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We consider the efficient estimation in the semiparametric additive isotonic regressionmodel
where each additive nonparametric component is assumed to be a monotone function. We
show that the least-square estimator of the finite-dimensional regression coefficient is root-n
consistent and asymptotically normal. Moreover, the isotonic estimator of each additive func-
tional component is proved to have the oracle property, whichmeans the additive component
canbe estimatedwith thehighest asymptotic accuracy as if the other componentswere known.
A fast algorithm is developed by iterating between a cyclic pool adjacent violators procedure
and solving a standard ordinary least squares problem. Simulations are used to illustrate the
performance of the proposed procedure and verify the oracle property.
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1. Introduction

The nonparametric isotonic regression model takes the form

Y = H(W) + �, (1.1)

where random variables (Y ,W) ∈ R × RJ and � is an random error term. In this paper, we assume the nonlinear monotone effects
of W , and thus H(·) is modelled to be monotonic in each coordinate of W . The isotonic estimator Ĥn(·) at each observation of
W is computed through the max–min formula (Hanson et al., 1973). The asymptotic behaviors of the isotonic estimators in the
low-dimensional models, i.e. J = 1, 2, have been studied in Hanson et al. (1973), Brunk (1970), Barlow et al. (1972) and Robertson
et al. (1988).

A natural extension of (1.1)which incorporates the adjustments for covariates is the semiparametric isotonic regressionmodel
expressed in the form:

Y = X′� + H(W) + �. (1.2)

For simplicity of expositions, we assume that the error term � is independent of (X,W) and has zero mean in this paper. The use
of parametric terms for covariates X, if properly specified, reduces the risk of overfitting the model by decreasing the overall
“degrees of freedom” of the fit. For example, the nonparametric regression would be meaningless when X is a dummy variable.
Under (1.2) given J = 1, Huang (2002) showed that the least-square estimate for �, denoted as �̂n, is asymptotically normal, and
the asymptotic distribution of the isotonic estimate Ĥn is unaffected by the introduction of the parametric terms. However, the
asymptotic behaviors of (�̂n, Ĥn) are unknown when W has arbitrarily large dimension.
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In Section 2, we first present some preliminary analysis about the convergence rates of (�̂n, Ĥn) when J >1, which establishes
the estimation consistency for the general semiparametric isotonic model (1.2). The analysis also leads us to conjecture that
either �̂n is not asymptotically normally distributed or there exists curse of dimensionality in the estimation of high-dimensional
H. The curse of dimensionality was first discovered by Stone (1985) in the nonparametric regression models where he assumes
certain smoothness conditions, rather than shape constraints, on H. In order to circumvent the above estimation difficulties we
impose an additive structure on the nonparametric function H, i.e. H(W)=∑J

j=1 hj(Wj), under which the asymptotic normality of

�̂n can be established. Additionally, the estimator for hj, denoted as ĥj, is shown to possess the oracle property, which means that
hj can be estimated as well as it could be by an isotonic estimator when the other parametric and nonparametric components
are known. The oracle property also implies that the nonparametric rate of convergence of ĥj is independent of the number of
additive components in the model. Similar asymptotic property of ĥj is also established in the nonparametric additive isotonic
regression model where only the nonparametric relationship between the response and the covariates is assumed (Mammen
and Yu, 2007).

The semiparametric isotonic regression model (1.2) thus becomes the form:

Y = X′� +
J∑

j=1

hj(Wj) + �, (1.3)

where each hj is assumed to bemonotone. The nonparametric version of (1.3), i.e. without the termX′�, was proposed by Bacchetti
(1989) as a generalization of the additive models introduced in Nelder andWedderburn (1972) and Hastie and Tibshirani (1986),
where the isotonicity is replaced by the linearity and the smoothness, respectively. Model (1.3) also covers the possibility of
using a (known) link function, which is the case presented in Bacchetti (1989) and in Morton-Jones et al. (2000), although some
weights are added to the model in the latter. In the epidemiology area, (1.3) is often used to model the relationship between risk
and exposure, which is believed either linear or nondecreasing with increasing exposure. For example, Morton-Jones et al. (2000)
employedmodel (1.3) to analyze some real data about the effect of the father's paternal preconceptional radiation dose on the sex
ratio of children. In their studies, the response of interest is the log sex ratio. The dose received in the 90 days prior to conception
and the total does received prior to that 90 days period are treated as the isotonic variables. The other explanatory variables are
either found linear relationship with the response, e.g. paternal age and birth order (James and Rostron, 1985), or of categorical
type, e.g. the social class of fathers. Therefore the linear part in (1.3) is particulary needed for modelling those variables.

In Section 3, an iterative algorithm is proposed to successively compute the backfitting estimates ĥj's by a cyclic pool adjacent
violators (CPAV) procedure (Bacchetti, 1989) while holding � fixed, and compute �̂n by solving a simple linear regression
while holding (h1, . . . ,hJ) fixed. Section 4 illustrates the performance of the above iterative computation algorithm via simulated
examples. Section 5 contains a brief discussion of future research directions, and proofs are given in Appendix A.

2. Main results

2.1. Preliminary analysis

In this subsection, we give some preliminary asymptotic results about the estimator (�̂n, Ĥn) defined below, which establish
the estimation consistency for the general semiparametric isotonic model (1.2). Furthermore, the asymptotic analysis leads us to
conjecture that there exists the curse of dimensionality in the estimation of H under shape constraints. Similar to the definition
of an isotonic estimate, (�̂n, Ĥn) is defined with respect to the least square deviation criteria, i.e.

(�̂n, Ĥn) = arg min

⎛⎝n−1
n∑

i=1

(Yi − X′
i� − H(Wi))

2

⎞⎠ (2.1)

subject to the restrictions that � belongs to some convex subset B ∈ Rd and H is nondecreasing in each coordinate of W . Note
that H is an isotonic (order preserving) function with respect to the partial order> in RJ defined as the follows: V>U if and
only if Vj�Uj, where Vj and Uj are the j-th element of U and V , respectively. The requirement that H(·) has the same monotonic
direction in each coordinate can be satisfied easily in practice by the change of sign. The solution of (2.1) is well defined and
uniquely determined since B is a convex subset and the class of isotonic functions forms a closed convex cone. Without loss of
generality, we assume that the true function H0(·) is uniformly bounded, X ∈ [−1, 1]d and W ∈ [−1, 1]J . For convenience, we call
an arbitrary function of J real variables as being “J-dimensional” in the following.

Proposition 2.1 first proves the consistency of (�̂n, Ĥn) and further illustrates that the rate of convergence of Ĥn decreases
rapidly as its dimension increases. We require the below two primary assumptions in the proof:

E(X − E(X|W))⊗2 is strictly positive, and, (2.2)

E(exp(�|�|)) <C (2.3)

for some �,C >0 and the outer product V⊗2 is defined as VV ′ for any vector V ∈ Rd.
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Proposition 2.1. Suppose that conditions (2.2) and (2.3) hold, we have

(i) (�̂n, Ĥn) is a consistent estimator;
(ii) �̂n is n�-consistent for � < 1

2 when J >1;
(iii) Given that ‖ · ‖2 is L2 norm,

‖Ĥn(W) − H0(W)‖2 = OP(n−1/3 logn) for J = 1, (2.4)

‖Ĥn(W) − H0(W)‖2 = OP(n−1/4(logn)2) for J = 2, (2.5)

‖Ĥn(W) − H0(W)‖2 = OP(n−1/4(J−1) logn) for J�3. (2.6)

It is well known that the convergence rate of nonparametric estimate depends on the entropy number of the corresponding
function classes. Hence, we make use of the bracketing entropy number for the class of multi-dimensional monotone functions
(Gao and Wellner, 2007) in the proof of Proposition 2.1. Although we do not give lower bounds for the convergence rates of
Ĥn and �̂n in Proposition 2.1, the tightness of the entropy bounds shown in Lemma A.1 together with the phase change in the
entropies between J = 1 and 2 leads us to conjecture that (see Gao and Wellner, 2007, Remark 5.2):

‖X′(�̂n − �0) + Ĥn(W) − H0(W)‖2�OP(n−1/4(J−1) logn) for J�3 (2.7)

following the line in the proof of Proposition 2.1. Eq. (2.7) further implies that

‖�̂n − �0‖�OP(n−1/4(J−1) logn) or ‖Ĥn − H0‖2�OP(n−1/4(J−1) logn) (2.8)

for J�3 because of the boundedness of X. Combining the upper bound shown in Proposition 2.1 and the conjectured lower bound
in (2.8), we believe that either there exists the curse of dimensionality in the estimation of H under shape constraints or �̂n is not
asymptotically normally distributed for J�3.

However, in the context that H(·) is a high-dimensional smooth function, we can construct an asymptotically normally
distributed �̂n through inserting a higher order kernel estimator Ĥn in the nonlinear orthogonal projection on W (Robinson,
1988) or using series estimation (Newey, 1997). We may explain such loss of asymptotic efficiency due to the fact that the class
of J-dimensional monotone functions does not belong to the P-Donsker for J >1 (Gao and Wellner, 2007). In next section, all the
concerns raised here can be resolved by imposing the additive structure of H(·).

Remark 2.1. In Proposition 2.1, we assume that the tail of the error term is sub-exponential, i.e. (2.3). However, the estimation
consistency in the general semiparametricmodel (1.2) can still be guaranteed evenwhenwe relax the somewhat strong condition.
For example, if we assume the moment condition that E|�|r <∞ for some r >0, then the rates of convergence in (2.4) and (2.5)
become oP(n−1/3+1/r), oP(n−1/4+1/r logn) and oP(n−1/(4J−4)+1/r), respectively. Obviously, we can still achieve the consistency by
choosing the proper value of r. Interestingly, we notice that the stricter moment condition on the error term is required for
the consistent estimation of the higher-dimensional monotone function. The well-known curse of dimensionality phenomenon is
again reflected from this point of view.

2.2. Asymptotic distribution

Motivated by the previous analysis, we will decompose H(·) into the sum of one-dimensional monotone hj's in this section,
and then explore the related asymptotic properties. Similarly, the estimators (�̂n, ĥ1, . . . , ĥJ) are defined as the minimizer of

Sn(�,h1, . . . ,hJ) = n−1
n∑

i=1

⎛⎝Yi − X′
i� −

J∑
j=1

hj(Wij)

⎞⎠2

(2.9)

given that each hj is a monotone function with bounded derivative. We also assume the norming condition that
∫
hj(wj) dwj = 0

for the purpose of parameter identifiability. Under the additive structure of H(W), �̂n is shown to be asymptotically normal
with smaller variance even comparing to that of the semiparametric efficient estimate. Next, we have proved that each additive
component hj can be estimated as well as it could be by an isotonic estimator as if the other components were known.

We now make the following regularity conditions for 1� j� J:

S1. The function hj satisfies the condition that

inf
|wj−w′

j|��
|hj(wj) − hj(w

′
j)|�C1�

� (2.10)

for any � >0 and some constants C1, � >0.
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S2. The density for Wj, denoted as pWj
, is assumed to be bounded away from zero and infinity, and fulfills the below Lipschitz

condition

sup
−1�wj ,w′

j �1
|pWj

(wj) − pWj
(w′

j)|�M|wj − w′
j|� (2.11)

for some constantsM,� >0.
S3. The function �j(w) ≡ E(X|Wj = w) satisfies the condition

‖�j(wj) − �j(w
′
j)‖�C2|wj − w′

j| (2.12)

for some constant C2 >0.
S4. E(X −∑J

j=1 E(X|Wj))
⊗2 is strictly positive.

Assumptions S1 and S2 are also used in the estimation of nonparametric additive isotonic regression models (Mammen and
Yu, 2007). Specifically, S1 implicitly requires that hj is strictly monotone, and S2 restricts the variation of the density for Wj
up to some order. The condition S4 is weaker than (2.2) assumed in the nonadditive model (1.2) since we can decompose
E(X −∑J

j=1 E(X|Wj))
⊗2 as the sum of E(X − E(X|W))⊗2 and E(E(X|W) −∑J

j=1 E(X|Wj))
⊗2. One gain of such relaxation is that the

parameter � is still identifiable even when X is a deterministic function of W as long as E(X|W) �
∑J

j=1 E(X|Wj). For example, we
can allow the interaction term to enter the model parameterically, e.g. Y = (W1W2)� + h1(W1) + h2(W2) + �.

Under the above regularity conditions, Theorem 1 summarizes the asymptotic behaviors of the estimators in the semipara-
metric additive isotonic regression model.

Theorem 1. Given that assumptions (S1)–(S4) and (2.3) hold, and that W is pairwise independent, we have

√
n(�̂n − �0)

d→N(0,�), (2.13)

where � = 	2[E(X −∑J
j=1 E(X|Wj))

⊗2]−1 and 	2 = Var(�). For wj ∈ (−1, 1) with first derivative ḣj(wj) >0, holds that

n1/3
(2pWj

(wj))
1/3

	2/3ḣj(wj)
1/3

[̂hj(wj) − hj(wj)] (2.14)

converges in distribution to the slope of the greatest convex minorant of W(t) + t2, where W(t) is a two sided Brownian motion.

Theorem 1 implies that �̂n is
√
n-consistent and asymptotically normal.We provide an intuitive justification for its asymptotic

covariance matrix here. Note that (1.3) can be rewritten as Y = (X −∑J
j=1 E(X|Wj))

′� +∑J
j=1 fj(Wj) + �, where fj(Wj) = hj(Wj) +

E(X|Wj)
′�. Since fk(Wk) is uncorrelatedwith (X−∑J

j=1 E(X|Wj)) for any k=1, . . . , J, we can view �̂n as the ordinary least square (OLS)

estimate of simple linear regression Y ∼ (X−∑J
j=1 E(X|Wj)). This intuitively explains the form of�. The larger asymptotic variance

for each coordinate of �̂n, compared with that of OLS in the regression Y ∼ X, can be viewed as the effect of nonparametrically
modelled covariate W .

Based on the asymptotic normality result (2.13), we can easily construct the (1 − 
)-th level confidence region for �, i.e.

[�̂n − �̂1/2(z1−
/2/
√
n), �̂n + �̂1/2(z1−
/2/

√
n)],

where �̂ is a consistent estimate for � and z� is the standard normal �-th quantile. We can consistently estimate � by building
upon the consistent estimate Ê(X|Wj = wij) for the conditional expectation E(X|Wj = wij), i.e.

�̂ = 1
n

n∑
i=1

⎛⎝yi − x′
i�̂n −

J∑
j=1

ĥj(wij)

⎞⎠2
⎛⎜⎝1
n

n∑
i=1

⎛⎝xi − J∑
j=1

Ê(X|Wj = wij)

⎞⎠⊗2
⎞⎟⎠

−1

. (2.15)

Some nonparametric approaches with k nearest neighbor weights or local linear weights can be used to obtain Ê(X|Wj =wij), see
Sections 3 and 4 in Stone (1977). In practice, X is often a categorical type of data. Alternatively, we can estimate E(X|Wj = wj)
using the below kernel method. For simplicity, we assume that X is a dichotomous variable indicating two treatment groups with
P(X=1)= � and P(X=0)=1− �. Then Ê(X|Wj =wij)= (̂�̂p1(wij))/̂pWj

(wij), where �̂ is the proportion of subjects in treatment group
with X = 1 in all the observations, p̂Wj

and p̂1 are the corresponding consistent kernel estimates for the density of Wj and the
conditional density ofWj given X = 1. The proper choices of bandwidth and kernel function can be referred to Silverman (1986).
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In model (1.3), we further prove that each hj can be estimated with the highest asymptotic accuracy. Specifically, the limiting

distribution of ĥj at a fixed point is the same as that of a regular isotonic estimator when the other parametric and nonparametric

components are known. Such nice property is called the oracle property in the literature. The asymptotic distribution of ĥj is
not affected by the fact that the parameter � and other additive functional components are being estimated simultaneously.
Intuitively, this is because the convergence rate of �̂n is faster than that of ĥj and the localization of the estimation for hj takes
place with respect to other covariates.

Remark 2.2. It iswell known that under conditional homoskedasticity the lower boundof the asymptotic variance of an estimator
for � equals to 	2{E(X − E(X|F))⊗2}−1, where E(X|F) is the projection of X onto the sum of closed L2(PWj

) spaces, given that hj's

have no shape restrictions (Chamberlin, 1992). However, considering the inequality that E(X−∑J
j=1 E(X|Wj))

⊗2
�E(X−E(X|F))⊗2,

we find the asymptotic variance of �̂n in our paper is even smaller than the above lower bound. This result is not surprising if we
interpret it from a geometrical point of view. In this paper, we are actually estimating the projection of Y onto the sum of a linear
space and a group of closed convex cones formed by the monotone functions hj(·)'s. Geometrically speaking, a cone can usually
be viewed as a half-space. That could explain why �̂n has less perturbation. Combining with the above, we know that the least
square estimate of � in (1.3) will become asymptotically less efficient if the monotonicity of hj is ignored.

3. Computation algorithm

In this section, we suggest a two-step minimization approach to compute (�̂n, ĥ1, . . . , ĥJ). For convenience of expressions, we
use �(w) and �̂n(w) to represent (h1(w1), . . . ,hJ(wJ)) and its backfitting estimator, respectively. The main idea is to successively
minimize Sn(�,�) over� for all fixed values of� ∈ B first to obtain �̂n(·,�), and thenminimize the profiled function Sn(�, �̂n(·,�))
over B to find �̂n , and hence �̂n(w) = �̂n(w, �̂n). In the first minimization stage, we obtain �̂n(·,�) for any fixed � ∈ B through
the iterative application of the pool adjacent violator algorithm to the additive components, called CPAV algorithm in Bacchetti
(1989). Our computation algorithm in the above can be viewed as an extension of Bacchetti's CPAV procedure to include one
more minimization step for adjusting the covariates X.

Algorithm.

�-step: Let k = k + 1. Minimize Sn(�
(k−1),�) with respect to � to obtain �(k) ≡ (h(k)1 , . . . ,h(k)J ) using the CPAV algorithm;

�-step: Minimize Sn(�,�
(k)) with respect to � to obtain �(k). Go back to �-step until convergence.

We can interpret the optimization problem in the �-step in a backfitting manner. For a given �(k−1), we can estimate h(k)j by

solving the isotonic regression: (y− x′�(k−1) − h(k)1 − · · · − h(k)j−1 − h(k−1)
j+1 − · · · − h(k−1)

J ) ∼ wj based on the belowmax–min formula.

Given �(0) = 0 and h(0)j = (0, . . . , 0)′ for any j = 1, . . . , J, we have

h(k)j (w(i)j) = max
s� i

min
t� i

∑t
l=s(y[l] − x′

[l]�
(k−1) − h(k)[l]1 − · · · − h(k)[l]j−1 − h(k−1)

[l]j+1 − · · · − h(k−1)
[l]J )

t − s + 1
,

where (y[l], x[l],w[l]L) is the observation corresponding to the l-th ordered wj, and h(k)[l]L is the value of h(k)L at w[l]L after the k-th

iteration for j=1, . . . , J and L=1, . . . , j−1, j+1, . . . , J. In the �-step, we essentially solve a simple linear regression (y−∑J
j=1 h

(k)
j ) ∼ x.

We can view the proposed iterative algorithm as the cyclic projection of the response Y onto the sum of a closed subspace
S1 and a set of closed convex cones S21, . . . , S2J . The convergence in the �-step is established by Dykstra (1983), which further
implies the convergence of the whole algorithm. The rigorous proof of our algorithm convergence can be adapted from that of
Theorem 2 in Mammen and Yu (2007) after some minor revisions. However, the additive component backfitting estimate �̂n is
generally not unique when there exists a tuple of vectors (f1, . . . , fJ) such that fj + ĥj is monotone and

∑J
j=1 fij =0 for any i=1, . . . ,n.

4. Simulation example

We conductMonte Carlo simulations to evaluate the finite sampling performance of the proposedmethod. The primarymodel
M1 in this section is designed as:

M1 Y = (W1W2)� + h1(W1) + h2(W2) + �,
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Table 1
Simulation results of � in M1–M1(h1, h2) (�0 = 1)

n M1 M1(h1) M1(h2) M1(h1, h2)

100 0.955 (0.358) 0.967 (0.242) 1.029 (0.237) 0.981 (0.169)
300 0.981 (0.215) 1.014 (0.135) 0.987 (0.127) 0.989 (0.089)
600 0.991 (0.189) 1.006 (0.101) 0.994 (0.093) 0.997 (0.067)

Table 2
Simulation results of h1 in M1–M3 (MISE)

n M1 M2 M3 M1/M2 M1/M3

100 0.0246 0.0226 0.0222 1.0885 1.1081
300 0.0152 0.0144 0.0146 1.0556 1.0411
600 0.0102 0.0097 0.0098 1.0515 1.0408

−1.0

−2

w1

y

−1

0 0 0

1

2

−2

y

−1

1

2

−2

y

−1

1

2

1.00.50.0−0.5 −1.0
w1

1.00.50.0−0.5 −1.0
w1

1.00.50.0−0.5

Fig. 1. Isotonic estimate for h1. The solid lines, dashed lines, dotted lines and dotted-dashed lines represent the true curve, semiparametric additive isotonic
estimate, nonparametric additive isotonic estimate and oracle estimate, respectively. The left, center and right graphs show the estimated curves corresponding
to 25%, 50% and 75% quantiles for MISE between semiparametric additive isotonic and oracle estimators with 300 observations.

whereW1 ∼ Unif[−1, 1],W2 ∼ truncated normal within the interval [−1, 1] and � ∼ 0.5N(1, 0.52)+ 0.5N(−1, 12). We set the true
values �0 = 1, h10(w1)=w1 exp(−w2

1/2) and h20(w2)= sin(�w2/2). The simulations are run for various sample sizes ranging from
100 to 600. For each sample size, 100 datasets were analyzed. In each setting, we iterate 500 times.

In Table 1, we report the estimators for � and its standard deviation (given in the parentheses) in different models specified
below. It is easy to notice that � is consistently estimated in all the models and the simulation results in the full model M1 are
worse than those in other models where partial or complete information about the additive functional components is provided.
However, the standard deviation in each model approaches closer as the sample size n increases, which is consistent with our
theoretical results.

M1(h1) Y(1) = (W1W2)� + h2(W2) + �, where Y(1) = Y − h10(W1),
M1(h2) Y(2) = (W1W2)� + h1(W1) + �, where Y(2) = Y − h20(W2),

M1(h1, h2) Y(12) = (W1W2)� + �, where Y(12) = Y − h10(W1) − h20(W2).
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Table 2 presents the empirical mean integrated squared error (MISE) of the semiparametric additive isotonic estimator inM1, the
nonparametric isotonic estimator inM2 and the oracle estimator inM3. The “OracleModel”M3, inwhich only one nonparametric
additive component is unknown, is included here as a golden rule for comparison. Note that the isotonic estimates in M1–M3
have the same asymptotic distribution according to Corollary 1 in Mammen and Yu (2007) and Theorem 1. The results in Table 2
show that three estimators have very similar finite sample performance. In particular, the ratios (M1/M2) and (M1/M3) are close
to one and converge to one as sample size increases.

M2 Y(0) = h1(W1) + h2(W2) + �, where Y(0) = Y − W1W2�0,
M3 Y(02) = h1(W1) + �, where Y(2) = Y − W1W2�0 − h20(W2).

Fig. 1 visually represents the isotonic estimators for h1 in the models M1–M3 corresponding to 25%, 50% and 75% quantiles
of the empirical MISE between its semiparametric additive isotonic and oracle estimators. We observe that all the isotonic
estimators produce almost identical curves, which is consistent with our theoretical results.

5. Discussion

We consider the optimal estimation of both parametric and nonparametric components in the semiparametric additive
isotonic regression model. The parametric estimator is proved to be

√
n-consistent and asymptotically normal. We also establish

the oracle property of the additive isotonic estimators. Although the isotonic estimation posses the above advantages, we realize
that carrying out one data isotonization process has some potential drawbacks, e.g., heavy dependence on the behavior of the
data at the tails. Hence incorporating the smoothing techniques (Mammen, 1991) in the estimation of our model may be a future
research goal. In the future research, we are also interested in generalizing the results in this paper to the semiparametric model
with an unknown link function (Horowitz and Mammen, 2005), monotone response model (Pal and Banerjee, 2007) or survival
analysis (Huang, 1999). Anotherworthwhile avenueof research is to relax someassumptions in our paper such that our theoretical
results can be applied to more general models. For example, we can relax the pairwise independence assumption on W , though
it can be trivially satisfied for fixed design pointW . We may assume the shape constraints (Mammen and Thomas-Agnan, 1999),
i.e. convexity and monotonicity, on only some of the additive components.
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Appendix A. Proofs

We first state the bracketing entropy number of a class of monotone functions f : [0, 1]d�[0, 1], denoted by Fd, and then
present the asymptotic continuity modulus of some empirical processes.

Lemma A.1. Suppose Q is a probability measure on [0, 1]d with Lebesgue density q satisfying 1/M� infx∈[0,1]dq(x)�supx∈[0,1]d
q(x)�M for someM>0. Then if (d − 1)p � d, we have

K2�−
 � logN[ ](�,Fd, Lp(Q))�K1�−
, (A.1)

where logN[ ](�,Fd, Lp(Q)) is the �-bracketing entropy number and 
 = max{d, (d − 1)p}. If (d − 1)p = d, then

K2�−d� logN[ ](�,Fd, Lp(Q))�K1�−d(log(1/�))d (A.2)

for constants K1 and K2 depending only on d, p andM.

Lemma A.2. Consider a uniformly bounded class of functions G, with supg∈G‖g − g0‖∞ <∞ and logN[ ](�,G, P)�A�−
 for all � >0,
where 
 ∈ (0, 2). Then for �n = n−1/(2+
),

sup
g∈G

|(Pn − P)(g − g0)|
‖g − g0‖1−
/2

2 ∨ √
n�2

n

= OP(n−1/2).

Lemma A.3. LetF= {ft : t ∈ T} be a class of functions satisfying |fs(x)− ft(x)|�d(s, t)F(x) for every s and t and some fixed function F.
Then, for any norm ‖ · ‖,

N[ ](2�‖F‖,F, ‖ · ‖)�N(�, T, d).
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Remark A.1. Lemmas A.1 and A.2 are adapted from Corollary 1.3 in Gao and Wellner (2007) and Lemma 5.13 in Van de Geer
(2000) with minor revisions, respectively. Lemma A.3 is exactly Theorem 2.7.11 in Van der Vaart and Wellner (1996).

Proof of Proposition 2.1. Let w(i) be the observation of W(i), where W(i) ≡ {W ∈ [−1, 1]J : H(W(i)) = (H(W))(i)}. We first show
that

max{|Ĥn(w(1))|, |Ĥn(w(n))|} = OP(logn). (A.3)

Without loss of generality, we only prove |Ĥn(w(n))| = OP(logn). Let LJ be the collection of subsets L of RJ having the property
that if U ∈ L and U>V then V ∈ L. Then the min–max formula in Hanson et al. (1973) implies that

Ĥn(w(n)) = max
{L:w(n)∈L∈LJ}

(∑
{
:w
∈L,
�n}(y
 − x′


�̂n)

card{
 : w
 ∈ L,
�n}

)
, (A.4)

where card(A) represents the number of elements in the set A. Following the above characterizations of Ĥn(w(n)), we establish
the below set of inequalities:

|Ĥn(w(n))|� max
{L:w(n)∈L∈LJ}

(∑
{
:w
∈L,
�n}|y
 − x′


�̂n|
card{
 : w
 ∈ L,
�n}

)

� max
{L:w(n)∈L∈LJ}

(∑
{
:w
∈L,
�n}|x′


(�0 − �̂n)| + |H0(w
)|
card{
 : w
 ∈ L,
�n}

)
+ max

{L:w(n)∈L∈LJ}

( ∑
{
:w
∈L,
�n}|�
|

card{
 : w
 ∈ L,
�n}

)

� M + |�|(n),

whereM is a finite positive constant. The last inequality follows from the assumptions on the parameters (�,H). Considering the
sub-exponential tail of �, we have proved (A.3).

By the definition of (�̂n, Ĥn), we have

P(X′d1n + d2n(W))2� (Pn − P)[(Y − X′�0 − H0)
2 − (Y − X′�̂n − Ĥn)

2],

where Pn is the empirical measure of (Yi,Xi,Wi), d1n = (�̂n − �0) and d2n(W) = (Ĥn − H0)(W). Next, we consider the class of
functions

Fn ≡ {[rn(y − x′�0) − rnH0(w)]2 − [rn(y − x′�) − G(w)]2, � ∈ B and G ∈ G},

where rn = (logn)−1 and G is a class of uniformly bounded nondecreasing functions of J-dimension. Note that rn‖Ĥn‖∞ = OP(1),
where ‖ · ‖∞ is the uniform norm, based on (A.3). We next study the �-bracketing entropy ofFn in terms of L2(P)-norm. And we
know that �-bracketing entropy ofG is of the order 1/� for J=1, �−2(log(1/�))2 for J=2, and �−(2J−2) for J >2 based on Lemma A.1.
Since the functions inFn are quadratic in (�,G), �-bracketing entropy ofFn is the same as that ofG. In view of the discussions in
Van der Vaart andWellner (1996, p. 326), we have the convergence rates that P(X′d1n + d2n(W))2 =OP(�

2
nr

−2
n ) based on Theorem

3.4.1 and Lemma 3.4.2 in Van der Vaart and Wellner (1996), where �n is determined by

√
n�2

n� J̃[ ](�n,Fn, L2(P))

(
1 + J̃[ ](�n,Fn, L2(P))√

n�2
n

)

and

J̃[ ] =
∫ �

0

√
1 + logN[ ](�,Fn, L2(P)) d� if J = 1,

J̃[ ] =
∫ �

c�2

√
1 + logN[ ](�,Fn, L2(P)) d� if J�2.

By considering the parameter identifiability condition (2.2), we have completed the whole proof. �

Proof of Theorem 1. Note that the �-bracketing entropy number for a class of additive monotone functions

Q ≡
⎧⎨⎩H(w) =

J∑
j=1

hj(wj) : hj(wj) is uniformly bounded and monotone with
∫ 1

−1
hj(wj) dwj = 0

⎫⎬⎭
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is of the order (J2/�) based on Lemma A.1. Then, following similar logic in Proposition 2.1, we have

‖�̂n − �0‖ = OP(n−1/3 logn), (A.5)∥∥∥∥∥∥
J∑

j=1

(̂hj − hj)

∥∥∥∥∥∥
2

= OP(n−1/3 logn), (A.6)

under condition (2.3) and S4. Note that (A.6) implies that∫
[(ĥ1(w1) − h1(w1)) + · · · + (ĥJ(wJ) − hJ(wJ))]

2 dw = OP(n−2/3(logn)2)

by the assumption that the density for W is bounded away from zero. Then based on the normalization condition that∫
hj(wj) dwj = 0, we have

max
1� j� J

∫
(ĥj(wj) − hj(wj))

2 dwj = OP(n−2/3(logn)2). (A.7)

Therefore, we have

max
1� j� J

‖̂hj − hj‖2 = OP(n−1/3 logn) (A.8)

by the assumption that the density for W is bounded away from infinity. Since E(X |̂h(Wj)) has the same jump points as ĥj by
the characterization of the solution to the isotonic regression (see Barlow et al., 1972, Theorem 1.7), the stationary equation
implies that

Pn

⎛⎝Y − X′�̂n −
J∑

j=1

ĥj(Wj)

⎞⎠⎛⎝X −
J∑

j=1

E(X|h−1
j (̂hj(Wj)))

⎞⎠= 0,

where h−1
j is the inverse function of hj. Combining the above equation and the independence assumption of �, we have

E

⎡⎣⎛⎝X′(�̂n − �0) +
J∑

j=1

(̂hj − hj)(Wj)

⎞⎠⎛⎝X −
J∑

j=1

E(X |̂hj(Wj))

⎞⎠⎤⎦

= n−1/2Gn

⎡⎣⎛⎝Y − X′�̂n −
J∑

j=1

ĥj(Wj)

⎞⎠⎛⎝X −
J∑

j=1

E(X |̂hj(Wj))

⎞⎠⎤⎦ , (A.9)

where Gn = √
n(Pn − P). Note that (A.9) can be rewritten as

�n(�̂n − �0) + 
n = n−1/2Gn

⎛⎝Y − X′�0 −
J∑

j=1

hj(Wj)

⎞⎠⎛⎝X −
J∑

j=1

E(X|hj(Wj))

⎞⎠+ �n, (A.10)

where

�n = E

⎛⎝⎛⎝X −
J∑

j=1

E(X |̂hj(Wj))

⎞⎠X′
⎞⎠ ,


n = E

⎛⎝ J∑
j=1

(̂hj − hj)(Wj)

⎛⎝X −
J∑

k=1

E(X |̂hk(Wk))

⎞⎠⎞⎠ ,

�n = n−1/2Gn

⎡⎣⎛⎝Y − X′�̂n −
J∑

j=1

ĥj(Wj)

⎞⎠⎛⎝X −
J∑

j=1

E(X |̂hj(Wj))

⎞⎠−
⎛⎝Y − X′�0 −

J∑
j=1

hj(Wj)

⎞⎠⎛⎝X −
J∑

j=1

E(X|hj(Wj))

⎞⎠⎤⎦ .

We first analyze the remaining term �n in the right-hand side of (A.10) by the use of Lemma A.2. Following similar logic in the
proof of Proposition 2.1, we consider the class of functions

F̄n ≡
⎧⎨⎩[rn(y − x′�) − G(w)

]⎛⎝x −
J∑

j=1

E(X|hj(wj))

⎞⎠ , � ∈ B and G ∈ Q

⎫⎬⎭ ,
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where rn = (logn)−1 and Q is defined above. By applying Lemma A.3 to the function E(X|hj(Wj)) and considering the bracketing
entropy number for Q, we know the �-bracketing entropy number for F̄n is of the order 1/�. By similar analysis of |Ĥn(w(n))| in
the proof of Proposition 2.1, we can show that

max
1� j� J

sup
−1�wj �1

|̂hj(wj)| = OP(logn)

since each hj is assumed to be strictly increasing. Thus, we have rn
∑J

j=1ĥj(Wj) ∈ Q. Let gn = rn(Y − X′�̂n − ∑J
j=1 ĥj(Wj))

(X − ∑J
j=1 E(X |̂hj(Wj))) and g0 = rn(Y − X′�0 − ∑J

j=1 hj(Wj))(X − ∑J
j=1 E(X|hj(Wj))). Note that ‖gn − g0‖2 = OP(n−1/3) by (A.5)

and (A.6). By applying Lemma A.2 to F̄n we can show that

�n = OP(n−2/3 logn). (A.11)

We next consider the terms �n and 
n in the left-hand side of (A.10). We note that,

‖
n‖ =
∥∥∥∥∥∥

J∑
j=1

E(̂hj − hj)(Wj)(E(X|Wj) − E(X |̂hj(Wj)))

∥∥∥∥∥∥
�

∥∥∥∥∥∥
J∑

j=1

|̂hj − hj|
∥∥∥∥∥∥
2

2

� J
J∑

j=1

‖̂hj − hj‖22

= OP(n−2/3(logn)2) = oP(n−1/2) (A.12)

based on the pairwise independence ofW , Assumption S3 and (A.8). As for the term �n, we have

�n − E

⎛⎝X −
J∑

j=1

E(X|Wj)

⎞⎠⊗2

= E

⎛⎝⎛⎝ J∑
j=1

E(X|Wj) −
J∑

j=1

E(X |̂hj(Wj))

⎞⎠X′
⎞⎠

�

∥∥∥∥∥∥
J∑

j=1

|̂hj − hj|
∥∥∥∥∥∥
2

�
√
J

√√√√√ J∑
j=1

‖̂hj − hj‖22
p→0 (A.13)

since ĥj is a consistent estimator by (A.8). By considering the above analysis about �n, 
n and �n in (A.10), we can obtain (2.13)
by applying the CLT to the first term in the right-hand side of (A.10). This completes the proof of (2.13).

Next, we prove (2.14). The proof (2.14) is adapted from that of Theorem 1 in Mammen and Yu (2007). Let h̃j be the standard
isotonic estimate of hj. Its asymptotic distribution is as follows:

For wj ∈ (−1, 1) with first derivative ḣj(wj) >0,

n1/3
(2pWj

(wj))
1/3

	2/3ḣj(wj)
1/3

[̃hj(wj) − hj(wj)]

converges in distribution to the slope of the greatest convex minorant of W(t) + t2, whereW(t) is a two sided Brownian motion.
Thus, it suffices to show that

ĥj(wj) − h̃j(wj) = oP(n−1/3) (A.14)

for wj ∈ (−1, 1). First, we want to show that

ĥj(wj) = h̃j(wj) −
∑
l� j

∫ 1

0
[̂hl(ul) − hl(ul)]pWl

(ul) dul + oP(n−1/3) (A.15)

for n−1/3 − 1�wj�1 − n−1/3. In order to prove (A.15), we need to define the following localized versions of ĥj:

ĥj,loc(wj) = max
wj−en �u�wj

min
wj �v�wj+en

∑
i:u�Wij �vŶ

s
ij

card{i : u�Wij�v} ,
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ĥ+
j,loc(wj) = max

wj−en �u�wj

min
wj+dn �v�wj+en

∑
i:u�Wij �vŶ

s
ij

card{i : u�Wij�v} ,

ĥ−
j,loc(wj) = max

wj−en �u�wj−dn
min

wj �v�wj+en

∑
i:u�Wij �vŶ

s
ij

card{i : u�Wij�v} ,

where Ŷs
ij =Yi −X′

i�̂n −∑l� j ĥl(Wil), en = (logn)1/�n−2/(9�)cn with cn → ∞ slowly enough and dn =n−d with 1
3 < d < 4

9 . The localized

isotonic estimates, i.e. h̃j,loc, h̃
+
j,loc and h̃−

j,loc, can be defined similarly. These definitions directly imply that

ĥ−
j,loc(wj)� ĥj,loc(wj)� ĥ+

j,loc(wj), (A.16)

h̃−
j,loc(wj)� h̃j,loc(wj)� h̃+

j,loc(wj) (A.17)

for n−1/3 − 1�wj�1 − n−1/3. Recall that max1� j� J
∫ 1
−1(̂hj(wj) − hj(wj))

2 dwj = OP(n−2/3(logn)2). Since the derivative of hj is
assumed to be bounded, it is easy to show

max
1� j� J

⎛⎝ sup
n−2/9−1�wj �1−n−2/9

|̂hj(wj) − hj(wj)|
⎞⎠= OP((logn)n−2/9). (A.18)

Combining (A.18) with Assumption S1, we have ĥj(wj) = ĥj,loc(wj) for 0�wj�1 and j = 1, . . . , J with probability tending to one.
Therefore, we can conclude that

ĥ−
j,loc(wj)� ĥj(wj)� ĥ+

j,loc(wj) (A.19)

for n−1/3 − 1�wj�1 − n−1/3 with probability tending to one. Similarly, we have

h̃−
j,loc(wj)� h̃j(wj)� h̃+

j,loc(wj) (A.20)

for n−1/3 − 1�wj�1 − n−1/3 with probability tending to one. Therefore, it suffices to show (A.15) if we can show

ĥ±
j,loc(wj) = h̃±

j,loc(wj) −
∑
l � j

∫ 1

−1
[̂hl(ul) − hl(ul)]pWl

(ul) dul + oP(n−1/3), (A.21)

sup
−1�wj �1

h̃+
j,loc(wj) − h̃−

j,loc(wj) = oP(n−1/3) (A.22)

for n−1/3 − 1�wj�1− n−1/3. Claims (A.22) can be established by the well known properties of the isotone least square estimate.
In order to show (A.21) we first define the following notations:

G̃j(uj,wj) = n−1
∑

i:Wij �uj

(hj(Wij) + �i) − n−1
∑

i:Wij �wj

(hj(Wij) + �i),

Ĝj(uj,wj) = n−1
∑

i:Wij �uj

Ŷs
ij − n−1

∑
i:Wij �wj

Ŷs
ij.

By Lemma 4 in Mammen and Yu (2007), we have

Ĝj(uj,wj) − G̃j(uj,wj) = − n−1[card{i : Wij�uj} − card{i : Wij�wj}]
∑
l � j

∫ 1

−1
(̂hl − hl)(ul)pWl

(ul) dul

− n−1

⎛⎝ ∑
i:Wij �uj

Xi −
∑

i:Wij �wj

Xi

⎞⎠ (�̂n − �0) + OP(rn) + OP(sn), (A.23)

where rn = (|uj −wj| + n−
)2/3n−13/27(logn)� and sn = (|uj −wj| + n−1)n−2�/(9�)(logn)� for some 
,� >0. Forwj − en�uj�wj + en,

ĥj,loc(wj) and h̃j,loc(wj) are essentially the slopes of the greatest convex minorants of the functions, which map card{i : Wij�uj}
onto Ĝj(uj,wj) and G̃j(uj,wj), at uj = wj, respectively. Thus, by the proper choice of dn and en above and (A.23), we can obtain

ĥ±
j,loc(wj) = h̃±

j,loc(wj) −
∑
l � j

∫ 1

−1
[̂hl(ul) − hl(ul)]pWl

(ul) dul − R±
j (�̂n − �0) + oP(n−1/3),



G. Cheng / Journal of Statistical Planning and Inference 139 (2009) 1980 -- 1991 1991

where

R−
j = max

wj−en �u�wj−dn
min

wj �v�wj+en

(
∑

i:Wij �v −∑i:Wij �u)Xi

card{i : Wij�v} − card{i : Wij�u} ,

R+
j = max

wj−en �u�wj

min
wj+dn �v�wj+en

(
∑

i:Wij �v −∑i:Wij �u)Xi

card{i : Wij�v} − card{i : Wij�u} .

Since X is in some compact subset, we have R±
j =OP(1). Therefore, we have proved (A.21) by considering �̂n −�0 =OP(n−1/2). This

completes the proof of (A.15).
Next, we will prove ĥj(wj) − h̃j(wj) = oP(n−1/3) for wj ∈ (−1, 1), i.e. (A.14), by rewriting (A.15) as follows:

ĥ = h̃ + T (̂h − h) + oP(n−1/3), (A.24)

where h, ĥ and h̃ are tuples of functions hj, ĥj and h̃j, respectively. In (A.24), T is a linear integral operator defined as

Tjl (̂hl − hl) = −
∫ 1

−1
(̂hl − hl)(ul)pWl

(ul) dul for l � j

= 0 for l = j.

Obviously, (A.24) is the same as (22) in Mammen and Yu (2007). By similar analysis applied to (22) in Mammen and Yu (2007),
we can show (2.14). �
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