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Linear or Nonlinear? Automatic Structure Discovery

Hao Helen ZHANG, Guang CHENG, and Yufeng LIU

for Partially Linear Models

Partially linear models provide a useful class of tools for modeling complex data by naturally incorporating a combination of linear and
nonlinear effects within one framework. One key question in partially linear models is the choice of model structure, that is, how to decide
which covariates are linear and which are nonlinear. This is a fundamental, yet largely unsolved problem for partially linear models. In
practice, one often assumes that the model structure is given or known and then makes estimation and inference based on that structure.
Alternatively, there are two methods in common use for tackling the problem: hypotheses testing and visual screening based on the marginal
fits. Both methods are quite useful in practice but have their drawbacks. First, it is difficult to construct a powerful procedure for testing
multiple hypotheses of linear against nonlinear fits. Second, the screening procedure based on the scatterplots of individual covariate fits
may provide an educated guess on the regression function form, but the procedure is ad hoc and lacks theoretical justifications. In this article,
we propose a new approach to structure selection for partially linear models, called the LAND (Linear And Nonlinear Discoverer). The
procedure is developed in an elegant mathematical framework and possesses desired theoretical and computational properties. Under certain
regularity conditions, we show that the LAND estimator is able to identify the underlying true model structure correctly and at the same
time estimate the multivariate regression function consistently. The convergence rate of the new estimator is established as well. We further
propose an iterative algorithm to implement the procedure and illustrate its performance by simulated and real examples. Supplementary

materials for this article are available online.

KEY WORDS: Model selection; RKHS; Semiparametric regression; Shrinkage; Smoothing splines.

1. INTRODUCTION

Linear and nonparametric models are two important classes
of modeling tools for statistical data analysis and both have their
unique advantages. Linear models are simple, easy to interpret,
and the estimates are most efficient if the linear assumption is
valid. Nonparametric models are less dependent on the model
assumption and hence able to uncover nonlinear effects hidden
in data. Partially linear models, a class of models between linear
and nonparametric models, inherit advantages from both sides
by allowing some covariates to be linear and others to be non-
linear. Partially linear models have wide applications in practice
due to their flexibility.

Given the observations (y;, X;, t;),i =1, ..., n, where y; is the
response, X; = (X, . .. ,xip)T and t; = (t;1, ..., tiq)T are vectors
of covariates, the partially linear model assumes that

Yi=b+x; B+f(t)+e, (1.1)

where b is the intercept, B is a vector of unknown parameters
for linear terms, f is an unknown function from R? to R, and
€;’s are iid random errors with mean zero and variance o 2. In
practice, the most used model for (1.1) is the following special
case when g = 1:

yi=b+x;B+f(t)+e. (1.2)

For example, in longitudinal data analysis, the time covari-
ate T is often treated as the only nonlinear effect. Model es-
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timation and inference for (1.2) have been actively studied
under various smooth regression settings, including smooth-
ing splines (Wahba 1984; Engle et al. 1986; Heckman 1986;
Rice 1986; Chen 1988; Hong 1991; Green and Silverman 1994;
Liang, Hardle, and Carroll 1999), penalized regression splines
(Ruppert, Wand, and Carroll 2003; Liang 2006; Wang, Li, and
Huang 2008), kernel smoothing (Speckman 1988), and local
polynomial regression (Fan and Gijbels 1996; Fan and Li 2004;
Li and Liang 2008). Interesting applications include the anal-
ysis of city electricity (Engle et al. 1986), household gaso-
line consumption in the United States (Schmalensee and Stoker
1999), a marketing price-volume study in the petroleum distri-
bution industry (Green and Silverman 1994), the logistic analy-
sis of bioassay data (Dinse and Lagakos 1983), the mouthwash
experiment (Speckman 1988), and so on. A recent monograph
by Hardle, Liang, and Gao (2000) gave an excellent overview
on partially linear models, and a more comprehensive list of
references can be found there.

One natural question about the model (1.1) is, given a set of
covariates, how one decides which covariates have linear effects
and which covariates have nonlinear effects. For example, in the
Boston housing data analyzed in the article, the main goals are
to identify important covariates, study how each covariate is as-
sociated with the house value, and build a highly interpretable
model to predict the median house values. The structure selec-
tion problem is fundamentally important, as the validity of the
fitted model and its inference heavily depends on whether the
model structure is specified correctly. Compared to the linear
model selection, the structure selection for partially linear mod-
els is much more challenging because the models involve mul-
tiple linear and nonlinear functions and a model search needs to
be conducted within some infinite-dimensional function space.

© 2011 American Statistical Association

Journal of the American Statistical Association
September 2011, Vol. 106, No. 495, Theory and Methods
DOI: 10.1198/jasa.2011.tm10281

1099


http://pubs.amstat.org
mailto:hzhang@stat.ncsu.edu
mailto:hzhang@math.arizona.edu
http://www.amstat.org
http://pubs.amstat.org/loi/jasa
http://dx.doi.org/10.1198/jasa.2011.tm10281

Downloaded by [Purdue University] at 09:34 22 January 2014

1100

Furthermore, the difficulty level of model search increases dra-
matically as the data dimension grows due to the curse of di-
mensionality. This may explain why the problem of structure
selection for partially linear models is less studied in the liter-
ature. Most works we mentioned above assume that the model
structure (1.1) is given or known. In practice, data analysts of-
tentimes have to rely on their experience, historical data, or
some screening tools to make an educated guess on the func-
tion forms for individual covariates. Two methods in common
use are the screening and hypothesis testing procedures. The
screening method first conducts univariate nonparametric re-
gression for each covariate or unstructured additive models and
then determines linearity or nonlinearity for each term by vi-
sualizing the fitted function. This method is useful in practice
but lacks theoretical justifications. The second method is to test
linear null hypotheses against nonlinear alternatives, sequen-
tially or simultaneously, for each covariate. However, proper
test statistics are often hard to construct and the tests may have
low power when the number of covariates is large. In addition,
these methods handle the structure selection problem and the
model estimation separately, making it difficult to study infer-
ential properties of the final estimator. To our knowledge, none
of the existing methods can distinguish linear and nonlinear
terms for partially linear models automatically and consistently.
The main purpose of this article is to fill this gap.

Motivated by the need of an effective and theoretically jus-
tified procedure for structure selection in partially linear mod-
els, we propose a new approach, called the LAND (Linear And
Nonlinear Discoverer), to identify model structure and estimate
the regression function simultaneously. By solving a regular-
ization problem in the frame of smoothing spline ANOVA, the
LAND is able to distinguish linear and nonlinear terms, remove
uninformative covariates from the model, and provide a con-
sistent function estimate. Specifically, we show that the LAND
estimator is consistent and establish its convergence rate. Fur-
thermore, under the tensor product design, we show that the
LAND is consistent in recovering the correct model structure
and estimating both linear and nonlinear function components.
An iterative computational algorithm is developed to implement
the procedure. The rest of the article is organized as follows. In
Section 2 we introduce the LAND estimator. Statistical prop-
erties of the new estimator, including its convergence rate and
selection consistency, are established in Section 3. We discuss
the idea of two-step LAND in Section 4. The computational
algorithm and the tuning issue are discussed in Section 5. Sec-
tion 6 contains simulated and real examples to illustrate finite
sampling performance of the LAND. All the proofs are rele-
gated to the Appendix. Due to the space restriction, Appendix 4
is given in online supplementary materials.

2. METHODOLOGY
2.1 Model Setup

From now on, we use x; € R? instead of (x;, t;) to represent
the entire covariate vector, as we do not assume the knowledge
of linear or nonlinear form for each covariate. Without loss of
generality, all covariates are scaled to [0, 1]. Let {x;,y;},i =
1,...,n, be an independent and identically distributed sample.
The underlying true regression model has the form

Vi=b+ Y xBi+ Y i)+ Y 00 e (21

Jelr JEIN jelo
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where b is an intercept, I1, Iy, Ip are the index sets for nonzero
linear effects, nonzero nonlinear effects, and null effects, re-
spectively. Let the total index set be I = {1,...,d}; then I =
I UlIy Ulp and the three subgroups are mutually exclusive.
The model (2.1) can be regarded as a hypothetical model, since
Ir,In,Ip are generally unknown in practice. Since nonlinear
functions embrace linear functions as special cases, we need to
impose some restrictions on f’s to assure the identifiability of
terms in (2.1). This issue will be carefully treated later.
The model (2.1) is a special case of the additive model

yi=b+gi(xi1) + -+ galxia) + €i. 22

Without loss of generality, we assume that the function compo-
nents in (2.2) satisfy some smoothness conditions, say, differ-
entiable up to a certain order. In particular, we let g; € H;, the
second-order Sobolev space on &; = [0, 1], that is, H; = {g :
g, g'are absolutely continuous, g € L?[0, 1]}. Using the stan-
dard theory in functional analysis, one can show that H; is a
reproducing kernel Hilbert space (RKHS), when equipped with
the following norm:

1 2 1 2 1
||gj||%j={ /0 g,-(x)dx} +{ fo g;(xwx} + /0 (g P dx.

The reproducing kernel (RK) associated with H; is R(x,z) =
Ro(x,2) + R1(x,z) with Ro(x,z) = k1(x)k1(z) and Ry(x,2) =
ko (0)ka (2) — ka(x — 2), where ki (x) = x — 5, ko (x) = 5 {kj (¥) —
51 and ky(x) = L{k}(¥) — 2k3(x) + 555). See the works of
Wahba (1990) and Gu (2002) for more details. Furthermore,
the space H; has the following orthogonal decomposition:

H; = {1} ® Ho; ® Hyj, (2.3)

where {1} is the mean space, Ho; = {g;: g]/-’ (x) = 0} is the linear

contrast subspace, and H1; = {g;: fi) () dx=0, [ () dx=
0, g]’-/ € £,[0, 1]} is the nonlinear contrast space. Both H; and
‘H1j, as subspaces of H;, are also RKHS and respectively as-
sociated with the reproducing kernels Ry and R;. Based on the
space decomposition (2.3), any function g; € H; can be corre-
spondingly decomposed into the linear part and nonlinear part

g (x)) = boj + Bi(x; — 3) + 81;(x)), 2.4)

where the term ky(xj) = B;(x; — %) € Ho; is the “linear” com-
ponent and gi;(x;) € Hy; is the “nonlinear” component. The
fact that Ho; and Hy; are orthogonal to each other assures the
uniqueness of this decomposition.

The function g(xX) = b + g1(xi1) + - -+ + g4(xiq) is then es-
timated in the tensor sum of H;’s, that is, H = @]42 1 H;. The
decomposition in (2.3) leads to an orthogonal decomposition
of H:

d d d
H=PH=1}oPHyoPHy;
Jj=1 j=1 j=1

= {1} ® Ho ® Hi, 2.5)

where Ho = @le Hoj and H; = @;lzl Hij. In the next sec-
tion, we propose a new regularization problem to estimate g €
‘H by imposing some penalty on function components, which
facilitates the structure selection for the fitted function.
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2.2 New Regularization Method: LAND

Throughout the article, we regard a function g(x) as a zero
function, that is, g = 0, if and only if g(x) =0, Vx € X'. With the
above setup, we say X; is a linear covariate if 8; # 0 and g1; =0,
and X; is a nonlinear covariate if g1;(x;) is not zero. In other
words, we can describe the three index sets in the model (2.1)
in a more explicit manner:

IL:{]':1,...,d1,3j750,g1j50},
Iv={=1,...,d:g; #0},
IOZ{]ZI”d,BJZO,gleO}

Note that the nonlinear index set Iy can be further decomposed
as Iy = Ipy U Iy, where Ipy = {ﬂ] = O,glj # 0} is the index
for purely nonlinear terms and I;y = {B; # 0, g1; # 0} is the
index for covariates whose linear and nonlinear terms are both
nonzero.

The model selection problem for (2.2) is therefore equiva-
lent to the problem of identifying Iz, I, Ip. To achieve this, we
propose to solve the following regularization problem:

Linear index set:
Nonlinear index set:

Null index set:

n

1
min — » “[y; — g(x))*

geEH N “
i=1

d d
+ a1 Y _woillPoglir, + 22 Y wijlPiglia,.  (2.6)
j=1 j=1

where Py; and Pj; are the projection operators respectively
from H to Ho; and Hy;. The regularization term in (2.6) consists
of two parts: [|Po;gll, = |8j] is equivalent to L; penalty on lin-
ear coefficients (Tibshirani 1996), and [|Py;gll#, is the RKHS
norm of g; in ;. In the context of second-order Sobolev space,
we have |Pygllz, = Ly [1;001>dx}!/2. Our theoretical re-
sults show that this penalty combination enables the proposed
procedure to distinguish linear and nonlinear components auto-
matically. Two tuning parameters (11, A2) are used to control
overall shrinkage imposed on linear and nonlinear terms. As
shown in Section 3, when (A, A2) are chosen properly, the re-
sulting estimator is consistent in both structure selection and
model estimation. The choices of weights wg; and wy; in (2.6)
are discussed in the end of this subsection. We call the new
procedure linear and nonlinear discoverer (LAND) and denote
the solution to (2.6) by g. The model structure selected by the
LAND is defined as

In=1j:$j#0,8,=0},
Io=1\{ILUly)}.

Iy ={j:81; # 0},

We note that the penalty proposed in (2.6) is related to the
COSSO penalty for nonparametric model selection proposed by
Lin and Zhang (2006) and Zhang and Lin (2006). The following
remark reveals the link and difference between the new penalty
and the COSSO penalty.

Remark 1. Denote Ji(g) = Y5, [IPojgll+, and Ju(g) =

Zle P1jgll#, . We also denote the COSSO penalty term as

Je(g) = Zf: 1 IP;gll#, where P; is the projection operator from

‘H to 7:(; = Hoj @ Hij and || - || is the previously defined

1101

RKHS norm. Based on |Pjglly = \/”POjg”%-[o + ”Pljg”%'{l’
the Cauchy—Schwarz inequality implies that

Ji(g) + Ju(g)

7 <J(g) <Ji(g) + Jn(2)

for any g € H.

The above remark implies that the penalty term in (2.6)
includes the COSSO penalty as a special case when equal
weights and smoothing parameters are used for regularization.
The LAND is much more flexible than the COSSO by employ-
ing different weights and smoothing parameters, which makes
it possible to distinguish linear and nonlinear components ef-
fectively.

The weights wo; and wj; are not tuning parameters as they
need to be prespecified by data. We propose to choose the
weights adaptively such that unimportant components are as-
signed with large penalties and important components are given
small penalties. In this way, nonzero function components are
protectively preserved in the selection process, while insignifi-
cant components are shrunk more toward zero. This adaptive
selection idea has been employed for linear models in vari-
ous contexts (Zou 2006; Wang, Li, and Jiang 2007; Zhang and
Lu 2007) and SS-ANOVA models (Storlie et al. 2011), and it
was found to be able to greatly improve performance of non-
adaptive shrinkage methods if the weights are chosen properly.
Assume g is a consistent estimator of g in H. We propose to
construct the weights as follows:

1 1
= —= , le: - %
|81« g1,

where Ej,§1j are the decomposition of g according to (2.4),
|l - |l represents the L, norm, and @ > 0 and y > 0 are some
positive constants. We will discuss how to decide @ and y in
Section 3. A natural choice of g is the standard SS-ANOVA
solution, which minimizes the least squares in (2.6) subject to
the roughness penalty. Other consistent initial estimators should
also work.

Woj forj=1,...,d, 2.7

Remark 2. The implementation of the LAND procedure re-
quires an initial weight estimation. We point out this two-step
process has a different nature from that of classical stepwise
selection procedures. In forward or backward selection, vari-
able selection is done sequentially and involves multiple deci-
sions. At each step, the decision is made on whether a covariate
should be included or not. These decisions are generally my-
opic, so the selection errors at previous steps may accumulate
and affect later decisions. This explains instability and incon-
sistency of these stepwise procedures in general. By contrast,
the model selection of the LAND is not a sequential decision.
It conducts model selection by solving (2.6) once, where all the
terms are penalized and shrunken toward zero simultaneously.
The initial weights are used to assure the selection consistency
of the LAND, which is similar to the adaptive LASSO in linear
models.

3. THEORETICAL PROPERTIES

In this section, we first establish the convergence rates of
the LAND estimator. Then under the tensor product design, we
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show that the LAND can identify the correct model structure
asymptotically, that is, I — I, Iy — Iy, 1o — Ip with proba-
bility tending to 1.

To facilitate the presentation, we now define some notations
and state the technical assumptions used in our theorems. First,
we assume the true partially linear regression is

yi = go(x;) + €,
g0(x) =bo+ Y _xiBoi+ Y_foitei) + Y00,  (3.1)
JjelL Jeln J€lo

where by is the true intercept, By;’s are the true coefficients for
nonzero linear effects and fy;’s are the true nonzero functions
for nonlinear effects. For any g € H, we decompose g(-) in the
framework of function ANOVA:

d d
g =b+ Y Bkix)+ Y gi(x),

J=1 J=1

where g1; € H;;. For the purpose of identifiability, we assume
that each component has mean zero, that is, Y ;| Biki (x;) +
Zl'-’zl 81j(x;j) =0 foreach j=1,...,d. For the final estimator
2, the initial estimator g, and the true function gg, their ANOVA
decomposition can also be expressed in terms of the projection
operators. For example, g(l)/ ="Pijgoforj=1,...,d.

Given data (x;,y;),i = l, ..., n, for any function g € H, we
denote its function values evaluated at the data points by the n-
vector g = (g(X1), ..., g(X,)). Similarly, we define gy and g.
Also, define the empirical L, norm || - ||, and inner product
{(-,*), in R" as

2 s o IR PN
lglln =~ ;g <), (g =~ Egm)h(xl),

and thus ||y — g||% =(1/n) > vi— g(x/)}2. For any sequence
r, — 0, we denote A ~ r, when there exists an M > 0 so that
M=, <A <Mr,.

We will establish our theorems for fixed d under the follow-
ing regularity conditions:

(C1) € is assumed to be independent of X, and has the sub-
exponential tail, that is, E[exp(|e|/Cp)] < Cp for some 0 <
Cop <0

(C2) Y7 (x; — 1/2)(x; — 1/2) /n converges to some non-
singular matrix

(C3) the density for X is bounded away from zero and infin-
ity.

3.1 Asymptotic Properties of the LAND

The choices of weights wo;’s and wy;’s are essential to the
LAND procedure. In Section 2, we suggest using the weights
constructed from the SS-ANOVA solution g: woj = |Ej|_°‘
and wij = ||§1j||;y for j=1,...,d. The standard smoothing
ANOVA 7 is obtained by solving

n d
: L 312 o112
min - > i = g(x)] “‘Z IPyely,. (G2
i=1 j=1
In the following theorem, we show that the LAND estimator has
a rate of convergence n~>/ if the tuning parameters are chosen
appropriately.

Journal of the American Statistical Association, September 2011

Theorem 1. Under the regularity conditions (C1) and (C2)
and the weights stated in (2.7) and (3.2), if A1, Ao ~ n~*3 and
o >3/2,y >3/2, then the LAND estimator in (2.6) satisfies:

g —goll. = Op(n_z/s) if go is not a constant function
and
I8 — golln = Op(n~'/?) if go is a constant function.

Remark 3. Theorem 1 is consistent with corollary 1 in the
COSSO article (Lin and Zhang 2006) since we assume the same
order of two smoothing parameters A| and A;. It is worth point-
ing out that we do not have the optimal parametric rate when the
nonparametric component of g is zero. This is not surprising
because we still apply the standard nonparametric estimation
method, which yields n~2/5_rate, even when the true function g
is purely linear.

3.2 Selection Consistency

To illustrate the selection consistency of our LAND proce-
dure, we give an instructive analysis in the special case of a
tensor product design with a smoothing spline ANOVA model
built from the second-order Sobolev spaces of periodic func-
tions. For simplicity, we assume that the error ¢’s in the re-
gression model are independent with the distribution N(0, -2)
here. The space of periodic functions on [0, 1] is denoted by
Hper ={1}® @le Hoj @ @le Sper,j» Where Sp,j is the func-
tional space Sper 0On xj, and

Sper =1f:ft) = Z ayv/2 cos(2mvi) + Z b,/2sin(27vi),

y=1 v=1

o
with Z(a% + b%)(2nvt)4 <00g.
v=1
We also assume that the observations come from a tensor prod-
uct design, that is,

{x1,x2,..., X4},
where x; = (xl,j,....,xnj,j)’ and x;; = i/nj, fori=1,...,n
and j=1,...,d. Without loss of generality, we assume that n;
equals some number m forany j=1,...,d.

Theorem 2. Assume a tensor product design and gy € Hpe,-
Under the regularity conditions (C1) to (C3), assume that
(i) n'Priwoj — oo for j € I'\ Ir; (i) w?/**33wy; — oo for
jel\ly, we have I = I1, Iy = Iy, lo = Ip with probability
tending to 1 as n — oo.

Remark 4. To achieve the structure selection consistency and
convergence rate in Theorem 1 simultaneously, we require that
A, A2 ~n"*3 a >3,y > 29/8, by considering the assump-
tions in Theorems 1 and 2 and Lemma A.1 in the Appendix if
we use the weight of the form (2.7).

Remark 5. The proof of the selection consistency requires
detailed investigation on eigen-properties of the reproducing
kernel, which is generally intractable. In Theorem 2, we assume
that the function belongs to the class of periodic functions and
x has a tensor product design. This makes our derivation more
tractable, since the eigenfunctions and eigenvalues of the RK
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for Hpe, have particularly simple forms. Results for this specific
design are often instructive for general designs, as suggested by
Wahba (1990). We conjecture that the LAND is still selection
consistent in general cases. This is also supported by numerical
results in Section 5, where neither the tensor product design nor
the periodic function is assumed in the examples. Note that the
special design condition is not required for the convergence rate
results in Theorem 1.

4. TWO-STEP LAND ESTIMATOR

As shown in Section 3, the LAND estimator can consis-
tently identify the true structure of partially linear models. In
other words, the selected model would be correct as the sam-
ple size goes to infinity. In finite sample situations, if the se-
lected model is correct or approximately correct, it is natural to
ask whether refitting data based on the selected model would
improve model estimation. This leads to the two-step LAND
procedure: at step I, we identify the model structure using the
LAND, and at step II we refit data by using the selected model
from step L. In particular, we fit the following model at the sec-
ond step:

Yi=b+ Y BkiC) + Y gt + Y00y + €, (4.1)

jEiL jEiN jeio

where (?L, ?N, ?0) are the index sets identified by g. Denote the
two-step LAND solution by g*. The rationale behind the two-
step LAND is: if the selection in step I is very accurate, then the
estimation of g* can be thought of as being based on a (approx-
imately) correct model. This two-step procedure thus will yield
better estimation accuracy as shown in the next paragraph.

Let Q, ={I; = iL and Iy = iN}. In the first step, we esti-
mate I; and Iy consistently, that is, P(2,) — 1, according to
Theorem 2. In the second step, we fit a partial smoothing spline
in (4.1). Denote the solution as ﬁ *and gF 1 Within the event £2,,,
that is, IL =]; and IN = Iy, we know that, by the standard par-
tial smoothing spline theory (Mammen and van de Geer 1997),

1B* = Boll = 0p(n™ /%), (4.2)
185, — &%ll2 = 0p(n %), (4.3)

under regularity conditions. In addition, we know that ﬁ* is also
asymptotically normal within the event €2,,. Since €2,, is shown
to have probability tending to 1, we can conclude that (4.2)
and (4.3) hold asymptotically. Moreover, comparing (4.2)—(4.3)
with Theorem 1, we conclude that the convergence rates of both
linear and nonlinear components can be further improved to
their optimal rates by implementing the above two-step proce-
dure.

In Section 6, we find that the LAND and two-step LAND
perform similarly in many cases. If the LAND does a good job
in recovering the true model structure correctly, say in strong
signal cases, then the additional refitting step can improve the
model estimation accuracy. However, if the selection result is
not good, say, in weak signal cases, the refitting result is not
necessarily better.
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5. COMPUTATION ALGORITHMS
5.1 Equivalent Formulation

We first show that the solution to (2.6) lies in a finite-
dimensional space. This is an important result for nonpara-
metric modeling, since the LAND estimator involves solving
an optimization problem in an infinite-dimensional space H.
The finite representer property is known to hold for standard
SS-ANOVA models (Kimeldorf and Wahba 1971) and partial
splines (Gu 2002).

Lemma 1. Let (x) = b+ YL, fiki(x) + XL, &1;(x)) be
a minimizer of (2.6) in 4, with g1; € Hyjforj=1,...,d. Then
glj € span{Ry;(x;,-),i =1, ...,n}, where Ry;(-,-) is the repro-
ducing kernel of the space Hj;.

To facilitate the LAND implementation, we give an equiv-
alent but more convenient formulation to (2.6). Define 0 =
®1, ..., Gd)T. Consider the optimization problem:

d
2

min E X))+ A E woil| Po;

020 pe 1 i —g(x)] lj_l OJ” Ojg”

d d
+ 1 Z ej‘lwu||7’1,/gII311 +1 Z w1;6;,
j=1 J=1

subjectto 6;>0,j=1,...,d, 5.1

where t( is a constant that can be fixed at any positive value,
and (A1, 71) are tuning parameters. The following lemma shows
that there is a one-to-one correspondence between the solutions
to (2.6) [for all possible pairs (A1, A2)] and those to (5.1) [for
all (A1, 71) pairs].

Lemma 2. Set 1) = A% /(47p). () If g minimizes (2.6), set

1/2_-1/2

é =% 0 IP1;gll; then the pair (9,§) minimizes (5.1).

(i) If (0, £) minimizes (5.1), then g minimizes (2.6).

In practice, we choose to solve (5.1) since its objective func-
tion can be easily handled by standard quadratic programming
(QP) and linear programming (LP) techniques. The nonnega-
tive 6;’s can be regarded as scaling parameters and they are
interpretable for the purpose of model selection. If 6; = 0, the
minimizer of (5.1) is taken to satisfy ||Py;gl| = 0, which implies
that the nonlinear component of g; vanishes.

With 6 fixed, solving (5.1) is equivalent to fitting a partial
spline model in some RKHS space. By the representer theorem,
the solution to (5.1) has the following form:

gx)=b+ Z Bik1 (x)) + Ze Wi chle(xl],x]) (5.2)

j=1 j=1 i=1

The expression (5.2) suggests that the linearity or nonlinearity
of gj is determined by the fact whether 8; = 0 or 6; = 0 or not.
Therefore, we can define the three index sets as:

IL=4:B#0,6=0),  Iy={j:6;#0},
lo=1{j:8=0,6=0).
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5.2 Algorithms

In the following, we propose an iterative algorithm to
solve (5.1). Define the vectors y = (yy, ... ,yn)T, g = (g(x1),
8 )L, B=(b,B1,.... BT, and e = (cy,...,c,)T € R
With some abuse of notations, let Rj; also stand for the
n x nmatrix {Ry;(x;, xyj)}, fori, i’ =1,...,n;j=1,...,d, and
Ry, 9 = Z;lzl 9jW1_,-1R1 ; be the Gram matrix associated with
the weighted kernel. Let T be the n x (1 + d) matrix with
thn=1and t;j =ki(xj) fori=1,...,nandj=1,...,d. Then
g=TpB + Ry, ¢, and (5.1) can be expressed as

1
min - (y—Tf — Ry, 0¢) (¥ = TB — Ry, 0)

d d
T
+ A1 ZW0j|,3j| + 70¢ Ry, gc+ 11 ZWU@j,
j=1 j=1

st. 6,>0,j=1,....,d. (5.3)

To solve (5.3), we suggest an iterative algorithm to alternatively
update (8, #) and c.

On one hand, with (,B, é) fixed at their current values, we
update ¢ by the following ridge-type problem: define z=y —
T[Ai and solve

1 T T
min—(z—R_ sc) (Z_Rw.,éc) + ¢ R, e (5.4)

c n W|,0

On the other hand, when ¢ is fixed at their current values,
we can update (8, @) by solving a quadratic programming (QP)
problem. Define v; = wfjl Ryj¢forj=1,...,d and let V be the

n X d matrix with the jth column being v;. Then we obtain the
following problem:
1
min —(y —TB —VO)T(y —TB — V0)
0>0,8n
d d
+ A ZWQ/|,3/| + ‘L'()éTVO + 11 ZWU@/. 5.5)
j=1 j=1
Further, we can write |8;| = ,Bj+ + ,Bj_ and B; = ﬂj‘" - ,Bj_ for
each j, where /Sj+ and p; are respectively the positive and neg-
ative part of B;. Define wo = (wor, ..., woq)T. Then (5.5) can
be equivalently expressed as

1
min —(y—TB +TB~ — VO (y—TB +TB~ — V)
0.6+ 1N
+ klwg(ﬂ+ +B8)+ ‘L'oéTVO,
d

subjectto Y wyfj <M.0>0,7 >0, >0 (5.6)
j=1
for some M > 0. Given any (A1, M), the following is a complete
algorithm to compute g.

Algorithm.

Step 0: Obtain the initial estimator g by fitting a standard
SS-ANOVA model. Derive B},glj,j =1,...,d, and compute
the weights wo;, wyj,j=1,...,d, using (2.7).

Step 1: Initialize § =15 and ;= B;,j=1,...,d.
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Step 2: Fixing @, ﬁ) at their current values, update ¢ by
solving (5.4).

Step 3: Fixing € at their current values, update (6, 8) by
solving (5.6).

Step 4: Go to step 2 until the convergence criterion meets.

6. NUMERICAL STUDIES

In this section, we demonstrate the empirical performance
of the LAND estimators in terms of their estimation accuracy
and model selection. We compare the LAND with GAM, SS-
ANOVA, COSSO, and the two-step LAND (2LAND). Note that
LAND and 2LLAND procedures give identical performance for
model selection. The GAM and COSSO fits were obtained us-
ing the R packages “gam” and “cosso,” respectively. The built-
in tuning procedures in R packages are used to tune the associ-
ated tuning parameters.

The following functions on [0, 1] are used as building blocks
of functions in simulations:

hi(x) =x,

h3(x) = sin(2mx) /(2 — sin(2wx)),

ha(x) = 0.1sin(27x) + 0.2 cos(2x) + 0.3(sin(27rx))>
+0.4(cos(2mx))* 4 0.5(sin(27x))?,

hs(x) = Bx — 12

hy(x) = cos(2mx),

For each function, we can examine whether it is a pure linear,
pure nonlinear, or both linear and nonlinear function based on
its functional ANOVA decomposition in (2.4). Simple calcula-
tion shows that h; is a pure linear function, hy, h3, and hy are
pure nonlinear functions, and /s contains both nonzero linear
and nonlinear terms.

For the simulation design, we consider four different val-
ues of theoretical R? as R? = 0.95,0.75, 0.55, 0.35, providing
varying signal-to-noise ratio (SNR) settings. For the input x,
we consider both uncorrelated and correlated situations, cor-
responding to p = corr(X;, X;) = 0,0.5, 0.8 for all i # j. The
combination of four levels of R? and three levels of p produces
twelve unique SNR settings.

To evaluate the model estimation performance of the estima-
tor g, we report its integrated squared error ISE = Ex{g(X) —
2(X)}2. The ISE is calculated via a Monte Carlo integration
with 1000 points. For each procedure, we report the average
ISEs over 100 realizations and the corresponding standard er-
rors (in parentheses). To evaluate performance of the LAND in
structure selection, we summarize the frequency of getting the
correct model structure (power) and an incorrect model struc-
ture (Type I error) over 100 Monte Carlo simulations. In partic-
ular, the power related measures include:

(i) the number of correct linear effects identified (denoted

as “corrl”)

(ii) the number of correct nonlinear effects identified (de-
noted as “corrN”)

(iii) the number of correct linear and nonlinear effects iden-
tified (denoted as “corrLN”)

(iv) the number of correct zero coefficients identified (de-
noted as “corr0”).

The Type I error related measures include:



Downloaded by [Purdue University] at 09:34 22 January 2014

Zhang, Cheng, and Liu: Linear or Nonlinear?

(1) the number of linear effects incorrectly identified as
nonlinear effects (denoted as “LtoN")
(i) the number of nonlinear effects incorrectly identified as
linear effects (denoted as “NtoL)
(iii) the number of linear or nonzero effects incorrectly iden-
tified as zero (denoted as “LNto0”).

The selection of tuning parameters is an important issue.
Our empirical experience suggests that the performance of the
LAND procedures is not sensitive to y and «. We recommend
to use y = o =4 based on Remark 4 and they work well in our
examples. The choices of (A1, A7) [or (A1, M), equivalently] are
important, as their magnitude directly controls the amount of
penalty and the model sparsity. The numerical results are quite
sensitive to A’s. Therefore, we recommend to select the optimal
parameters using cross-validation or some information criteria.
In our simulation, we generate a validation set of size n from
the same distribution of the training set. For each pair of tuning
parameters, we implement the procedure and evaluate its pre-
diction error on the validation set. We select the pair of 1 and
A2 (or M) which corresponds to the minimum validation error.

6.1 Example 1
We generate Y from the model
Y =3h1(X1) +2h2(X2) + 2h5(X3) + €,

where € ~ N(0, 0%). The pairwise correlation corr(X;, Xi) = p
for any j # k. We consider three cases: p =0, 0.5, 0.8. In this
model, there are one purely linear effect, one purely nonlinear
effect, one linear-nonlinear effect, and d — 3 noise variables. We
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consider d = 10 and d = 20, and the number of noise variables
increases as d increases.

Table 1 summarizes the ISEs of all the procedures in twelve
settings. To set a baseline for comparison, we also include the
oracle model which fits the data using the true model structure.
The 2LAND consistently produces smaller ISEs than GAM and
SS-ANOVA in all the settings. The LAND is better than GAM
and SS-ANOVA in most settings. We also note that the LAND
and 2LAND perform similarly in the independent case. When
the covariates are correlated at some degree, 2LAND tends to
give better ISEs than the LAND as long as the signal is not
too weak. The comparison between the LAND methods and
COSSO is quite interesting. When R? is moderately large, say
0.75 and 0.95, the 2L AND overall gives smaller or comparable
ISEs; if R? is small, say 0.55 and 0.35, the COSSO gives smaller
errors. This pattern is actually not surprising, as the COSSO
and LAND aim to tackle different problems. The COSSO can
distinguish zero and nonzero components, while the LAND can
distinguish zero, linear, and nonlinear components. Since the
LAND methods are designed to discover a more detailed model
structure than the COSSO, they generally estimate the function
better if they can correctly separate different terms, which often
require relatively stronger signals in data. The main advantage
of the LAND methods is to produce more interpretable models
by automatically separating linear and nonlinear terms, while
other methods can not achieve this.

Figure 1 plots the estimated function components by the SS-
ANOVA and the 2LAND in one typical realization of Exam-
ple 1. For illustration, we plot the first four function compo-
nents. In each panel, the solid, dashed, dotted lines respectively

Table 1. Average ISEs (and standard errors in parentheses) for 100 runs in Example 1

0 d R? GAM SS-ANOVA COSSO LAND 2LAND Oracle
10 0.95 0.17 (0.01) 0.11 (0.01) 0.11 (0.01) 0.05 (0.01) 0.06 (0.00) 0.06 (0.00)
0.75 0.91 (0.05) 0.56 (0.03) 0.48 (0.03) 0.35 (0.03) 0.39 (0.02) 0.27 (0.02)
0.55 2.17 (0.12) 1.31 (0.07) 1.07 (0.07) 1.28 (0.10) 1.12 (0.08) 0.61 (0.05)
0.35 4.73 (0.28) 2.95 (0.17) 2.44 (0.15) 3.28 (0.18) 2.94 (0.18) 1.34 (0.11)
20 0.95 0.50 (0.01) 0.19 (0.01) 0.18 (0.01) 0.05 (0.01) 0.07 (0.01) 0.06 (0.00)
0.75 2.48 (0.07) 1.04 (0.04) 0.82 (0.04) 0.46 (0.03) 0.60 (0.03) 0.25 (0.02)
0.55 5.92(0.17) 2.46 (0.09) 2.01(0.11) 1.81(0.11) 1.89 (0.10) 0.55 (0.05)
0.35 13.29 (0.39) 5.60 (0.22) 4.18 (0.17) 5.18 (0.22) 5.10 (0.22) 1.17 (0.11)
0.5 10 0.95 0.16 (0.01) 0.11 (0.01) 0.10 (0.01) 0.09 (0.01) 0.06 (0.01) 0.06 (0.00)
0.75 0.87 (0.05) 0.57 (0.03) 0.45 (0.03) 1.06 (0.06) 0.48 (0.03) 0.27 (0.02)
0.55 2.08 (0.11) 1.35 (0.06) 1.07 (0.07) 1.94 (0.09) 1.33 (0.08) 0.61 (0.04)
0.35 4.68 (0.27) 2.97 (0.14) 2.44(0.15) 3.32(0.14) 2.99 (0.15) 1.37 (0.09)
20 0.95 0.41 (0.01) 0.19 (0.01) 0.16 (0.01) 0.24 (0.03) 0.07 (0.01) 0.06 (0.00)
0.75 2.27 (0.05) 1.02 (0.04) 0.74 (0.04) 1.06 (0.07) 0.67 (0.04) 0.24 (0.02)
0.55 5.48 (0.13) 2.46 (0.09) 1.86 (0.09) 2.42 (0.10) 2.08 (0.08) 0.55 (0.02)
0.35 12.36 (0.28) 5.46 (0.20) 3.60 (0.15) 4.97 (0.20) 5.11 (0.20) 1.21(0.12)
0.8 10 0.95 0.16 (0.01) 0.11 (0.01) 0.10 (0.01) 0.28 (0.01) 0.07 (0.01) 0.06 (0.00)
0.75 0.89 (0.05) 0.56 (0.03) 0.47 (0.03) 1.07 (0.05) 0.52 (0.03) 0.27 (0.02)
0.55 2.15(0.11) 1.35 (0.06) 1.06 (0.07) 1.87 (0.10) 1.35 (0.07) 0.61 (0.04)
0.35 4.74 (0.25) 2.98 (0.14) 2.29 (0.13) 3.33(0.14) 2.94 (0.14) 1.36 (0.09)
20 0.95 0.42 (0.01) 0.19 (0.01) 0.16 (0.01) 0.22 (0.03) 0.07 (0.05) 0.06 (0.01)
0.75 2.24 (0.05) 1.04 (0.04) 0.76 (0.04) 1.11 (0.07) 0.76 (0.05) 0.24 (0.02)
0.55 5.40(0.12) 2.50 (0.10) 1.88 (0.09) 2,61 (0.11) 2.25(0.11) 0.55 (0.05)
0.35 12.17 (0.27) 5.59 (0.22) 3.47 (0.14) 5.31(0.19) 5.49 (0.22) 1.20 (0.12)




Downloaded by [Purdue University] at 09:34 22 January 2014

1106

function 1

function 3

Journal of the American Statistical Association, September 2011

~
(aV)
c
9
=
O o -
c
=]
=
‘I_ —]
o |
! T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
x2
e ]
0
o
< a"—\\
[ -7 S
O o |-~ A
S ° ] N
[ AN
E \
A}
\
[Te) A}
S \
! \
N
e
: T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
x4

Figure 1. True and estimated function components for Example 1: True function (solid line), SS-ANOVA estimator (dashed line), and 2LAND

estimator (dotted line). The online version of this figure is in color.

represent the true function, the fit by SS-ANOVA, and the fit by
2LAND. We observe that both SS-ANOVA and 2LLAND per-
form well in the first three panels, and 2LAND shows better
accuracy in estimation than SS-ANOVA by producing a sparse
model. In the last panel where the true function is zero, the
2LAND successfully removes it from the final model while the
SS-ANOVA provides a nonzero fit.

Table 2 reports the selection performance of the LAND un-
der different settings. Note that the 2LAND is identical to the
LAND for model selection. We observe that the LAND shows
effective performance in terms of both power and Type-I er-
ror measures in all the settings. When the signal is moderately
strong, the LAND is able to identify the correct model with high
frequency since the “corrL,” “corrN,” “corrLN,” and “corr(” are
all close to their true values and the incorrectly selected terms
are close to zero. Except in weak signal cases, the frequency of
missing any important variable or treating linear terms as non-
linear is low. In more challenging cases, with a small R> or a
large number of noise variables, the LAND selection gets worse
as expected but still performs reasonably well, considering that
the sample size n = 100 is small.

6.2 Example 2

We modify Example 1 into a more challenging example,
which contains a larger number of input variables and a more
complex structure for the underlying model. In particular, let
d = 20. Similarly to Example 1, we consider uncorrelated co-
variates, correlated covariates with pairwise correlations p =
0, 0.5, 0.8 respectively. The response Y is generated from the
following model:

Y =3m1(X1) — 4h1(X2) + 271 (X3) + 2ha(X4) + 3h3(X5)
+ (5h4(Xe) + 2h1(Xe)) + 2h5(X7) + €,

where € ~ N(O, 02). In this case, the first three covariates X1,
X>, and X3 have purely linear effects, the covariates X4 and X5
have purely nonlinear effects, and the covariates X¢ and X7 have
nonzero linear and nonlinear terms. There are d — 7 noise vari-
ables, and let n = 250.

Table 3 summarizes the prediction errors of various estima-
tors under different settings. We consider four different values
of theoretical R? as R?> = 0.95,0.75, 0.55, 0.35, which provide
different signal-to-noise ratio (SNR) values and hence varying
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Table 2. Average selection results (standard errors in parentheses) for 100 runs in Example 1
R? corrlin corrnon corrlnn corr( LNto0 LtoN NtoL
d oracle: 1 1 1 d—3 0 0 0
0 10 0.95 0.99 (0.01) 0.90 (0.03) 1.00 (0.00) 6.34 (0.18) 0.00 (0.00) 0.01 (0.01) 0.00 (0.00)
0.75 0.99 (0.01) 0.71 (0.05) 1.00 (0.00) 5.23 (0.20) 0.00 (0.00) 0.01 (0.01) 0.00 (0.00)
0.55 0.99 (0.01) 0.51 (0.05) 0.97 (0.02) 3.97 (0.19) 0.02 (0.01) 0.01 (0.01) 0.05 (0.02)
0.35 0.92 (0.03) 0.33 (0.05) 0.74 (0.04) 2.33(0.17) 0.10 (0.03) 0.05 (0.02) 0.43 (0.06)
20 0.95 1.00 (0.00) 0.94 (0.02) 1.00 (0.00) 16.24 (0.27) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.75 1.00 (0.00) 0.71 (0.05) 1.00 (0.00) 13.38 (0.29) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.55 0.97 (0.02) 0.53 (0.05) 0.94 (0.02) 9.30 (0.03) 0.04 (0.02) 0.01 (0.01) 0.07 (0.03)
0.35 0.92 (0.03) 0.31 (0.05) 0.67 (0.05) 5.80 (0.31) 0.10 (0.03) 0.02 (0.01) 0.49 (0.06)
0.5 10 0.95 1.00 (0.00) 0.92 (0.03) 0.95 (0.02) 6.49 (0.14) 0.00 (0.00) 0.00 (0.00) 0.05 (0.02)
0.75 1.00 (0.00) 0.67 (0.05) 0.64 (0.05) 4.78 (0.18) 0.03 (0.02) 0.00 (0.00) 0.37 (0.05)
0.55 0.95 (0.02) 0.43 (0.05) 0.48 (0.05) 3.23(0.17) 0.13 (0.04) 0.01 (0.01) 0.61 (0.05)
0.35 0.88 (0.03) 0.19 (0.04) 0.39 (0.05) 2.24 (0.15) 0.20 (0.04) 0.06 (0.02) 0.82 (0.06)
20 0.95 1.00 (0.00) 0.91 (0.03) 0.97 (0.02) 16.23 (0.23) 0.00 (0.00) 0.00 (0.00) 0.03 (0.02)
0.75 0.99 (0.01) 0.66 (0.05) 0.66 (0.05) 12.32 (0.29) 0.03 (0.02) 0.00 (0.00) 0.36 (0.05)
0.55 0.90 (0.03) 0.48 (0.05) 0.46 (0.05) 8.14 (0.34) 0.12 (0.03) 0.02 (0.01) 0.65 (0.06)
0.35 0.85 (0.04) 0.16 (0.04) 0.30 (0.05) 5.40 (0.28) 0.25 (0.04) 0.03 (0.02) 0.96 (0.07)
0.8 10 0.95 1.00 (0.00) 0.88 (0.03) 0.94 (0.02) 6.41 (0.13) 0.00 (0.00) 0.00 (0.00) 0.06 (0.02)
0.75 1.00 (0.00) 0.61 (0.05) 0.66 (0.05) 4.44 (0.20) 0.05 (0.02) 0.00 (0.00) 0.35 (0.05)
0.55 0.92 (0.03) 0.36 (0.05) 0.48 (0.05) 3.08 (0.17) 0.18 (0.04) 0.00 (0.00) 0.62 (0.05)
0.35 0.91 (0.03) 0.16 (0.04) 0.42 (0.05) 1.88 (0.14) 0.15 (0.04) 0.03 (0.02) 0.88 (0.06)
20 0.95 1.00 (0.00) 0.94 (0.02) 0.97 (0.02) 16.15 (0.23) 0.00 (0.00) 0.00 (0.00) 0.03 (0.02)
0.75 0.95 (0.02) 0.64 (0.05) 0.72 (0.05) 11.20 (0.29) 0.07 (0.03) 0.00 (0.00) 0.31 (0.05)
0.55 0.88 (0.03) 0.41 (0.05) 0.43 (0.05) 7.22 (0.31) 0.17 (0.04) 0.02 (0.01) 0.67 (0.06)
0.35 0.81 (0.04) 0.17 (0.04) 0.26 (0.04) 4.78 (0.26) 0.29 (0.06) 0.04 (0.02) 1.05 (0.07)

signal strength. We have similar observations as in Example 1.
The LAND and 2LAND give similar performance, and both
of them consistently produce smaller ISEs than GAM and SS-
ANOVA in all the settings. The ISEs of the LAND and 2LAND
are significantly better than that of the COSSO in all the cases
except R? = 0.35, where the signal is very weak. In Table 4, we
report the structure selection performance of the LAND under
different settings. Overall, the LAND gives an effective perfor-
mance as long as the signal is not too weak.

In Figure 2, we plot the estimated functions given by SS-
ANOVA and 2LAND for one typical realization of Example 2.
Again, with the feature of automatic selection, 2LAND deliv-

ers overall better estimation than SS-ANOVA. In the last panel,
the SS-ANOVA provides a nonzero fit to a zero component
function, while the 2LAND successfully detects the variable as
unimportant.

In Table 4, we report the structure selection performance of
the LAND under different settings. Similarly to Example 1,
we observe that the LAND overall gives effective performance
in all the settings. When the signal is moderately strong, the
LAND procedure is able to identify the correct model with a
high frequency and the incorrectly selected terms are close to
zero. When the signal becomes quite weak, the LAND perfor-
mance gets worse but is still reasonable.

Table 3. Average ISEs (and standard errors in parentheses) for 100 runs in Example 2

0 R? GAM SS-ANOVA COSSO LAND 2LAND Oracle
0.95 1.07 (0.01) 0.16 (0.01) 0.25 (0.01) 0.07 (0.00) 0.08 (0.00) 0.07 (0.00)
0.75 2.16 (0.05) 0.87 (0.03) 1.10 (0.05) 0.43 (0.03) 0.46 (0.03) 0.33 (0.02)
0.55 4.14 (0.10) 2.07 (0.08) 2.19 (0.09) 1.51 (0.09) 1.54 (0.10) 0.72 (0.05)
0.35 8.47 (0.22) 4.54(0.17) 4.13(0.17) 3.90 (0.17) 3.83(0.18) 1.58 (0.10)

0.5 0.95 0.91 (0.01) 0.18 (0.01) 0.22 (0.01) 0.09 (0.01) 0.10 (0.00) 0.10 (0.00)
0.75 1.95 (0.04) 0.93 (0.04) 1.07 (0.04) 0.81 (0.05) 0.71 (0.04) 0.42 (0.02)
0.55 3.83 (0.09) 2.13 (0.07) 2.10 (0.07) 2.02 (0.09) 1.99 (0.02) 0.89 (0.05)
0.35 7.92 (0.20) 4.31(0.15) 3.74(0.13) 4.16 (0.15) 4.12(0.15) 1.66 (0.10)

0.8 0.95 0.93 (0.01) 0.19 (0.01) 0.24 (0.01) 0.10 (0.00) 0.11 (0.01) 0.10 (0.00)
0.75 2.02 (0.04) 0.98 (0.03) 1.18 (0.04) 0.85 (0.04) 0.80 (0.04) 0.47 (0.02)
0.55 3.96 (0.10) 2.29 (0.07) 2.26 (0.07) 2.15 (0.09) 2.16 (0.14) 0.99 (0.05)
0.35 8.16 (0.21) 4.61 (0.15) 3.82 (0.13) 4.19 (0.15) 4.38(0.17) 1.85 (0.10)
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Figure 2. True and estimated function components for Example 1: True function (solid line), SS-ANOVA estimator (dashed line), and 2LAND
estimator (dotted line). The online version of this figure is in color.

6.3 Real Example loaded in R. The data are for 506 census tracts of Boston from

We apply the LAND to analyze the Boston housing data, the 1970 census, containing twelve continuous covariates and
which are available at the UCI Data Repository and can be one binary covariate. These covariates are per capita crime rate

Table 4. Average selection results (standard errors in parentheses) for 100 runs in Example 2

R? corrlin corrnon corrlnn corrQ LNtoO LtoN NtoL

P oracle: 3 2 2 13 0 0 0

0 0.95 3.00 (0.00) 1.85 (0.04) 1.99 (0.01) 12.79 (0.09) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.75 2.95(0.02) 1.66 (0.06) 1.91 (0.03) 11.98 (0.11) 0.05 (0.02) 0.00 (0.00) 0.01 (0.01)
0.55 2.77 (0.05) 1.31 (0.07) 1.73 (0.05) 10.60 (0.23) 0.24 (0.05) 0.01 (0.01) 0.26 (0.05)
0.35 2.31 (0.09) 0.90 (0.07) 1.39 (0.07) 9.29 (0.27) 0.88 (0.12) 0.06 (0.02) 0.55 (0.06)

0.5 0.95 2.97 (0.02) 1.81 (0.04) 1.98 (0.01) 12.55 (0.12) 0.00 (0.00) 0.03 (0.02) 0.00 (0.00)
0.75 2.82 (0.04) 1.29 (0.07) 1.58 (0.05) 11.33 (0.18) 0.17 (0.04) 0.01 (0.01) 0.31 (0.05)
0.55 2.50 (0.07) 0.98 (0.07) 1.07 (0.08) 9.66 (0.24) 0.57 (0.08) 0.02 (0.01) 0.90 (0.08)
0.35 1.72 (0.11) 0.51 (0.06) 0.65 (0.07) 9.47 (0.31) 1.80 (0.17) 0.03 (0.02) 1.35 (0.09)

0.8 0.95 2.99 (0.01) 1.78 (0.05) 1.95 (0.02) 12.48 (0.18) 0.00 (0.00) 0.01 (0.01) 0.00 (0.00)
0.75 2.62 (0.06) 1.30 (0.07) 1.50 (0.06) 11.07 (0.22) 0.38 (0.06) 0.00 (0.00) 0.34 (0.05)
0.55 2.29 (0.08) 0.94 (0.06) 1.12 (0.07) 9.14 (0.27) 0.76 (0.09) 0.04 (0.02) 0.94 (0.07)

0.35 1.46 (0.11) 0.53 (0.06) 0.63 (0.07) 9.70 (0.35) 2.34 (0.19) 0.06 (0.02) 1.05 (0.09)
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Figure 3. The selected components and their fits by 2LAND for Boston Housing data.

by town (crime), proportion of residential land zoned for lots
over 25,000 sq.ft (zn), proportion of non-retail business acres
per town (indus), Charles River dummy variable (chas), ni-
tric oxides concentration (nox), average number of rooms per
dwelling (rm), proportion of owner-occupied units built prior
to 1940 (age), weighted distances to five Boston employment
centers (dis), index of accessibility to radial highways (rad),
full-value property-tax rate per USD 10,000 (tax), pupil-teacher
ratio by town (ptratio), 1000(B — 0.63)% where B is the propor-
tion of blacks by town (b), and percentage of lower status of the
population (Istat). The response variable is the median value of
owner-occupied homes in USD 1000’s (medv).

We scale all the covariates to [0, 1] and fit the 2LAND pro-
cedure. The parameters are tuned using 5-fold cross-validation.
From the thirteen covariates, the 2LAND identifies two linear
effects: rad and ptratio, and six nonlinear effects: crime, nox,
rm.dis, tax, and Istat. The remaining five covariates: zn, indus,
chas, age, b, are removed from the final model as unimportant
covariates. For comparison, we also fit the additive model in
R with the function gam, which identify four covariates as in-
significant at level o = 0.05: zn, chas, age, and b. Figure 3 plots
the fitted function components provided by the 2LAND estima-
tor. The first six panels are for nonlinear terms and the last two
are for linear terms.

7. DISCUSSION

Partially linear models are widely used in practice, but none
of the existing methods can consistently distinguish linear and
nonlinear terms for the models. This work aims to fill this gap
with a new regularization framework in the context of smooth-
ing spline ANOVA models. Rates of convergence of the pro-

posed estimator were established. With a proper choice of tun-
ing parameters, we have shown that the proposed estimator is
consistent in both structure selection and model estimation. The
methods were shown to be effective through numerical exam-
ples. An iterative algorithm was proposed for solving the op-
timization problem. Compared with existing approaches, the
LAND procedure is developed in a unified mathematical frame-
work and well-justified in theory.

In this article, we consider classical settings where d is fixed.
It would be interesting to extend the LAND to high-dimensional
data, with a diverging d or d > n. For ultrahigh-dimensional
data, we suggest to combine the LAND procedures with dimen-
sion reduction techniques such as Sure Independence Screening
(Fan and Jinchi 2008; Fan, Feng, and Song 2011). Alternatively,
we can first implement the variable selection procedures for
high-dimensional additive models, using SpAM (Ravikumar
et al. 2009) or the adaptive group LASSO (Huang, Horowitz,
and Wei 2010). These procedures are consistent in variable se-
lection for high-dimensional data, but they cannot distinguish
linear and nonlinear terms. After variable screening is per-
formed in the first step, the LAND can be applied to discover
the more subtle structure of the reduced model.

Additive models are a rich class of models and provide
greater flexibility than linear models. The possible model mis-
specification associated with additive models is to overlook
the potential interactions between variables. The LAND can
be naturally extended to two-way functional SS-ANOVA mod-
els and conduct selection for both main effects and interac-
tions. Interestingly, this extension makes it possible to detect
subtle structures for interaction terms, such as linear-linear,
linear-nonlinear, and nonlinear-nonlinear interactions between
two variables.
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APPENDIXES

Some Notations. Recall that the ANOVA decomposition of any
geH is gx)=b + Z —1 Bik1 (xj) + ZJ 181;(xj). Then we de-
fine hj(xj) = Bjk1 (xj) + g1;(xj), Ho(x) = Zj=1 Bik1(xj), Hi(x) =
Z.Id=1 g1j(xj), and H(x) = 27:1 hj(x;). The same notational rule also
applies to g, g, and go.

Appendix 1. Important Lemmas: Convergence Rates of g

We derive the convergence rate of g in Lemma A.1.

Lemma A.1. Suppose Conditions (C1)—(C3) hold. If we set A ~
n~4/5 then the initial solution (3.2) is proved to have the following
convergence rates, for any 1 <j <d:

171 — &);ll2 = 0p(n~'/3),

1B — Boll = 0p(n~'7),
where || - || is the Euclidean norm.

Proof. We first prove that ||H Hyllo, = Op(n™ 2/5) Denote
Ji(H) = Z] 1 ||731JH||H Since H minimizes H ||H0+6—H||”
AJi(H), we have the followmg inequality:

|H — Holl2 + AJ;(H) < 2(H — Hy, €)n + Mi(Hp), (A.])
IH — Holl2 < 2ll€llnllH — Holln + AJi(Ho)
< Op(D)||H — Hylln + op(1)

by the Cauchy—Schwarz inequality and the subexponential tail as-
sumption of €. The above inequality implies that |H — Hylln =
Op(1) so that ||[H|l, = Op(1). By the Sobolev embedding theo-
rem we can decompose H(x) as Hy(x) + Hj (x) Where ||H1 loo <
ZJ 1 ||81/||oo < Ju(H). Similarly, we can write H= HO + Hl, where

Ho(x) = Zj:l ﬁ]kl (xj) and ||H1 lloo <Jn (H). ‘We shall now show that
1H oo/ (1 + Jn(H)) = Op(1) as follows. First, we have

|Holln_ _[1Hln AR
L+ dn(H) = U Ju(H) 1+ Ju(H)

Combining with Condition (C2), (A.2) implies that HE l/(1+Jn (ﬁ)) =
Op(1). Since x € [0, 119, || Hylloo/(1 + Ju(H)) = Op(1). So we have
proved that ||ﬁ loo/(1 4+ Jp (17)) = Op(1) by the triangular inequality
and the Sobolev embedding theorem. Thus, according to Birman and
Solomjak (1967), we know the entropy number for the below con-
structed class of functions:

H — H H
(5 { o IHlco } - ||oo)<M15 12,
L+ Ju(H) 1+Jn(H)

where M| is some positive constant. Based on theorem 2.2 in the arti-
cle by Mammen and van de Geer (1997) about the continuity modulus
of the empirical processes { 2?21 €;(H — Hp)(x;)} indexed by H and
(A.1), we can establish the following set of inequalities:

=0p(1). (A.2)

() < [IH = Holly* (1 + Ju(E) M4 v (1 + J(B))n=3/10]
x Op(n~ /%) + wJi(Hp),
and

1H — Holl2 < [I1H — Holly* (1 + Ju () 4 v (1 + Ju(B))n=3/10]
x Op(n~ %) + 1Ji(Hp).

Considering J2/d < J; < J2, we can solve the above two inequalities
to obtain [|[H — Holly = Op(n—2/3) and J;(H) = Op(1) given A ~ n*/3.
Theorem 2.3 in the article by Mammen and van de Geer (1997) further
implies that

|H — Holly = Op(n™2/%). (A.3)

Journal of the American Statistical Association, September 2011

Recall that H(x) = Zﬁzlzj(xj) = Z]‘-izl Ejkl(xj') + 'gllj(x/‘) and
(Bo, g(l)j(')) is the true value of (B, g1;(-)). We next prove || — Boll =
Op(n~1/3) and |Igy; — g(l)j||2 =O0p(n~ 1) forany j=1,...,d based

on (A.3). We first take a differentiation approach to get the conver-
gence rate for B;j. Since the density for X is bounded away from zero

and fol hj(u) du = 0, (A.3) implies

max. / (hj(w) — ho(u))2du—0p( —4/3), (A.4)
_J<

Agmon (1965) showed that there exists a constant C > 0 such that for
all0 <k <2,0< p <1 and for all functions y : R+ R:

1 1 !
f (y® )2 dx < cp=2* f y @ de+ Cptk / (r@)? dx
0 0 0

(A.5)
Having proved that J,'(I?) = Op(1), we can apply the above interpo-

’lvation inequality (A.5) to (A.4) with k=1, p = 2174 and yx) =
hj(x) — hlo (x). Thus we conclude that

max /((8/8u)h (u) — (8/8u)h](-)(u))2du=OP(n_Z/S). (A.6)
<<

Note that we can write (3/dwhj(u) = Bj + (3/8u)g);(u) and
o /Bu)hj(.)(u) = ,BJQ +@ /Bu)g(l)/.(u), respectively. Thus (A.6) becomes

Op(n~P) = B - 8

d
205 - BY) / ( F(w) - glj<u))

1 9 9 2
+'/(; ( gl]( u) — glj(”))
% 0.2 tra
— B -8 +f0< 70 —

for any 1 <j < d, where the second equality follows from the def-
inition of Hj; in RKHS. Obviously, (A.7) implies that g; — 8 ]Q =
Op(n~1/9).

We next prove the convergence rate for gj j by decomposing the
function gj(x;) in another form; see example 9.3.2 in the book by
van de Geer (2000). We can write gj(x;) = (b/d) + Bi(xj — 1/2) +
glj(xj) = gO](x]) + gl](x]) where glj(x]) = fo g] (u)lpu(x])du and
Yu(x) = (xj — w)l{u < x;}. Let wu(xj) = o/ .t o/ ,~j be the pro-
jection in terms of empirical Lp-norm of 1//u (xj) on the linear space

spanned by {1, x;}. Let wu(x]) = Yu(xj) — wu(x]) Then, we can fur-
ther decompose

d
glj (u)) du (A7)

1 .
405) = [(b/d) + B — 1/2)] + [ /O ¢ e, du

1 . 1 5
+x; fo g}z)(u)o/l’udu]—l— /0 812 )T (xj) du

= 80;(%j) + 81j,1(%)) + 815,01 (%),
where gy and gjjn are the (orthogonal) linear and nonlinear
components of gi;, respectively. We define (o;,%1;,1,€1j,n) and
(ggj, g(l)j,l’ g(l)j, o) as the initial estimators and true values of (g, 81,1,

g1j,n1), respectively. By corollary 10.4 in the work by van de Geer
(2000), we have

~ ~ 0 0 —1/2

IZ0; + 211 — 80 — 83;1lln = Op(n~"/?)  and
~ -2
18170 — &3 illn = Op(n~7°).



Downloaded by [Purdue University] at 09:34 22 January 2014

Zhang, Cheng, and Liu: Linear or Nonlinear?

By the triangle inequality and the result obtained previously, that is,
Bj — B = 0p(n™"/%), we have [[g1;1 — &0, 1lln = Op(n~'/). Then
combining the fact that gj; = g1j,1 + g1j,n1, We have shown ||'§1j —
8(])j||n = Op(n*]/ 5) by applying the triangle inequality again. We fur-
ther obtain the Lp-rate for gy, that is, [|g1; — g(l)jllz =0p(n~1/%), by
applying theorem 2.3 from the book by Mammen and van de Geer
(1997). This completes the whole proof.

Appendix 2. Proof of Theorem 1

Denote J}' (H) = Z;’:] wo;|Bjl and J}Y (H) = Z]‘.’Zl oI P1H %, -
We first rewrite (2.6) as

l n
= (bo+Ho(xi) + € —b— H(x))* + MJ) (H) + A0 (H).
i=1
Since we assume that Z?:] hj(x;j) = 0, the terms involving b in the
above equation are (bg — b)? + 2(bg — b) Z?:l €;/n. Therefore, we
obtain that b = bo + Z?:l €;/n which implies that

b—by=0p(n~'/?). (A8)

Recall that J(H) = Z;lzl 18j1 + Z]‘-i:] P1jH ||, - It remains to prove

that |H — Hyllp = Op(n=2/3) when J(Hp) > 0 and |H — Hyll, =
OP(rF]/z) when J(Hp) = 0 as follows.
The definition of H implies the following inequality:

IH — Holl2 + a1 J) (E) + Ao ()

<2{e, H — Ho)n + 217} (Ho) + A2J}) (Ho), (A.9)

1 — Ho|?
<2llellnl & — Holln + 21J)" (Ho) + A2J)} (Ho)
< O0p(D)|IH — Hylln +op(1),

where the second inequality follows from the Cauchy—Schwarz in-
equality, and the third one follows from the subexponential tail of €.
Hence, we can prove | — Hylln = Op(1) so that | H ||, = Op(1). Now
we consider two different cases that J(Hp) > 0 and J(H() = 0.

Case I: J(Hp) > 0.

We first prove

ﬂ =0p(1) (A.10)
J(Ho) + J () '

by the Sobolev embedding theorem. The Sobolev embedding theorem
implies that [|g1;(xj) lloo < [IP1jHl7¢,, and thus we can establish that

[V
J(Ho) + J(H)

I Eolln IHn
J(Ho) +J(H) ~ J(Ho) + J(H)
J R
4Pl
Zi=t Pyt < 0p(D).
J(Hy) + J(H)

=0p()+

Combining the above result with Condition (C2), we have || ﬁ I/
(J(Hp) +J(H)) = Op(1) which further implies that || Ho |0/ (J (Hg) +
J(H)) = Op(1) by the assumption that x € [0, l]d. Again, by the
Sobolev embedding theorem, we have proved (A.10). By theorem 2.4
in the book by van de Geer (2000), we know the bracket-entropy num-
ber for the below class of constructed functions is

H— H d
Hpl§,{ ————— :H= h;, where h; € -
B( {J(HQH—J(H) ; j, where g} || ||oo>

< M52,

1111

where G = {hj(x) = (x — 1/2)8; + 1;(): I g1jll3¢, < 00} and Mj is
some positive constant. Based on lemma 8.4 from the work of van de
Geer (2000) about the continuity modulus of the empirical processes
(H — Hy, €), indexed by H in (A.9), we can establish the following set
of inequalities:

IH — Holl2 + 217} (H) + A J ()
< [I1H = Holly* (T (Ho) + () /*]0p (n~1/2)
+ 10 (Ho) + Ao (Ho). (A.11)

Note that the sub-Gaussian tail condition in lemma 8.4 of the book by
van de Geer (2000) can be relaxed to the assumed subexponential tail
condition; see discussions on page 168 of that book. In the following,
we will analyze (A.11) for the cases JH) < J(Hp) and J(I:I) > J(Hp).
If J(H) < J(Hp), then J(H) = Op(1). Thus, (A.11) implies that

N A 3/4 _
IH — Holl2 < IH — Holly *1(Ho) /*0p(n~1/2)

+ 1) (Ho) + 22J)) (Hp).  (A.12)
Since Ay, Ap ~ n~*3, we have ||f1 — Hylln = 0p(n‘2/5) based on

(A.12). We next consider the case that J(IEI) > J(Hp) > 0. In this case,
(A.11) becomes

IH — Holl2 + A1J) () + 3% ()

- 3/4 .~ _
<\l = Holly 7Y 4 0p(n™ 1) + 110 (Ho) + 102 (Ho),

which implies either
I — HollZ + AJ) (H) + Aoy ()
<l — Holl/ 1D *0p(n=?)  (A13)
or
VH = Holl3 + 217} (H) + Ay () < 21} (Ho) + A2J}) (Ho).
(A.14)
Note that

d d
M) (H) + 20y () = 0wl Y 1P 174, + kawt Y I1P1iH 134,
j=1 j=1
> rpJ (H), (A.15)

where r,;, = Alwz“) A Azw’i‘, wz‘) = min{wgq, ..., woq}, and w’f =

min{wyy, ..., wig}. Thus solving (A.13) gives
7 —1/3 _

I — Holln < rn 2 0p(n=2/3). (A.16)

JE) < ry P op(n413). (A.17)

Because of the conditions on A1, A2, wg;, and wy;, we know r,?l =

Op(n*/3). Hence (A.16) and (A.17) imply that J(#) = Op(1) and
|H — Holln = Op(n—2/3). By similar logic, we can show that (A.14)
also implies J() = Op(1) and || H — Hyll, = Op(n=2/%).

So far, we have proved | H — Holln = Op(n=2/%) and J(E) = Op(1)
given that J(H() > 0. Next we consider the trivial case that J(Hp) = 0.

Case II: J(Hp) = 0.

Based on (2.7) and Lemma A.1, we know that wajl = Op(n_"‘/s)

and wfjl = Op(n~7/3) given that J(Hy) = 0. Thus we have wajl,
Wl_jl = Op(n—3/10) based on the assumption that o« > 3/2, y > 3/2.

Then we know that r;l = Op(nl/z). From (A.16) and (A.17), we can
get |[H — Hylln = Op(n™1/2) and J(i) = Op(n~1/%) = 0p(1).
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Appendix 3. Proof of Lemmas 1 and 2

The proof of Lemma 1 is similar to those of lemmas 1 and 4 in
COSSO, and the proof of lemma 2 is similar to that of lemma 2 in the
COSSO article.

SUPPLEMENTARY MATERIALS

Appendix: The proof of Theorem 2 is given in Appendix 4,
which is provided as online supplementary materials for this
article. (Supplement.pdf)

[Received May 2010. Revised January 2011.]
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Appendix 4. Proof of Theorem

It suffices to show that, with probability tending to one,

731j§ =0« 'Pljg() =0, (8.18)
Bi=0<= 3 =0 (8.19)
for j = 1,...,d. Without loss of generality, we focus on the case d = 2, i.e. g(x1,29) =

b+ Biki(z1) + Poki(x2) + g11(x1) + g12(x2), where g1j(2;) € Sper,j, in the proof. Note that in

2

this case the sample size n is m* since we assume n; = ne = m. We have three major steps in

the proof.
Step I: Formulation

Let ¥ = {Ri(;1, k1) }{},—; be the mxm marginal Gram matrix corresponding to the repro-
ducing kernel for Spe,. Let 1,, be a vector of m ones. Assuming the observations are permuted
appropriately, we can write the n x n Gram matrix Rj; = X © (1,,1/,) and Rj2 = (1,,1],) © X,
where ® stands for the Kronecker product between two matrices. Let {&; = 11, &5, ...,&,,}
be an orthonormal (with respect to the inner product < - >,, in R™) eigensystem of X with

corresponding eigenvalues mny, . .., mn, where n; = (720m*)~!. Thus, we have
1 m
1=

1 :
INSF >m:1:>EZfZ-2j:1 for j > 1.

=1
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From |Utreras| (1983)), we know that 7o > 13 > ... > n,, and 7; ~ i~* for i > 2.

Let T be the m x m matrix with {&;,...,&,,} as its columns. We then define a n X n
matrix O = T © Y. It is easy to verify that the columns of O, i.e. {EZ ci=1,2,...,n},
form an eigensystem for each of Ri; and Ri2. We next rearrange the columns of O to form
{€1j5--+>Cpj} so that their first m elements are those corresponding to nonzero eigenvalues for
R; and the rest (n—m) elements are given by the remaining €, for j = 1,2. The corresponding
eigenvalues are then 7;; = nn; for i = 1,...,m and zero otherwise. It is clear that {El, . ,En}
is also an orthonormal basis in R™ with respect to the inner product < u,v >,. Thus we have

0’0 = nI and OO’ = nl.

Recall that our estimate (,@',ﬁn,/g\lg) is obtained by minimizing

1

n

d d
(y = T8 — Ruw,,0¢) (¥ = TB — Ruy 6¢) +A1 Y wojlB;] + 10 Ry o + 11w,
=1 j=1

(8.20)

over (3,c,0), see (5.3)). For simplicity, we hold 79 = 1. By using the special construction of O,

i.,e. OO0’ = nl, we can rewrite (8.20) as
d d
(z— O'TB/n—Dys) (z — O'TB/n—Des) + A1 Y wo;|Bj| +Dys + 11 Y _wy0;,  (8.21)
j=1 j=1
where z = (1/n)0’y, s = O’c, Dy = 2?21 ijl_lej and D; = (1/n?)O'R4;0 is a diagonal
n X n matrix with diagonal elements 7;;. We further write O'T3/n = (b,0,0,...)'+O't1 81 /n+
O'ty35/n, where T = (1,,,t1,t2) and

t=(1/m—1/2,2/m—1/2,...,1—-1/2) @ 1,, (8.22)

ty=1,® (1/m—1/2,2/m—1/2,...,1—1/2)". (8.23)

Due to the orthogonality of basis {(y;,...,(,;} for any j, we can further write (8.21) as

1 d

m d
L(s,3,0) = (211 — b —t1.1101 — t21182 — O1mis11)? + Z Z +ZZ

i=2 j=1 i=1 j=2

m d d d
(21 — g1 — togiBa = Ogmigsig)” + > > migbjwiy sy + M D wos|B] + 71 ) wi;6;,(8.24)
i=1j=1 j=1 j=1

Where tlﬂ'j = C;jtl/n, t27ij = C;jtg/n, Z,‘j = C;jy/n and Sij = C;jc.
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Note that our estimate (,5' g11, g12) are related to the minimizer of 1.} denoted by (,6' ,S, 0)
as shown in 1) Thus, we first analyze (,8,§, 9). Straightforward calculation shows that

511 =0and 211 —b—t1 1161 — t21152 = 0. Thus, we only need to consider minimizing

m d
2
Li(s, B1, F2,0) = Z Z + Z Z [(Zw — 11,501 — t2,i082 — ejwl_jlnijsij> + 771’]'91‘3@2]}
=2 j=1 =1 j=2
d d
+)\12w0j’ﬂj| +lew1j0j’ (825)
P =1

We minimize L1 (s, 31, (2,0) in two steps. Given fixed (1, 32,8), we first minimize L; over s.

Since L is a convex function in s, we can obtain the minimizer

— 11,501 — t2 Z_]/62
1+ (937713 /wlj

Plugging (8.26)) into (8.25)), we obtain Li(s(f1, 52,8), 51, B2, 0), denoted as La(31, B2, 0):

5561, 02, 0) =

(8.26)

m d 1 d
zij — 13501 — t2,i;2)
LB n0) = [ +3°% [ bl =ty }MlZwoﬂﬁj
i=2 j=1 =1 j=2 Jihig /g
d
+71 Z w150 (8.27)
=1

Step 2: Prove P =0 <= Pig0 =0

In this step we consider selection consistency for Py;g. We first verify that La(51, 52,0) in

(8.27)) is convex in @ for any fixed values of 3; and (33 by obtaining that

0L (B1, 2, 0) - N\ [0 (255 — traiB1 — t2,582)
T2 LEB T 0
ang ZZ+ZZ (1+ 9j77z'j/w1j)3 >0,

82L2(ﬁ17 ﬁ?a 0)
90,05

=0 forj #k.

By the above convexity, we know §] = 0 if and only if

0 ~ o~
(%’9j20> L2(18176279) Z 07

which is equivalent to

m

Ur=) malen — trabr — )’ < muwdy, (8.28)
i—2
n o ~

Uj = an‘j(zij —t14551 — ta;32)? < le%j for j > 2. (8.29)
i—1
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We define a;; = ¢;;G1/n, where G1 = (G1(x1),...,G1(xn))" and Gi(x;) = Z;'i:1 g?j(xij).

Combining the fact that z;; = C;jy /n, we have the following equation:

ij — trigBt — t2i3 = aij + eqj (8.30)
where e;; bk N(0,02/n) for 1 <i<mand 1< j <d. Thus, (8.28) and (8.29) become
n ~ ~ 2
U= na (tl,il(ﬁ? — B1) + t21 (05 — Ba) + e + ail) ; (8.31)
=2
m ~ ~ 2
Uj= Z Nij (tl,ij(ﬁ? — B1) + t2,i; (B9 — B2) + eij + aij) (8.32)
i=1
by considering (8.30)).
In the below, without loss of generality, we assume that 9?2($i2) =0fori=1,...,n. We

first show “Piago = 0 = P29 = 0”. To show P29 = 0, it suffices to show
P(Uy > miw?s) — 0. (8.33)

based on the above analysis and (5.2). Note that Pi2go = 0 implies a;o = 0 for all 1 < i < m.

Thus, we have

~ . 2
P(Uz > 1ywi2) (Z ;2 (751 (1 — P1) + tz,iz(ﬁg — f2) + 612) > 7‘1“@2)

<P (Zm [tl i2(Br = B))? +13 (B2 — B5)? ‘*‘6?2} > le%2/3>
i=1
2 m
Z (Z antk w2 (Br — 1) > le12/9> +P (Z Nio€hy > le12/9> .(8.34)
i=1

The first inequahty in the above follows from the Cauchy-Schwarz inequality. For k = 1,2, we

have

3

m m
> iati o < Zmz Ztk i | 2 )2\ | D (St /n)!
=1 =1

=1

<7 Y Il
=1
<n~' x O = O(n''*) (8.35)

by considering n; = (720m*)~!, n; ~ i~* for i = 2,...,m, and Holder’s inequality. By adapting

the arguments in Lemma we can show
18 = Boll = Op(n~"7%). (8.36)
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Now we focus on the first two probabilities in (8.34). Combining (8.35)), (8.36) and the

3/20, , 2

condition that n*/“*mwiy, — 0o, we can show that they converge to zero. Let V5 = 27;1 771'26122.

Since e follows N(0,02/n) as discussed above, we have
E(nVa) ~ 02 and Var(nVa) ~ o?. (8.37)
As for the third probability in , we have
P(Va > miw}y/9) < P (InVa — EnVa| > nriwi,/9 — EnVa)

< Var(nVs)
~ (nmwi, /9 — Enlh)?

— 0

where the second inequality follows from the Chebyshev’s inequality and the condition that

nTiw?, — 0o. This completes the proof of (8.33)), thus shows “Piagg = 0 = P29 = 0”.

Next we prove “P1og = 0 = P12g9 = 0” by showing the equivalent statement “Piogg #

0 = P12g # 0”. To show P19 # 0, it suffices to show
P(Us < myw?y) — 0 (8.38)
based on the previous discussions. We first establish the following inequalities:

P(Uy < myw?y) < P(|Uy — EWs| > EWy — 1yw?,)
< P(|Uy — Wa| > (EWa — miwiy)/2) + P(|Wy — EWs| > (EWs — myw?y)/2)

<I+1I,

where Wy = "7, mia(ei2 + ai2)?. By the Cauchy-Schwartz inequality, we have

2 m
Uz — Wa| < AW, + 32 Zmﬁ%,m(ﬂk - B
k=1 i=1

Thus, the term I can be further bounded by

2 m
I < P(Wa > (EW; — muwiy)/16) + Y P (Z Moty i (Be — BR)* = (EWs — nw%2>/24>
k=1 =1
<Ii+ L.

To analyze the order of I1, Is and I, we need to study the order of EW5 and VarWs. Note
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that Pi2go # 0 implies a;y2 # 0 for some 1 < iy < m. Thus, we have
E(Wa2) > E(miga2(eig2 + aip2)”) = Mig20;2, (8.39)
m m
Var(Ws) = Z % Var((em + aip)?) = Z n%(4n~taho? + 2n"20")
i=1 1=1

m

< 4n~lo? Z a2y + 20720t < 4n71o?||Pragoll2 + 207202 = O(n™Y)  (8.40)
i=1
By and Lemma we know (EW, — mwi,) is bounded away from zero. Then, by
Chebyshev’s inequality, we have
Var(Ws)
(EWy — miw?,)?
by . As for the term Iy, we can also show it converges to zero by considering and

(8.36)). For the term I, we have

Iy = P(16(Wy — EWy) > —mywiy — 15EW,) <

II 5 — 0

VaT(WQ)
(Tiw?y + 15EW,)?

since (EWs + Tyw?,) is bounded away from zero and Var(Ws) = O(n™1).

Step 3: Prove Bj :()<:>>ﬁjQ =0

In this step we consider selection consistency for §;. Without loss of generality, we assume
that 9 = 0. First, we rewrite as Q(pB1, P2, 0)+ A\ Z;.lzl woj;| B +71 Z;-lzl wi;0;. Applying
the Taylor expansion to , we have

OLs(51,2,8) _ 9Q(6:, B2, 6)

+ Awoasign(52)

032 B 0p2
_0Q(B,83,0) | 9*Q(8Y, 3,0 oy PQUAY.3.8) .
- 852 3/818,82 (51_51)—’_8—,6%(62 62)
+A1wozsign(B2). (8.41)

Recall that HB — Byl = Op(n1/%) by (8.36). Thus, in the below, we only consider 3 and 3,
satisfying |81 — 8] = Op(n1/%) and |32 — 39| = Op(n=1/%).

By (8.30)), the first term in (8.41]) can be written as
d 1 d\T
_9 i Y (aij + ez‘j)tm]

| 1+ 0;1ij /wn;

=2 ii+i d -Gllcijcéth—i_elcijC;'jtJ

=0 i==) L nP A Omi/wy)

= Op(n~1/?), (8.42)
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where the last equality follows from the orthogonality of the constructed {¢ ij} and Lindeberger-
Feller theorem. As for the second term of (8.41)), we have

93103 (Br—PB1) =2 ZZ+ZZ 1+5j77ij/w1j(ﬂl B7)

_9 f:zd:+zlzzd: t1¢;;¢ht2 (B — B
= 1—51)

Do it = | AL+ 0mi wy)

< O(n"Y)0p(n~15) = Op(n~/%),

where the last inequality follows from the orthogonality of the constructed {Cij} and the forms

of t; and to, i.e. (8.22)) and (8.23)). By applying similar analysis to the third term in (8.41)), we

know its order is also Op(n~/?). In summary, we have

8L2 (517 /627 /é)

2% = Op(n_l/S) + Alwogsign(ﬁQ). (8.43)

We first show “B) = 0 = Bg = 0". If 89 = 0, then the range of 32 in is
(—Cn_1/5,0n_1/5) for some C' > 0. By the assumed condition that n'/°X\jwge — oo, we
can conclude that 8L2(B1,52,5)/6ﬂ2 < 0 for 3o € (~Cn~1/5,0) and 8L2(51,ﬂ2,§)/8,62 > 0 for
B2 € (0,Cn~1/5). In other words, we have

Ly(64,0, 5) = min L0, P2, 5) with probability tending to one,
|B2|<Cn—1/5

which implies B\g = 0. We next show “32 =0 = 39 = 0” by showing the equivalent statement
that “4Y # 0 = Bg # 07. For simplicity, we assume 39 = 1 which means that £, € (1 —
Cn=1/5,1 4 Cn*1/5). Then, by considering the condition n'/5Ajwge — oo in , we have
0Ly (5, B2, 5) /0B2 > 0 which implies that 32 > 0. This completes the whole proof. O
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