) with the Slepian

interpolation Zi(t) = (
√
tx̃i +

√
1− tỹi)/

√
n and 0 ≤ t ≤ 1. Let Ψ(t) = Em(Z(t)). Define V (i)(t) =

∑
j∈Ñi

Zj(t) and Z
(i)(t) = Z(t)− V (i)(t). Write ∂jm(x) = ∂m(x)/∂xj , ∂jkm(x) = ∂2m(x)/∂xj∂xk
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and ∂jklm(x) = ∂3m(x)/∂xj∂xk∂xl for j, k, l = 1, 2, . . . , p, where x = (x1, x2, . . . , xp)
′. Note that

Em(X̃)− Em(Ỹ ) =Ψ(1)−Ψ(0) =

∫ 1

0
Ψ′(t)dt =

1

2

n∑

i=1

p∑

j=1

∫ 1

0
E[∂jm(Z(t))Żij(t)]dt

=
1

2
(I1 + I2 + I3),

(28)

where Żij(t) = {x̃ij/
√
t− ỹij/

√
1− t}/√n, and

I1 =
n∑

i=1

p∑

j=1

∫ 1

0
E[∂jm(Z(i)(t))Żij(t)]dt,

I2 =

n∑

i=1

p∑

k,j=1

∫ 1

0
E[∂k∂jm(Z(i)(t))Żij(t)V

(i)
k (t)]dt,

I3 =
n∑

i=1

p∑

k,l,j=1

∫ 1

0

∫ 1

0
(1− τ)E[∂l∂k∂jm(Z(i)(t) + τV (i)(t))Żij(t)V

(i)
k (t)V

(i)
l (t)]dtdτ.

(29)

Using the fact that Z(i)(t) and Żij(t) are independent, and EŻij(t) = 0, we have I1 = 0. To

bound the second term, define the expanded neighborhood around Ni,

Ni = {j : {j, k} ∈ En for some k ∈ Ni},

and Z(i)(t) = Z(t)−∑l∈Ni∪Ñi
Zl(t) = Z(i)(t)−V(i)(t), where V(i)(t) =

∑
l∈Ni\Ñi

Zl(t) withNi\Ñi =

{k ∈ Ni : k /∈ Ñi}. By Taylor expansion, we have

I2 =

n∑

i=1

p∑

k,j=1

∫ 1

0
E[∂k∂jm(Z(i)(t))Żij(t)V

(i)
k (t)]dt

+
n∑

i=1

p∑

k,j,l=1

∫ 1

0

∫ 1

0
E[∂k∂j∂lm(Z(i)(t) + τV(i)(t))Żij(t)V

(i)
k (t)V(i)

l (t)]dtdτ

=

n∑

i=1

p∑

k,j=1

∫ 1

0
E[∂k∂jm(Z(i)(t))]E[Żij(t)V

(i)
k (t)]dt

+

n∑

i=1

p∑

k,j,l=1

∫ 1

0

∫ 1

0
E[∂k∂j∂lm(Z(i)(t) + τV(i)(t))Żij(t)V

(i)
k (t)V(i)

l (t)]dtdτ

=I21 + I22,

where we have used the fact that Żij(t)V
(i)
k (t) and Z(i)(t) are independent.

Let Mxy = max{Mx,My}. By the assumption that 2
√
5βD2

nMxy/
√
n ≤ 1,

max
1≤j≤p

∣∣∣∣∣∣

∑

l∈Ni∪Ñi

Zlj(t)

∣∣∣∣∣∣
≤ max

1≤j≤p

∑

l∈Ni∪Ñi

|Zlj(t)| ≤ D2
n sup
t∈[0,1]

(2
√
t+

√
1− t)Mxy/

√
n

≤
√
5D2

nMxy/
√
n ≤ β−1/2 ≤ β−1,
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where the second inequality comes from the facts that |x̃ij | ≤ 2Mxy, |ỹij| ≤Mxy and |Ni∪Ñi| ≤ D2
n.

By Lemma A.5 in [14], we have for every 1 ≤ j, k, l ≤ p,

|∂j∂km(z)| ≤ Ujk(z), |∂j∂k∂lm(z)| ≤ Ujkl(z),

where Ujk(z) and Ujkl(z) satisfy that

p∑

j,k=1

Ujk(z) ≤ (G2 + 2G1β),

p∑

j,k,l=1

Ujkl(z) ≤ (G3 + 6G2β + 6G1β
2),

with Gk = supz∈R |∂kg(z)/∂zk | for k ≥ 0. Along with Lemma A.6 in [14], we obtain

|I21| ≤
n∑

i=1

p∑

k,j=1

∫ 1

0
E[Ujk(Z(i)(t))]|E[Żij(t)V

(i)
k (t)]|dt

.

n∑

i=1

p∑

k,j=1

∫ 1

0
E[Ujk(Z(t))]|E[Żij(t)V

(i)
k (t)]|dt

.(G2 +G1β)

∫ 1

0
max

1≤j,k≤p

n∑

i=1

|E[Żij(t)V
(i)
k (t)]|dt.

Since 2
√
5βD2

nMxy/
√
n ≤ 1, we have

|I22| ≤
n∑

i=1

p∑

k,j,l=1

∫ 1

0

∫ 1

0
E[|∂k∂j∂lm(Z(i)(t) + τV(i)(t))| · |Żij(t)V

(i)
k (t)V(i)

l (t)|]dtdτ

≤
n∑

i=1

p∑

k,j,l=1

∫ 1

0

∫ 1

0
E[Ukjl(Z(i)(t) + τV(i)(t))|Żij(t)V

(i)
k (t)V(i)

l (t)|]dtdτ

.

n∑

i=1

p∑

k,j,l=1

∫ 1

0
E[Ukjl(Z(t))|Żij(t)V

(i)
k (t)V(i)

l (t)|]dtdτ

≤
∫ 1

0
E




p∑

k,j,l=1

Ukjl(Z(t)) max
1≤k,j,l≤p

n∑

i=1

|Żij(t)V
(i)
k (t)V(i)

l (t)|


 dtdτ

.(G3 +G2β +G1β
2)

∫ 1

0
E max

1≤k,j,l≤p

n∑

i=1

|Żij(t)V
(i)
k (t)V(i)

l (t)|dtdτ.(30)

To bound the integration on (30), we let w(t) = 1/(
√
t ∧

√
1− t) and note that

∫ 1

0
E max

1≤k,j,l≤p

n∑

i=1

|Żij(t)V
(i)
k (t)V(i)

l (t)|dt

≤
∫ 1

0
E max

1≤k,j,l≤p

(
n∑

i=1

|Żij(t)|3
)1/3( n∑

i=1

|V (i)
k (t)|3

)1/3( n∑

i=1

|V(i)
l (t)|3

)1/3

dt

≤
∫ 1

0
w(t)

(
E max

1≤j≤p

n∑

i=1

|Żij(t)/w(t)|3E max
1≤k≤p

n∑

i=1

|V (i)
k (t)|3E max

1≤l≤p

n∑

i=1

|V(i)
l (t)|3

)1/3

dt.
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As for I21, by the assumption that Eyijylk = Exijxlk (in fact, we only need to require that
∑

k∈Ñi
Exix

′
k =

∑
k∈Ñi

Eyiy
′
k for all i), we have

max
1≤j,k≤p

n∑

i=1

|E[Żij(t)V
(i)
k (t)]| = max

1≤j,k≤p

1

n

n∑

i=1

∣∣∣∣∣∣

∑

l∈Ñi

(Ex̃ij x̃lk − Eỹij ỹlk)

∣∣∣∣∣∣

= max
1≤j,k≤p

1

n

n∑

i=1

∣∣∣∣∣∣

∑

l∈Ñi

(Ex̃ijx̃lk − Exijxlk) +
∑

l∈Ñi

(Eyijylk − Eỹij ỹlk)

∣∣∣∣∣∣

≤ max
1≤j,k≤p

1

n

n∑

i=1

∣∣∣∣∣∣

∑

l∈Ñi

{Eylk(yij − ỹij) + Eỹij(ylk − ỹlk)}

∣∣∣∣∣∣

+ max
1≤j,k≤p

1

n

n∑

i=1

∣∣∣∣∣∣

∑

l∈Ñi

{Exlk(xij − x̃ij) + Ex̃ij(xlk − x̃lk)}

∣∣∣∣∣∣

≤φ(Mx,My).

(31)

Using similar arguments as above, we have |I3| . (G3 +G2β +G1β
2)I31 with

I31 ≤
∫ 1

0
w(t)

(
E max

1≤j≤p

n∑

i=1

|Żij(t)/w(t)|3E max
1≤k≤p

n∑

i=1

|V (i)
k (t)|3E max

1≤l≤p

n∑

i=1

|V (i)
l (t)|3

)1/3

dt.

We first consider the term Emax1≤j≤p
∑n

i=1 |Żij(t)/w(t)|3. Using the fact that |Żij(t)/w(t)| ≤
(|x̃ij |+ |ỹij |)/

√
n, we get

E max
1≤j≤p

n∑

i=1

|Żij(t)/w(t)|3 .
1

n3/2
E max

1≤j≤p

n∑

i=1

(|x̃ij |3 + |ỹij|3) .
1√
n
(m3

x,3 +m3
y,3).

On the other hand, notice that

E max
1≤k≤p

n∑

i=1

|V (i)
k (t)|3 ≤D2

nE max
1≤k≤p

n∑

i=1

∑

j∈Ñi

|Zjk(t)|3 .
D2

n

n3/2
E max

1≤k≤p

n∑

i=1

∑

j∈Ñi

(|x̃jk|3 + |ỹjk|3)

.
D3

n√
n
(m3

x,3 +m3
y,3).

Similarly, we have

E max
1≤l≤p

n∑

i=1

|V(i)
l (t)|3 ≤D4

nE max
1≤l≤p

n∑

i=1

∑

j∈Ni

|Zjl(t)|3 ≤
D4

n

n3/2
E max

1≤l≤p

n∑

i=1

∑

j∈Ni

(|x̃jl|3 + |ỹjl|3)

.
D6

n√
n
(m3

x,3 +m3
y,3).

Note that
∫ 1
0 w(t)dt . 1. Summarizing the above results, we have

I2 . (G2 +G1β)φ(Mx,My) + (G3 +G2β +G1β
2)
D3

n√
n
(m3

x,3 +m3
y,3),

I3 . (G3 +G2β +G1β
2)
D2

n√
n
(m3

x,3 +m3
y,3).
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Alternatively, we can bound I3 in the following way. By Lemmas A.5 and A.6 in [14], we have

|I3| =
n∑

i=1

p∑

k,l,j=1

∫ 1

0

∫ 1

0
(1− τ)E[∂l∂k∂jm(Z(i)(t) + τV (i)(t))Żij(t)V

(i)
k (t)V

(i)
l (t)]dtdτ

.

n∑

i=1

p∑

k,j,l=1

∫ 1

0
E[Ukjl(Z(i)(t))]E|Żij(t)V

(i)
k (t)V

(i)
l (t)|dt

.

n∑

i=1

p∑

k,j,l=1

∫ 1

0
E[Ukjl(Z(t))]E|Żij(t)V

(i)
k (t)V

(i)
l (t)|dt

≤n(G3 +G2β +G1β
2)

∫ 1

0
w(t) max

1≤j,k,l≤p
(Ē|Żij(t)/w(t)|3)1/3(Ē|V (i)

k (t)|3)1/3(Ē|V (i)
l (t)|3)1/3dt.

Notice that

max
1≤j≤p

Ē|Żij(t)/w(t)|3 ≤ 1

n3/2
max
1≤j≤p

Ē(|x̃ij |+ |ỹij|)3 .
1

n3/2
(m̄3

x,3 + m̄3
y,3).

It is not hard to see that

max
1≤k≤p

Ē|V (i)
k (t)|3 ≤D2

n max
1≤k≤p

Ē

∑

j∈Ñi

|Zjk(t)|3 .
D3

n

n3/2
(m̄3

x,3 + m̄3
y,3).

Thus we derive that

I3 . (G3 +G2β +G1β
2)
D2

n√
n
(m̄3

x,3 + m̄3
y,3).

Therefore, we obtain

|E[m(X̃)−m(Ỹ )]| .(G2 +G1β)φ(Mx,My) + (G3 +G2β +G1β
2)
D3

n√
n
(m3

x,3 +m3
y,3)

+ (G3 +G2β +G1β
2)
D2

n√
n
(m̄3

x,3 + m̄3
y,3).

(32)

Using the above arguments, we can show that

I22 . (G3 +G2β +G1β
2)
D3

n√
n
(m̄3

x,3 + m̄3
y,3),(33)

provided that 2
√
5βD3

nMxy/
√
n ≤ 1. This proves the last statement of Proposition 2.1.

Note that |m(x)−m(y)| ≤ 2G0 and |m(x)−m(y)| ≤ G1 max1≤j≤p |xj−yj| with x = (x1, . . . , xp)
′

and y = (y1, . . . , yp)
′. So

|E[m(X)−m(X̃)]| ≤|E[(m(X)−m(X̃))I]|+ |E[(m(X) −m(X̃))(1 − I)]|
.G1∆+G0E[1− I],

|E[m(Y )−m(Ỹ )]| .G1∆+G0E[1− I].

(34)

Therefore, (4) follows by combining (32), (33) and (34). ♦
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Proof of Corollary 2.1. Notice that Dn = 2M +1, |Ñi| ≤ 2M +1 and |Ni ∪ Ñi| ≤ 4M +1.

Define the Ni = {j : {j, k} ∈ En for some k ∈ Ni}. Then |Ni ∪ Ni ∪ Ñi| ≤ 6M + 1. Following the

arguments in the proof of Proposition 2.1, we can show that

max
1≤l≤p

Ē|V(i)
l (t)|3 . D3

n

n3/2
(m̄3

x,3 + m̄3
y,3),

which implies that

I22 . (G3 +G2β +G1β
2)
D2

n√
n
(m̄3

x,3 + m̄3
y,3).

The conclusion follows from the proof of Proposition 2.1. ♦

4.2. Some results for M -dependent time series. This subsection is devoted to the analysis of

M -dependent time series, which fits in the framework of dependency graph. Here, we allow M to

grow slowly with the sample size n. Let n = (N +M)r, where N ≥ M and N,M, r → +∞ as

n→ +∞. Define the block sums

(35) Aij =

iN+(i−1)M∑

l=iN+(i−1)M−N+1

xlj , Bij =

i(N+M)∑

l=i(N+M)−M+1

xlj.

It is not hard to see that {Aij}ri=1 and {Bij}ri=1 with 1 ≤ j ≤ p are two sequences of independent

random variables. Let Vnj =
√
V 2
1nj + V 2

2nj with V
2
1nj =

∑r
i=1A

2
ij and V

2
2nj =

∑r
i=1B

2
ij. By general-

izing Theorem 2.16 of de la Peña et al (2009), we obtain the following lemma, which is particularly

useful in controlling the last two terms in (5).

Lemma 4.1. Suppose {xi} is a p-dimensional M -dependent sequence. Assume that there exist

aj , bj > 0 such that

P

(
n∑

i=1

xij > aj

)
≤ 1/4, P (V 2

nj > b2j) ≤ 1/4.

Then we have

(36) P

(∣∣∣∣∣

n∑

i=1

xij

∣∣∣∣∣ ≥ x(aj + bj + Vnj)

)
≤ 8 exp(−x2/8),

for any 1 ≤ j ≤ p. In particular, we can choose a2j = 2b2j = 8EV 2
nj.

Proof of Lemma 4.1. We only need to prove the result for x > 1 as the inequality holds
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trivially for x < 1. Suppose that the distributions of Ai and Bi are both symmetric, then we have

P

(
n∑

i=1

xij > xVnj

)
≤P

(
r∑

i=1

(Aij +Bij) > xVnj

)

≤P
(

r∑

i=1

Aij > xVnj/2

)
+ P

(
r∑

i=1

Bij > xVnj/2

)

≤P
(

r∑

i=1

Aij > xV1nj/2

)
+ P

(
r∑

i=1

Bij > xV2nj/2

)

≤2 exp(−x2/8),

where we have used Theorem 2.15 in [16].

Let {ξij}ni=1 be an independent copy of {xij}ni=1 in the sense that {ξij}ni=1 have the same joint

distribution as that for {xij}ni=1, and define V ′
nj (A

′
ij and B

′
ij) in the same way as Vnj (Aij and Bij)

by replacing {xij}ni=1 with {ξij}ni=1. Following the arguments in the proof of Theorem 2.16 in [16],

we deduce that for x > 1,

{
n∑

i=1

xij > x(aj + bj + Vnj),

n∑

i=1

ξij ≤ aj, V
′
nj ≤ bj

}

⊂
{

n∑

i=1

(xij − ξij) ≥ x(aj + bj + Vnj)− aj, V
′
nj ≤ bj

}

⊂
{

n∑

i=1

(xij − ξij) ≥ x(aj + bj + V ∗
nj − V ′

nj)− aj , V
′
nj ≤ bj

}

⊂
{

n∑

i=1

(xij − ξij) ≥ xV ∗
nj

}
,

where we have used the fact that

V ∗
nj ≡

√√√√
r∑

l=1

(Alj −A′
lj)

2 +

r∑

l=1

(Blj −B′
lj)

2 ≤ Vnj + V ′
nj .

We note that Alj −A′
lj and Blj −B′

lj are symmetric, and

P

(
n∑

i=1

ξij ≤ aj, V
′
nj ≤ bj

)
≥ 1/2.
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Thus we obtain

P

(
n∑

i=1

xij ≥ x(aj + bj + Vnj)

)
=
P (
∑n

i=1 xij ≥ x(aj + bj + Vnj),
∑n

i=1 ξij ≤ aj , V
′
nj ≤ bj)

P (
∑n

i=1 ξij ≤ aj, V
′
nj ≤ bj)

≤2P

(
n∑

i=1

xij ≥ x(aj + bj + Vnj),

n∑

i=1

ξij ≤ aj , V
′
nj ≤ bj

)

≤2P

(
n∑

i=1

(xij − ξij) ≥ xV ∗
nj

)

≤4 exp(−x2/8).

Hence we get

P

(∣∣∣∣∣

n∑

i=1

xij

∣∣∣∣∣ ≥ x(aj + bj + Vnj)

)
≤ 8 exp(−x2/8).

In particular, we can choose b2j = 4EV 2
nj and a2j = 2b2j = 8EV 2

nj because

4E

(
n∑

i=1

xij

)2

≤ 8E




r∑

j=1

Aj




2

+ 8E




r∑

j=1

Bj




2

= 8EV 2
nj.

♦

Let ϕ(Mx) := ϕN,M (Mx) be the smallest finite constant which satisfies that uniformly for i and

j,

E(Aij − Ăij)
2 ≤ Nϕ2(Mx), E(Bij − B̆ij)

2 ≤Mϕ2(Mx),(37)

where Ăij and B̆ij are the truncated versions of Aij and Bij defined as follows:

Ăij =

iN+(i−1)M∑

l=iN+(i−1)M−N+1

(xlj ∧Mx) ∨ (−Mx),

B̆ij =

i(N+M)∑

l=i(N+M)−M+1

(xlj ∧Mx) ∨ (−Mx).

Similarly, we can define the quantity ϕ(My) for the Gaussian sequence {yi}. Set ϕ(Mx,My) =

ϕ(Mx) ∨ ϕ(My). Further let ux(γ) and uy(γ) be the smallest quantities such that

(38) P

(
max
1≤i≤n

max
1≤j≤p

|xij | ≤ ux(γ)

)
≥ 1− γ, P

(
max
1≤i≤n

max
1≤j≤p

|yij | ≤ uy(γ)

)
≥ 1− γ.

Building on the above results, we are ready to derive an upper bound for ρn. Consider a “smooth”

indicator function g0 ∈ C3
b (R) : R → [0, 1] such that g0(s) = 1 for s ≤ 0 and g0(s) = 0 for s ≥ 1.

Fix any t ∈ R and define g(s) = g0(ψ(s− t− eβ)) with eβ = β−1 log p. For this function g, G0 = 1,

G1 . ψ, G2 . ψ2 and G3 . ψ3. Here, ψ is a smoothing parameter we will choose carefully in the

proof. Lemma 4.1 and Corollary (2.1) imply the following result.
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Proposition 4.1. Consider a M -dependent time series {xi} and its Gaussian counterpart {yi}.
Suppose 2

√
5β(6M + 1)Mxy/

√
n ≤ 1 with Mxy = max{Mx,My}, and Mx > ux(γ) and My >

uy(γ) for some γ ∈ (0, 1). Further suppose that there exists constants 0 < c1 < c2 such that

c1 < min1≤j≤p σj,j ≤ max1≤j≤p σj,j < c2 uniformly holds for all large enough M and p, where

σj,k = cov(Xj ,Xk). Then for any ψ > 0,

ρn =sup
t∈R

|P (TX ≤ t)− P (TY ≤ t)|

.(ψ2 + ψβ)φ(Mx,My) + (ψ3 + ψ2β + ψβ2)
(2M + 1)2√

n
(m̄3

x,3 + m̄3
y,3)

+ ψϕ(Mx,My)
√

log(p/γ) + γ + (β−1 log(p) + ψ−1)
√

1 ∨ log(pψ).

Proof of Proposition 4.1. Note that

E[1− I] ≤P ( max
1≤j≤p

|Xj − X̃j | > ∆) + P ( max
1≤j≤p

|Yj − Ỹj| > ∆)

≤
p∑

j=1

{
P (|Xj − X̃j| > ∆) + P (|Yj − Ỹj| > ∆)

}
.

Let

Λj ≡(2 + 2
√
2)

√√√√
r∑

i=1

E(Aij − Ãij)2/n+

r∑

j=1

E(Bij − B̃ij)2/n

+

√√√√
r∑

i=1

(Aij − Ãij)2/n+

r∑

i=1

(Bij − B̃ij)2/n = Λ1j + Λ2j ,

where

Ãij =

iN+(i−1)M∑

l=(i−1)(N+M)+1

x̃lj , B̃ij =

i(N+M)∑

l=iN+(i−1)M+1

x̃lj.

Applying Lemma 4.1 and using the union bound, we have with probability at least 1− 8γ,

|Xj − X̃j | ≤ Λj

√
8 log(p/γ), 1 ≤ j ≤ p.

By the assumption,

P ( max
1≤i≤n

max
1≤j≤p

|xij | ≤Mx) ≥ 1− γ, P ( max
1≤i≤n

max
1≤j≤p

|yij | ≤My) ≥ 1− γ.

Therefore with probability at least 1− γ,

Λj ≤(2 + 2
√
2)

√√√√
r∑

i=1

E(Aij − Ăij)2/n +

r∑

j=1

E(Bij − B̆ij)2/n

+

√√√√
r∑

i=1

(EĂij)2/n+
r∑

i=1

(EB̆ij)2/n,

≤(3 + 2
√
2)ϕ(Mx)

√
Nr/n+Mr/n . ϕ(Mx),
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where we have used the fact that EAij = EBij = 0 and the Cauchy-Schwarz inequality. The same

argument applies to the Gaussian sequence {yi}.
Summarizing the above results and along with (5), we deduce that

|E[m(X)−m(Y )]| .(G2 +G1β)φ(Mx,My) + (G3 +G2β +G1β
2)
(2M + 1)2√

n
(m̄3

x,3 + m̄3
y,3)

+G1ϕ(Mx,My)
√

8 log(p/γ) +G0γ,

(39)

which also implies that

|E[g(TX)− g(TY )]| .(G2 +G1β)φ(Mx,My) + (G3 +G2β +G1β
2)
(2M + 1)2√

n
(m̄3

x,3 + m̄3
y,3)

+G1ϕ(Mx,My)
√

8 log(p/γ) +G0γ + β−1G1 log p,

(40)

for M -dependent sequence, provided that 2
√
5β(6M + 1)Mxy/

√
n < 1. Consider a “smooth” indi-

cator function g0 ∈ C3(R) : R → [0, 1] such that g0(s) = 1 for s ≤ 0 and g0(s) = 0 for s ≥ 1. Fix

any t ∈ R and define g(s) = g0(ψ(s− t− eβ)) with eβ = β−1 log p. The conclusion follows from the

proof of Corollary F.1 in [14] and Lemma 2.1 in [12] regarding the anti-concentration property for

Gaussian distribution. We omit the details to conserve the space. ♦

4.3. Proofs of the main results in Section 2.2.

Proof of Theorem 2.1. For clarity, we present the proof in the following five steps.

Step 1: Construct the M -dependent sequence as

xi := x
(M)
i = E[G(. . . , ǫi−1, ǫi)|ǫi−M , ǫi−M+1, . . . , ǫi].

By construction, x1j and x
(l−1)
(1+l)k are independent for any 1 ≤ j, k ≤ p. The triangle inequality and

(16) imply that

|E[m(X) −m(Y (M))]| .|E[m(X(M))−m(Y (M))]| + (G0G
q
1)

1/(1+q)




p∑

j=1

Θq
M,j,q




1/(1+q)

,

where X(M) =
∑n

i=1 x
(M)
i /

√
n and Y (M) =

∑n
i=1 y

(M)
i /

√
n with y

(M)
i being the M -dependent

approximation for {yi}. By (39)

|E[m(X)−m(Y (M))]| .(G2 +G1β)φ
(M)(Mx,My) + (G3 +G2β +G1β

2)
(2M + 1)2√

n
(m̄3

x,3 + m̄3
y,3)

+G1ϕ
(M)(Mx,My)

√
8 log(p/γ) +G0γ + (G0G

q
1)

1/(1+q)




p∑

j=1

Θq
M,j,q




1/(1+q)

,
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where φ(M)(Mx,My) and ϕ(M)(Mx,My) are defined based on {x(M)
i } and {y(M)

i }. Following the

arguments in the proof of Proposition 4.1, we have

ρn .(ψ2 + ψβ)φ(M)(Mx,My) + (ψ3 + ψ2β + ψβ2)
(2M + 1)2√

n
(m̄3

x,3 + m̄3
y,3)

+ ψϕ(M)(Mx,My)
√

log(p/γ) + γ + (β−1 log(p) + ψ−1)
√

1 ∨ log(pψ)

+ ψq/(1+q)




p∑

j=1

Θq
M,j,q




1/(1+q)

,

(41)

where ϕ, M , Mx, My and β will be chosen properly.

Step 2: Next we quantify φ(M)(Mx) and ϕ
(M)(Mx). To this end, define the projection operator

Pjxik = E[xik|ǫi−j, . . . , ǫi]− E[xik|ǫi−j+1, . . . , ǫi].

Note that

Pjxik =E[Gik(. . . , ǫi−1, ǫi)− Gik(. . . , ǫ
′
i−j , ǫi−j+1, . . . , ǫi−1, ǫi)|ǫi−j , . . . , ǫi].

Jensen’s inequality yields that ||Pjxik||q ≤ θj,k,q(x). Let x̆ij = xij − x̃ij and χij = (xij ∧Mx) ∨
(−Mx). Based on {x(M)

i }, we define the variables A(M)
ij , Ã

(M)
ij , Ă

(M)
ij , B

(M)
ij , B̃

(M)
ij in a similar way as

before. Similarly we can define x̆
(l)
ij and χ

(l)
ij based on x

(l)
ij . For M ≥ l, we note that x

(M)
ik − x

(l)
ik =

∑M
j=l+1Pjxik. Because x

(M)
ij and x

(l−1)
(i+l)k are independent for any 1 ≤ j, k ≤ p and Exij = Ex̆ij = 0,

we obtain for l > 0,

|Ex̆(M)
ij x

(M)
(i+l)k| =|Ex̆(M)

ij (x
(M)
(i+l)k − x

(l−1)
(i+l)k)| ≤ ||x̆(M)

ij ||2||(x(M)
(i+l)k − x

(l−1)
(i+l)k)||2

≤||xij ||24||x
(M)
(i+l)k − x

(l−1)
(i+l)k||2/Mx .

M∑

j=l

θj,k,2/Mx,

where we have used the fact that ||x̆(M)
ij ||22 ≤ E(x

(M)
ij − χ

(M)
ij )2I{|x(M)

ij | > Mx} ≤ Ex4ij/M
2
x . Using

the fact that the map x→ (x ∧Mx) ∨ (−Mx) is lipschitz continuous, we deduce that

|Ex(M)
ij x̆

(M)
(i+l)k| =|Ex(M)

ij {x(M)
(i+l)k − x

(l−1)
(i+l)k − (χ

(M)
(i+l)k − χ

(l−1)
(i+l)k)}I{|x

(M)
(i+l)k| > Mx or |x(l−1)

(i+l)k| > Mx}|

.(E|xij |3)1/3(E|x(M)
(i+l)k − x

(l−1)
(i+l)k|3 + E|χ(M)

(i+l)k − χ
(l−1)
(i+l)k|3)1/3

{P (|x(M)
(i+l)k| > Mx) + P (|x(l−1)

(i+l)k| > Mx)}1/3

.||xij ||3||x(M)
(i+l)k − x

(l−1)
(i+l)k||3||x(i+l)k||3/Mx .

M∑

j=l

θj,k,3/Mx.

Note |Ex̆(M)
ij x

(M)
ik | ≤ ||xij ||24||xik||2/Mx. It is not hard to show that the above result holds if x

(M)
ij
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(or x
(M)
(i+l)k) is replaced by its x̃

(M)
ij (or x̃

(M)
(i+l)k). Therefore, we have

max
1≤j,k≤p

1

n

n∑

i=1

∣∣∣∣∣∣

(i+M)∧n∑

l=(i−M)∨1

(
Ex

(M)
ij x

(M)
lk − Ex̃

(M)
ij x̃

(M)
lk

)
∣∣∣∣∣∣

≤ max
1≤j,k≤p

1

n

n∑

i=1

∣∣∣∣∣∣

(i+M)∧n∑

l=(i−M)∨1

(
Ex

(M)
ij x̆

(M)
lk + Ex̆

(M)
ij x̃

(M)
lk

)
∣∣∣∣∣∣

. max
1≤k≤p

M∑

l=1

M∑

j=l

θj,k,3/Mx . 1/Mx.

Next we consider ϕ(M)(Mx). Similar argument implies that for l > 0,

|Ex̆(M)
ik x̆

(M)
(i+l)k| =|Ex̆(M)

ik {x̆(M)
(i+l)k − x̆

(l−1)
(i+l)k − E(χ

(M)
(i+l)k − χ

(l−1)
(i+l)k)}

I{|x(M)
(i+l)k| > Mx or |x(l−1)

(i+l)k| > Mx}|

.(E|x̆(M)
ik |2)1/2(E|x(M)

(i+l)k − x
(l−1)
(i+l)k|

3 + E|χ(M)
(i+l)k − χ

(l−1)
(1+l)k|

3)1/3

{P (|x(M)
(i+l)k| > Mx) + P (|x(l−1)

(i+l)k| > Mx)}1/6

.(E|xik|4/M2
x)

1/2||x(M)
(i+l)k − x

(l−1)
(i+l)k||3(E|x

(M)
(i+l)k|4/M4

x + E|x(l−1)
(i+l)k|4/M4

x)
1/6

.||xik||24||x(i+l)k||2/34 ||x(M)
(i+l)k − x

(l−1)
(i+l)k||3/M5/3

x .

M∑

j=l

θj,k,3/M
5/3
x .

(42)

Note |Ex̆(M)
ik x̆

(M)
ik | . 1/M2

x . Thus we obtain

E(A
(M)
ij − Ã

(M)
ij )2/N .

N∑

l=1

M∑

j=l

θj,k,3/M
5/3
x + 1/M2

x . 1/M5/3
x .

Similarly E(B
(M)
ij − B̃

(M)
ij )2/M . 1/M

5/3
x . Notice that

E(A
(M)
ij − Ă

(M)
ij )2/N =E(A

(M)
ij − Ã

(M)
ij )2/N + (EĂ

(M)
ij )2/N

.1/M5/3
x +





iN+(i−1)M∑

l=iN+(i−1)M−N+1

E(χ
(M)
lj − x

(M)
lj )I{|x(M)

lj | > Mx}





2

/N

.1/M5/3
x +N(max

ij
E|xij |4/M3

x)
2

We can choose ϕ(M)(Mx) = C ′(1/M5/6
x +

√
N/M3

x) for some constant C ′ > 0.

Step 3: We consider the quantities associated with {y(M)
i }. First note that

|Ey̆(M)
ij y

(M)
(i+l)k| ≤

∣∣∣E[(y(M)
ij −My)y

(M)
(i+l)kI{y

(M)
ij > My}]

∣∣∣ +
∣∣∣E[(y(M)

ij +My)y
(M)
(i+l)kI{y

(M)
ij < −My}]

∣∣∣ .
(43)
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Because y
(M)
(i+l)k is Gaussian conditional on y

(M)
ij (y

(M)
(i+l)k and y

(M)
ij are jointly Gaussian), we have

E[y
(M)
(i+l)k|y

(M)
ij ] =

E[x
(M)
ij x

(M)
(i+l)k]

E[|x(M)
ij |2]

y
(M)
ij ,

which implies that

∣∣∣E[(y(M)
ij −My)y

(M)
(i+l)kI{y

(M)
ij > My}]

∣∣∣ =
∣∣∣E[(y(M)

ij −My)I{y(M)
ij > My}E[y(M)

(i+l)k|y
(M)
ij ]]

∣∣∣

=
|E[x(M)

ij x
(M)
(i+l)k]|

E[|x(M)
ij |2]

∣∣∣E[(y(M)
ij −My)y

(M)
ij I{y(M)

ij > My}]
∣∣∣

≤
|E[x(M)

ij x
(M)
(i+l)k]|E[|y

(M)
ij |4]

E[|x(M)
ij |2]M2

y

≤
3|E[x(M)

ij x
(M)
(i+l)k]|E[|x

(M)
ij |2]

M2
y

.

Due to the Gaussian tail, the degree of My can be made arbitrarily larger but the current choice

suffices for our analysis. The same argument applies to the second term on the RHS of (43), which

leads to

|Ey̆(M)
ij y

(M)
(i+l)k| . |E[x(M)

ij x
(M)
(i+l)k]|/M

2
y .

M∑

j=l

θj,k,2/M
2
y .(44)

To deal with E[y̆
(M)
ij ỹ

(M)
(i+l)k], we first state a result. For x ∼ N(µ, σ2), it can be shown that

|E[(x ∧M) ∨ (−M)]| ≤|E[(x− µ)I{|x| ≤M}]|+ |µ|+ |MP (x > M)−MP (x < −M)|
.|µ|+M |µ|/σ.

Using this fact and the Gaussian assumption, we have

E[y̆
(M)
ij ỹ

(M)
(i+l)k] = E[y̆

(M)
ij E[ỹ

(M)
(i+l)k|y

(M)
ij ]] .

|E[x(M)
ij x

(M)
(i+l)k]|E[|y

(M)
ij |5]

E[|x(M)
ij |2]M2

y

.

∑M
j=l θj,k,2

M2
y

.(45)

Therefore, using the same argument as that for xi, we can set φ(M)(My) = C/M2
y . By (44) and

(45), we get

E[y̆
(M)
ij y̆

(M)
(i+l)k] .

∑M
j=l θj,k,2

M2
y

.

Similar arguments as before show that ϕ(M)(My) = C ′/M2
y for some C ′ > 0.

Step 4: By the assumption that maxi,j ||xij ||4 <∞ and the fact that ||y(M)
ij ||2 = ||x(M)

ij ||2, we have
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E|x(M)
ij |3 ≤ (E|xij |4)3/4, and E|y(M)

ij |3 . E|xij |3 < ∞, which implies that m̄3
x,3 + m̄3

y,3 < ∞. Thus

we ignore the constants and set

ψ ≍ n1/8M−1/2l−3/8
n , Mx =My = u ≍ n3/8M−1/2l−5/8

n .

Let 2
√
5β(6M+1)Mxy/

√
n = 1, that is β ≍ √

n/(uM). Under the assumption that n7/4M−1l
−9/4
n ≥

C3M , it is straightforward to check the following:

(ψ2 + ψβ)φ(Mx,My) . ψ2/u+ ψ
√
n/(u2M) . n−1/8M1/2l7/8n ,(46)

(ψ3 + ψ2β + ψβ2)
(2M + 1)2√

n
.
ψ3M2

√
n

+
ψ2M

u
+
ψ
√
n

u2
. n−1/8M1/2l7/8n ,(47)

ψϕ(Mx,My)σj
√

8 log(p/γ) .
ψl

1/2
n

u5/6
+
ψl

1/2
n

√
N

u3
. n−1/8M1/2l7/8n ,(48)

(β−1 log(p) + ψ−1)
√

1 ∨ log(pψ) .
l
3/2
n Mu√

n
+ ψ−1l1/2n . n−1/8M1/2l7/8n .(49)

By Lemma 4.2, we have c1/2 < min1≤j≤p σ
(M)
j,j ≤ max1≤j≤p σ

(M)
j,j < 2c2 for large enough M , where

σ
(M)
j,k = cov(X

(M)
j ,X

(M)
k ). It remains to verify that the selected u satisfying that

(50) P ( max
1≤i≤n

max
1≤j≤p

|xij| ≤ u) ≥ 1− γ, P ( max
1≤i≤n

max
1≤j≤p

|y(M)
ij | ≤ u) ≥ 1− γ.

We first consider Condition (7). Using the convexity of h, we have

Eh( max
1≤j≤p

|x(M)
ij |/Dn) ≤Eh(E[ max

1≤j≤p
|xij |/Dn|ǫi−M , . . . , ǫi]) ≤ Eh( max

1≤j≤p
|xij |/Dn) ≤ C1.

By the fact that max1≤i≤n Eh(max1≤j≤p |x(M)
ij |/Dn) ≤ C1 and the arguments in the proof of Lemma

2.2 in [14], we have ux(γ) . max{Dnh
−1(n/γ), l

1/2
n } and uy(γ) . l

1/2
n . Because n3/8M−1/2l

−5/8
n ≥

Cmax{Dnh
−1(n/γ), l

1/2
n }, we can always choose u = O(n3/8M−1/2l

−5/8
n ) such that (50) is fulfilled.

We can prove a similar result under Condition (8). Therefore by (41), (46), (47), (48) and (49), we

get

sup
t∈R

|P (TX ≤ t)− P (TY (M) ≤ t)| . n−1/8M1/2l7/8n + γ + (n1/8M−1/2l−3/8
n )q/(1+q)




p∑

j=1

Θq
M,j,q




1/(1+q)

.

(51)

Step 5: Let ∆̃ = max1≤j,l≤p |cov(Xj ,Xl)− cov(X
(M)
j ,X

(M)
l )|. With similar arguments in the proof

of Lemma 4.2, we have ∆̃ . max1≤j≤p
∑+∞

l=M+1 lθl,j,2(x) = ΞM . Thus by Theorem 2 in [12], we

have

sup
t∈R

|P (TY ≤ t)− P (TY (M) ≤ t)| . Ξ
1/3
M (1 ∨ log(p/ΞM ))2/3 ,(52)

where we have used the fact that f(x) = x1/3(1 ∨ log(p/x))2/3 is monotonic increasing when

log(p/x) > 2. The conclusion follows by combining (51) and (52). ♦
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Lemma 4.2. Consider the M -dependent approximation sequence {x(M)
i }. Suppose that c1 <

min1≤j≤p σj,j ≤ max1≤j≤p σj,j < c2, maxi,j ||xij ||4 ≤ c3, and
∑+∞

j=1 max1≤k≤p jθj,k,2(x) < ∞.

Then we have c1/2 < min1≤j≤p σ
(M)
j,j ≤ max1≤j≤p σ

(M)
j,j < 2c2 for large enough M , where σ

(M)
j,k =

cov(X
(M)
j ,X

(M)
k ).

Proof. We claim that as M → +∞,

(53) max
1≤j≤p

n−1
n∑

i,k=1

|Ex(M)
ij x

(M)
kj − Exijxkj| → 0,

which implies that max1≤j≤p |σ(M)
j,j − σj,j| → 0. The conclusion thus follows from the assumption

that c1 < min1≤j≤p σj,j ≤ max1≤j≤p σj,j < c2. To show (53), we note that

|Ex(M)
ij x

(M)
kj − Exijxkj| ≤||x(M)

ij − xij||2||xkj||2 + ||x(M)
kj − xkj||2||xij ||2

.

+∞∑

l=M+1

(||Plxij ||2 + ||Plxkj||2) .
+∞∑

l=M+1

θl,j,2,

and for h > M ,

|Exijx(i+h)j | ≤|Exij(x(i+h)j − x
(h−1)
(i+h)j)| ≤ ||xij ||2||x(i+h)j − x

(h−1)
(i+h)j ||2 .

+∞∑

l=h

θl,j,2.

Thus we have

max
1≤j≤p

n−1
n∑

i,k=1

|Ex(M)
ij x

(M)
kj − Exijxkj|

≤ max
1≤j≤p

n−1
∑

|i−k|≤M

|Ex(M)
ij x

(M)
kj − Exijxkj|+ max

1≤j≤p
n−1

∑

|i−k|>M

|Exijxkj|

. max
1≤j≤p

M

+∞∑

l=M+1

θl,j,2 + max
1≤j≤p

n−1∑

h=M+1

+∞∑

l=h

θl,j,2

. max
1≤j≤p

+∞∑

l=M+1

lθl,j,2 ≤
+∞∑

l=M+1

max
1≤j≤p

lθl,j,2,

which implies that max1≤j≤p n
−1
∑n

i,k=1 |Ex
(M)
ij x

(M)
kj − Exijxkj| → 0 as M → +∞. ♦
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Table 1

The simulated probability P (TX ≤ QTY
(α)), where α = 90%, 95%, 97.5%, 99%, and n = 100. The results are

obtained based on 10000 Monte Carlo replications.

VAR(2) VARMA(2,1) Time-varying VAR(1)

p 90% 95% 97.5% 99% 90% 95% 97.5% 99% 90% 95% 97.5% 99%

AR(1) 120 89.6 95.1 97.3 98.8 90.2 95.2 97.5 98.8 90.4 95.4 97.6 99.1
240 90.2 95.1 97.7 99.1 90.1 95.0 97.5 98.9 89.9 95.3 97.8 99.1
480 89.9 94.6 97.3 98.8 90.6 95.4 97.5 99.1 90.7 95.5 98.0 99.1
960 90.4 95.2 97.7 99.1 89.9 95.3 97.9 99.2 90.9 95.8 98.1 99.5

Block diagonal 120 89.9 95.3 97.6 99.1 90.5 95.2 97.5 98.9 90.1 95.5 97.9 99.1
240 90.4 94.8 97.3 99.0 89.8 94.8 97.3 99.0 90.5 95.4 97.9 99.2
480 90.5 95.5 97.9 99.2 90.2 95.0 97.5 99.1 90.4 95.3 97.8 99.2
960 90.0 94.9 97.6 99.3 90.7 96.0 98.2 99.3 90.6 95.3 97.9 99.2

Banded 120 90.6 95.5 97.6 99.1 89.3 94.7 97.4 98.9 89.7 95.3 97.9 99.3
240 89.7 95.0 97.6 99.2 89.9 94.8 97.8 99.0 89.8 95.0 97.8 99.0
480 90.1 95.3 97.6 99.2 90.3 95.1 97.5 99.1 90.2 95.3 97.9 99.2
960 90.7 95.3 97.5 99.1 90.2 95.1 97.5 99.1 90.8 95.6 97.8 99.3

Exchangeable 120 90.2 95.3 97.6 99.0 90.5 95.3 97.7 99.2 90.0 94.9 97.5 99.0
240 90.7 95.7 98.0 99.2 90.4 95.3 97.7 99.0 90.1 94.9 97.8 99.0
480 90.1 95.0 97.6 99.0 89.9 95.0 97.3 99.0 90.9 95.3 97.8 99.2
960 90.2 95.4 97.4 99.0 90.1 95.0 97.9 99.2 90.8 95.5 98.0 99.3

Gamma(5,1) 120 89.0 94.1 96.8 98.7 89.0 93.9 96.7 98.4 88.9 94.0 96.4 98.2
240 88.6 94.2 97.0 98.7 88.9 94.1 96.4 98.3 88.5 93.7 96.5 98.4
480 88.9 93.8 96.7 98.6 88.9 94.0 96.5 98.5 88.8 93.9 96.7 98.3
960 88.7 93.9 96.7 98.4 88.9 94.0 96.4 98.3 88.9 93.8 96.5 98.2

t(4) 120 90.0 94.7 97.1 98.6 90.2 95.1 97.5 98.8 90.7 95.3 97.3 98.6
240 90.2 94.8 97.3 98.9 90.1 95.5 97.7 98.7 90.8 95.0 97.4 98.6
480 90.9 95.1 97.3 98.8 90.3 95.0 97.5 98.9 90.0 94.7 97.3 98.8
960 90.9 95.2 97.4 98.8 90.3 95.3 97.4 98.8 90.8 95.4 97.6 98.8

Table 2

The simulated probability P (TX ≤ QTY
(α)), where α = 90%, 95%, 97.5%, 99%, and n = 100. The results are

obtained based on 10000 Monte Carlo replications.

BEKK-ARCH(1), Uniform(0,2) BEKK-ARCH(1), N(0,1)

p 90% 95% 97.5% 99% 90% 95% 97.5% 99%

120 90.7 95.2 97.5 99.0 89.6 94.6 97.3 98.9
240 89.5 94.8 97.3 99.0 89.2 94.2 97.0 98.7
480 90.0 94.9 97.5 99.1 89.1 94.4 96.8 98.8
960 89.4 94.6 97.2 99.0 89.3 94.4 97.2 98.6
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Fig 1: P-P plots comparing the distributions of TX and TY , where the data are generated from the
VAR(2) model.
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Fig 2: P-P plots comparing the distributions of TX and TY , where the data are generated from the
VARMA(2,1) model.
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(a) AR(1)
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(b) Block diagonal

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform

p=120
p=240
p=480
p=960

(c) Banded
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(d) Exchangeable
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(e) Gamma(5,1)
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Fig 3: P-P plots comparing the distributions of TX and TY , where the data are generated from the
time-varying VAR(1) model.
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(a) Uniform(0,2)
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Fig 4: P-P plots comparing the distributions of TX and TY , where the data are generated from the
BEKK-ARCH(1) model.
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