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The Era of Big Data

At the 2010 Google Atmosphere Convention, Google’s CEO
Eric Schmidt pointed out that,

“There were 5 exabytes of information created between the dawn
of civilization through 2003, but that much information is now
created every 2 days.”

No wonder that the era of Big Data has arrived...
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Recent News on Big Data

On August 6, 2014, Nature2 released news: “US Big-Data
Health Network Launches Aspirin Study.”

In this $10-million pilot study, the use of aspirin to prevent
heart disease will be investigated;

Participants will take daily doses of aspirin that fall within
the range typically prescribed for heart disease, and be
monitored to determine whether one dosage works better
than the others;

The health-care data such as insurance claims, blood tests
and medical histories will be collected from as many as 30
million people in the United States through PCORnet3;

2http://www.nature.com/news/us-big-data-health-network-launches-
aspirin-study-1.15675

3A network setup by Patient-Centered Outcomes Research (PCOR)
Institute for collecting health-care data.
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Recent News on Big Data (cont’)

PCORnet will connect multiple smaller networks, giving
researchers access to records at a large number of
institutions without creating a central data repository;

This decentralization creates one of the greatest challenges
on how to merge and standardize data from different
networks to enable accurate comparison;

The many types of data – scans from medical imaging,
vital-signs records and, eventually, genetic information can
be messy, and record-keeping systems vary among
health-care institutions.
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Challenges of Big Data

Motivated by this US health network data, we summarize the
features of big data as 4D:

Distributed: computation and storage bottleneck;

Dirty: the curse of heterogeneity;

Dimensionality: scale with sample size;

Dynamic: non-stationary underlying distribution;

This talk focuses on “Distributed” and “Dirty”.
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General Goal

In the era of massive data, here are my questions of curiosity:

Can we guarantee a high level of statistical inferential
accuracy under a certain computation/time constraint?

Or what is the least computational cost in obtaining the
best possible statistical inferences?

How to break the curse of heterogeneity by exploiting the
commonality information?

How to perform a large scale heterogeneity testing?
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Oracle rule for massive data is the key4.

4Simplified technical results are presented for better delivering insights.
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Part I: Homogeneous Data
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Outline

1 Divide-and-Conquer Strategy

2 Kernel Ridge Regression

3 Nonparametric Inference

4 Simulations



Divide-and-Conquer Strategy Kernel Ridge Regression Nonparametric Inference Simulations

Divide-and-Conquer Approach

Consider a univariate nonparametric regression model:

Y = f(Z) + ε;

Entire Dataset (iid data):

X1, X2, . . . , XN , for X = (Y,Z);

Randomly split dataset into s subsamples (with equal
sample size n = N/s): P1, . . . , Ps;

Perform nonparametric estimating in each subsample:

Pj = {X(j)
1 , . . . , X(j)

n } =⇒ f̂ (j)n ;

Aggregation such as f̄N = (1/s)
∑s

j=1 f̂
(j)
n .
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A Few Comments

As far as we are aware, the statistical studies of the D&C
method focus on either parametric inferences, e.g.,
Bootstrap (Kleiner et al, 2014, JRSS-B) and Bayesian
(Wang and Dunson, 2014, Arxiv), or nonparametric
minimaxity (Zhang et al, 2014, Arxiv);

Semi/nonparametric inferences for massive data still
remain untouched (although they are crucially important
in evaluating reproducibility in modern scientific studies).
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Splitotics Theory (s→∞ as N →∞)

In theory, we want to derive a theoretical upper bound for
s under which the following oracle rule holds:
“the nonparametric inferences constructed based on f̄N are
(asymp.) the same as those on the oracle estimator f̂N .”

Meanwhile, we want to know how to choose the smoothing
parameter in each sub-sample;

Allowing s→∞ significantly complicates the traditional
theoretical analysis.
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Kernel Ridge Regression (KRR)

Define the KRR estimate f̂ : R1 7→ R1 as

f̂n = arg min
f∈H

{
1

n

n∑
i=1

(Yi − f(Zi))
2 + λ‖f‖2H

}
,

where H is a reproducing kernel Hilbert space (RKHS)
with a kernel K(z, z′) =

∑∞
i=1 µiφi(z)φi(z

′). Here, µi’s are
eigenvalues and φi(·)’s are eigenfunctions.

Explicitly, f̂n(x) =
∑n

i=1 αiK(xi, x) with
α = (K + λnI)−1y.

Smoothing spline is a special case of KRR estimation.

The early study on KRR estimation in large dataset
focuses on either low rank approximation or early-stopping.
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Commonly Used Kernels

The decay rate of µk characterizes the smoothness of f .

Finite Rank (µk = 0 for k > r):

polynomial kernel K(x, x′) = (1 + xx′)d with rank r = d+ 1;

Exponential Decay (µk � exp(−αkp) for some α, p > 0):

Gaussian kernel K(x, x′) = exp(−‖x− x′‖2/σ2) for p = 2;

Polynomial Decay (µk � k−2m for some m > 1/2):

Kernels for the Sobolev spaces, e.g.,
K(x, x′) = 1 +min{x, x′} for the first order Sobolev space;
Smoothing spline estimate (Wahba, 1990).
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Local Confidence Interval5

Theorem 1. Suppose regularity conditions on ε, K(·, ·) and
φj(·) hold, e.g., tail condition on ε and supj ‖φj‖∞ ≤ Cφ. Given
that H is not too large (in terms of its packing entropy), we
have for any fixed x0 ∈ X ,

√
Nh(f̄N (x0)− f0(x0))

d−→ N(0, σ2x0), (1)

where h = h(λ) = r(λ)−1 and r(λ) ≡
∑∞

i=1{1 + λ/µi}−1.

An important consequence is that the rate
√
Nh and variance

σ2x0 are the same as those of f̂N (based on the entire dataset).
Hence, the oracle property of the local confidence interval holds
under the above conditions that determine s and λ.

5Simultaneous confidence band result delivers similar theoretical insights
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Examples

The oracle property of local confidence interval holds under the
following conditions on λ and s:

Finite Rank (with a rank r):

λ = o(N−1/2) and log(λ−1) = o(log2N);

Exponential Decay (with a power p):

λ = o((logN)1/(2p)/
√
N) and log(λ−1) = o(log2(N));

Polynomial Decay (with a power m > 1/2):

λ � N−d for some 2m/(4m+ 1) < d < 4m2/(8m− 1).

Choose λ as if working on the entire dataset with sample
size N . Hence, the standard generalized cross validation
method (applied to each subsample) fails in this case.
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Specifically, we have the following upper bounds for s:

For finite rank kernel (with any finite rank r),

s = O(Nγ) for any γ < 1/2;

For exponential decay kernel (with any finite power p),

s = O(Nγ′) for any γ′ < γ < 1/2;

For polynomial decay kernel (with m = 2),

s = o(N4/27) ≈ o(N0.29).
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Penalized Likelihood Ratio Test

Consider the following test:

H0 : f = f0 v.s. H1 : f 6= f0,

where f0 ∈ H;

Let LN,λ be the (penalized) likelihood function based on
the entire dataset.

Let PLRT
(j)
n,λ be the (penalized) likelihood ratio based on

the j-th subsample.

Given the Divide-and-Conquer strategy, we have two
natural choices of test statistic:

P̃LRTN,λ = (1/s)
∑s
j=1 PLRT

(j)
n,λ;

̂PLRTN,λ = LN,λ(f̄N )− LN,λ(f0);
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Penalized Likelihood Ratio Test

Theorem 2. We prove that P̃LRTN,λ and ̂PLRTN,λ are both
consistent under some upper bound of s, but the latter is
minimax optimal (Ingster, 1993) when choosing some s strictly
smaller than the above upper bound required for consistency.

An additional big data insight: we have to sacrifice certain
amount of computational efficiency (avoid choosing the
largest possible s) for obtaining the optimality.
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Summary

Big Data Insights:

Oracle rule holds when s does not grow too fast;
choose the smoothing parameter as if not splitting the data;
sacrifice computational efficiency for obtaining optimality.

Key technical tool: Functional Bahadur Representation in
Shang and C. (2013, AoS).



Divide-and-Conquer Strategy Kernel Ridge Regression Nonparametric Inference Simulations

Summary

Big Data Insights:

Oracle rule holds when s does not grow too fast;
choose the smoothing parameter as if not splitting the data;
sacrifice computational efficiency for obtaining optimality.

Key technical tool: Functional Bahadur Representation in
Shang and C. (2013, AoS).



Divide-and-Conquer Strategy Kernel Ridge Regression Nonparametric Inference Simulations

Summary

Big Data Insights:

Oracle rule holds when s does not grow too fast;
choose the smoothing parameter as if not splitting the data;
sacrifice computational efficiency for obtaining optimality.

Key technical tool: Functional Bahadur Representation in
Shang and C. (2013, AoS).



Divide-and-Conquer Strategy Kernel Ridge Regression Nonparametric Inference Simulations

Summary

Big Data Insights:

Oracle rule holds when s does not grow too fast;
choose the smoothing parameter as if not splitting the data;
sacrifice computational efficiency for obtaining optimality.

Key technical tool: Functional Bahadur Representation in
Shang and C. (2013, AoS).



Divide-and-Conquer Strategy Kernel Ridge Regression Nonparametric Inference Simulations

Summary

Big Data Insights:

Oracle rule holds when s does not grow too fast;
choose the smoothing parameter as if not splitting the data;
sacrifice computational efficiency for obtaining optimality.

Key technical tool: Functional Bahadur Representation in
Shang and C. (2013, AoS).



Divide-and-Conquer Strategy Kernel Ridge Regression Nonparametric Inference Simulations

Phase Transition of Coverage Probability

(a) True function (b) CPs at x0 = 0.5
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Phase Transition of Mean Squared Error
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Figure: Mean-square errors of f̄N under different choices of N and s
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A Partially Linear Modelling Efficiency Boosting Heterogeneity Testing

Revisit US Health Data

Let us revisit the news on US Big-Data Health Network.

Different networks such as US hospitals conduct the same
clinical trial on the relation between a response variable Y
i.e., heart disease, and a set of predictors Z,X1, X2, . . . , Xp

including the dosage of aspirin;

Medical knowledge suggests that the relation between Y
and Z (e.g., blood pressure) should be homogeneous for all
human;

However, for the other covariates X1, X2, . . . , Xp (e.g.,
certain genes), we allow their (linear) relations with Y to
potentially vary in different networks (located in different
areas). For example, the genetic functionality of different
races might be heterogenous;

The linear relation is assumed here for simplicity, and
particularly suitable when the covariates are discrete such
as the dosage of aspirin, e.g., 1 or 2 tablets each day.
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A Partially Linear Modelling

Assume that there exist s heterogeneous subpopulations:
P1, . . . , Ps (with equal sample size n = N/s);

In the j-th subpopulation, we assume

Y = XTβ
(j)
0 + f0(Z) + ε, (1)

where ε has a sub-Gaussian tail and V ar(ε) = σ2;

We call β(j) as the heterogeneity and f as the commonality
of the massive data in consideration;

(1) is a typical semi-nonparametric model (see C. and
Shang, 2015, AoS) since β(j) and f are both of interest.
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Estimation Procedure

Individual estimation in the j-th subpopulation:

(β̂(j)
n , f̂ (j)n )

= argmin
(β,f)∈Rp×H

{
1

n

n∑
i=1

(
Y

(j)
i − βTX

(j)
i − f(Z

(j)
i )
)2

+ λ‖f‖2H

}
;

Aggregation: f̄N = (1/s)
∑s

j=1 f̂
(j)
n ;

A plug-in estimate for the j-th heterogeneity parameter:

β̌(j)
n = argmin

β∈Rp

1

n

n∑
i=1

(
Y

(j)
i − βTX

(j)
i − f̄N (Z

(j)
i )
)2

;

Our final estimate is (β̌
(j)
n , f̄N ).
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Relation to Homogeneous Data

The major concern of homogeneous data is the extremely
high computational cost. Fortunately, this can be dealt by
the divide-and-conquer approach;

However, when analyzing heterogeneous data, our major
interest1 is about how to efficiently extract common
features across many subpopulations while exploring
heterogeneity of each subpopulation as s→∞;

Therefore, comparisons between (β̌
(j)
n , f̄N ) and oracle

estimate (in terms of both risk and limit distribution)
would be needed.

1D&C can be applied to the sub-population with large sample size.
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Oracle Estimate

We define the oracle estimate for f as if the heterogeneity
information βj were known:

f̂or = argmin
f∈H

 1

N

n,s∑
i,j=1

(
Y

(j)
i − (β

(j)
0 )TX

(j)
i − f(Z

(j)
i )
)2

+ λ‖f‖2H

 .

The oracle estimate for βj can be defined similarly:

β̂(j)
or = argmin

β

{
1

n

n∑
i=1

(
Y

(j)
i − (β(j))TX

(j)
i − f0(Z

(j)
i )
)2

+ λ‖f‖2H

}
.
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A Preliminary Result: Joint Asymptotics

Theorem 3. Given proper s→∞2 and λ→ 0, we have3

( √
n(β̂

(j)
n − β

(j)
0 )√

Nh
(
f̄N (z0)− f0(z0)

)) N

(
0, σ2

(
Ω−1 0
0 Σ22

))
,

where Ω = E(X− E(X|Z))⊗2.

2The asymptotic independence between β̂
(j)
n and f̄N (z0) is mainly due

to the fact that n/N = s−1 → 0.
3The asymptotic variance Σ22 of f̄N is the same as that of f̂or.
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Efficiency Boosting

Theorem 4 implies that β̂
(j)
n is semiparametric efficient:

√
n(β̂(j)

n − β0) N(0, σ2(E(X− E(X|Z))⊗2)−1).

We next illustrate an important feature of massive data:
strength-borrowing. That is, the aggregation of
commonality in turn boosts the estimation efficiency of

β̂
(j)
n from semiparametric level to parametric level.

By imposing a lower bound on s (such that strength are
borrowed from a sufficient number of sub-populations), we
show that4

√
n(β̌(j)

n − β
(j)
0 ) N(0, σ2(E[XXT ])−1)

as if the commonality information were available.

4Recall that β̌
(j)
n = argminβ∈Rp

1
n

∑n
i=1

(
Y

(j)
i − βTX

(j)
i − f̄N (Z

(j)
i )
)2

.
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Large Scale Heterogeneity Testing

Consider a high dimensional simultaneous testing:

H0 : β(j) = β̃(j) for all j ∈ J, (2)

where J ⊂ {1, 2, . . . , s} and |J | → ∞, versus

H1 : β(j) 6= β̃(j) for some j ∈ J ; (3)

Test statistic:

T0 = sup
j∈J

sup
k∈[p]

√
n|β̌(j)k − β̃k|;

We can consistently approximate the quantile of the null
distribution via bootstrap even when |J | diverges at an
exponential rate of n by a nontrivial application of a recent
Gaussian approximation theory.
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Thank You!
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