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Starting from Stat 101

Given that X1, .., Xn
iid∼ N(θ0, 1), we have

P

(
θ0 ∈

[
X̄ ± 1.96√

n

])
= 95%;

Without knowing the distribution of Xi's, we obtain via CLT

P

(
θ0 ∈

[
X̄ ± 1.96√

n

])
→ 95%.

But the price is the �asymptotic� validity;

What if the distribution of X is unknown and n is �nite?
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A �rst thought: concentration inequality

Concentration inequalities quantify how a random variable X
deviates around its mean or median µ. They usually take the
form of two-sided bounds for the tails of X − µ, such as

P (|X − µ| > t) ≤ something small.

The simplest concentration inequality is Chebyshev inequality;

Concentration inequality holds for any sample size n.
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Does concentration inequality idea really work?

For example, Hoe�ding inequality gives

P

(
θ0 ∈

[
X̄ ± 1.27√

n
c‖X‖ψ2

])
≥ 95%

for iid Xi's with sub-Gaussian tails3. ‖X‖ψ2 is the so-called
sub-Gaussian norm, e.g., ‖X‖ψ2 = 1/

√
log 2 for Rademacher X;

For illustration, let us examine one special cases, i.e., Bernoulli,
in the class of sub-Gaussian random variables;

When Xi's
iid∼ Ber(θ0), we have for any sample size n

P
(
θ0 ∈ [X̄ ± 1.36/

√
n]
)
≥ 95%,

which is sharp in the rate but not the constant in comparison
with the asymptotic CI, i.e., [X̄ ± 0.98/

√
n]. Set θ0 = 0.5.

3Relaxable to sub-exponential tails via Bernstein inequality.
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Empirical comparison for Bernoulli

Left plot compares width of con�dence intervals of two methods; right
plot demonstrate their coverage probability versus (small) sample size.
Simulation were repeated 1000 times.

Two competing e�ects: Conservativness vs Asymptotics
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How far can we go beyond these simple cases?

There are some recent results on more complicated �parametric
models� obtained via various notion of concentration inequality
such as Chernozhukov et al (2013) and Strawn et al (2014).

Chernozhukov et al (2013) presented non-asymptotic results on
bootstrap validity for high dimensional problems such as
‖(1/
√
n)
∑n

i=1Xi‖∞ for Xi ∈ Rp with p� n;

Strawn et al (2014) obtained non-asymptotic bounds on the
expected concentration of a posterior (around the true
parameter) in high dimensional Bayesian linear models;

As far as we are aware, these bounds were mostly derived to
justify (asymptotic) statistical estimation/inference in a
non-asymptotic manner, rather than used to construct
�nite-sample inference.
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Outline

1 Smoothing spline models
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4 Simulations
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Smoothing spline models

Consider a nonparametric regression model

yi = f(xi) + εi.

For simplicity, we assume that x ∈ I := [0, 1], and that x and ε
are independent with Eε = 0 and Var(ε) = 1;

The standard smoothing spline estimate (or more generally,
kernel ridge estimate) is obtained as

f̂n := arg min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H︸ ︷︷ ︸

roughness penalty

reproducing kernel Hilbert space (RKHS)
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A non-asymptotic Bahadur representation
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Starting from a �naive� concentration inequality

We �rst investigate the concentration property of Tn := ‖f̂n − f0‖.

Lemma 1

Under proper non-asymptotic conditions on λ > 0 and M > 0, it
holds that

sup
f0∈Hm(1)

Pf0 (Tn ≥ dn(M,λ)) ≤ 2 exp(−M), (1)

where dn(M,λ) = 2λ1/m + cK(
√

2M + 1)(nλ
1

2m )−1/2.

Note that Lemma 1 holds uniformly over an unit ball

Hm(1) := {f ∈ Sm(I) : ‖f‖H ≤ 1}

for any sample size.
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A closer examination of the naive concentration

We notice that

E{f̂n} ≈ f0 − Pλf0
6= f0!

The term Pλf0 is the estimation bias caused by penalization;

If using Tn = ‖f̂n − f0‖ to test H0 : f = f0, we prove that its

minimal separation rate is n−
m

2m+1 , which is sub-optimal in

comparison with the minimax rate of testing n−
2m

4m+1 ;

To make inference, we need to develop a second order
expansion, which we call as �non-asymptotic� Bahadur
representation.
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Review on (asymptotic) Bahadur representation

Bahadur representations (Bahadur, 1966) are often useful to
study the �asymptotic� properties of statistical estimators;

For example, He and Shao (1996) considered a general
M-estimation framework:

(1/n)
n∑
i=1

ψ(xi, θ̂n) = o(δn)

for some δn → 0, and obtained that as n→∞

θ̂n − θ0 −
n∑
i=1

D−1n ψ(xi, θ0) = O(Rn) almost surely.

for some Rn � o(n−1/2).
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Non-asymptotic Bahadur representation

Inspired by Shang and Cheng (2013), we de�ne

T̂n :=

∥∥∥∥∥f̂n − (I − Pλ)f0 −
1

n

n∑
i=1

εiKXi

∥∥∥∥∥
and study its concentration property.

Theorem 2

Under similar conditions as Lemma 1, it holds that

sup
f0∈Hm(1)

Pf0

(
T̂n ≥ d̂n(M,λ)

)
≤ 2 exp(−M),

where d̂n(M,λ) = c2K
√
Mn−1/2λ−1/(2m)A(λ)dn(M,λ).
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Statistical application: hypothesis testing
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Nonparametric hypothesis of interest

Consider the following hypothesis testing problem:

H0 : f = f0, vs H1 : f 6= f0,

e.g., f0 = 0.
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Test statistic

Clearly, T̂n = ‖f̂n − (I − Pλ)f0 − n−1
∑n

i=1 εiKXi‖ cannot be
used as a test statistic since εi's are not observable;

Rather, we propose to use T̃n as test statistic:

T̃n = ‖f̂n − (I − Pλ)f0‖2 − E‖n−1
n∑
i=1

εiKXi‖2,

= ‖f̂n − (I − Pλ)f0‖2 −
1

n

∑
ν≥1

1

1 + λ/ρν
;

In practice, replace (I − Pλ)f0 by a �noiseless� version of f̂n:

f̂NLn = arg min
f∈Sm(I)

1

n

n∑
i=1

(f0(Xi)− f(Xi))
2 + λ‖f‖Sm(I).
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Exact Type I and II errors control

Based on the non-asymptotic Bahadur representation, we can
control on Type I and II errors for any �nite sample size as follows.

Theorem 3

Under proper non-asymptotic conditions on λ, α and β, we have

Type I error : Pf0(T̃n ≥ d̃n(log(15/α), λ)) ≤ α,

Type II error : sup
f−f0∈Hm

α,β(1)
Pf (T̃n ≤ d̃n(log(15/α), λ)) ≤ β,

for any α, β ∈ (0, 1). The cut-o� value

d̃n(M,λ) ≈ 4
√
MρK

nλ1/(4m)
.

The separation set

Hm
α,β(1) := {g ∈ Hm(1) : ‖g‖ ≥ ρn(log(15/α), log(30/β), λ)}, where

ρn(M,L, λ) ≈
√
ζKλ+

√
4ρK
√
M/(nh1/(4m)).
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Asymptotic minimax optimality

An important implication of Theorem 3 is that T̃n,λ is
asymptotically minimax optimal;

To see that, we minimize the separation function
ρn(log(15/α), log(30/β), λ) over λ, and obtain the minimal
separation rate n−2m/(4m+1) when λ is chosen as

λ∗ :=

((
4ρK
ζK

)2

log(15/α)

)2m/(4m+1)

n−4m/(4m+1)

� n−4m/(4m+1).

Following similar derivations, we prove that the test statistic
based on the naive concentration, i.e., Tn = ‖f̂n − f0‖, is
actually sub-optimal. So, our intuition of not using it is correct.
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Extensions

Composite Hypothesis, e.g.,

H0 : f ∈ F0 vs H1 : f 6∈ F0,

where F0 = {f : f is linear on I};

Kernel ridge regression with di�erent decaying rates of
eigen-values;

Non-Gaussian regression with a smooth log-concave density
such as logistic regression.
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Simulations
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Simulations

Consider the following hypothesis:

H0 : f = f0 vs H1 : f 6= f0,

where f0 = 5(x2 − x+ 1
6).

Data were generated as follows

Yi = fc(Xi) + εi, and fc(x) =
1

2
c x2 + f0(x);

Set εi
iid∼ N(0, 1) and Xi

iid∼ Unif(0, 1);

Set Type I and II errors as α = β = 0.05.
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Remark: cuto� value

Recall that the cuto� value d̃n(log(15/α), λ) is provided in
Corollary 3. However, we found that it is quite conservative
due to the use of some loose concentration inequalities;

Fortunately, we can simulate T̃n as follows. By conditioning on
X, we simulate a number of synthetic datasets {Y(k)}Nk=1 from
the null model

Y
(k)
i = f0(Xi) +N(0, 1),

each of which yields a new test statistic T̃
(k)
n . The cuto� value

is set as the (1− α)-th sample quantile of {T̃ (k)
n }Nk=1.
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Remark: the choice of λ

Rather, our theoretical analysis is useful in choosing λ;

In simulations, we choose λ by numerically minimizing the
separation function

ρn(log(15/α), log(30/β), λ)

over λ. The resulting λ is denoted as λFS ;

This non-asymptotic approach is much computationally
cheaper than the conventional generalized cross validation;

Note that all constants in ρn(M,L, λ) and dn(M,λ) such as
ρK , ζK and cK only depend on λ and the eigenvalues ρν 's,
which can be well approximately by the empirical eigenvalues of
the reproducing kernel matrix.
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Empirical comparison with �asymptotically� valid test

For simple hypothesis, we compare four testing procedures:

(S1) The proposed T̃n with the smoothing parameter λFS ;

(S2) Asymptotically valid penalized likelihood ratio test (Shang and
Cheng, 2013), denoted as PLRT (f0), with the same λFS ;

(S3) The proposed T̃n with λ selected by GCV, denoted as λGCV ;

(S4) PLRT statistic PLRT (f0) with the same λGCV .

Note that the cut-o� value for PLRT in S2 and S4 is obtained from
Monte Carlo simulation and the null limit distribution given in
Shang and Cheng (2013), respectively.
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Simulation results

FINITE SAMPLE INFERENCE 15

(S3) The proposed T̃n,λ with h selected by GCV2, denoted as hGCV ;

(S4) PLRT statistic PLRT (f0) with the same hGCV .

The cut-off value for PLRT in S2 and S4 is obtained from Monte Carlo simulation and the null limit

distribution given in [20], respectively. Simulation results are reported in Table 1. The rejection

proportion (RP) under c = 0 reflects the Type I error, while under c 6= 0, RP reflects the power.

Overall, all four procedures have comparable type I errors, i.e., c = 0, for any sample size. As for

power performances, we note that (i) the test using hFS is always more powerful than that using

hGCV ; (ii) T̂n,λ is always more powerful than PLRT given the same choice of h. In other words,

S1 is always the most powerful one. The observation (i) justifies the finite sample advantage of

the non-asymptotic formula in selecting h, while (ii) supports the need of removing estimation

bias in nonparametric testing; see Remark 3.2. The third observation is that as c increases, hGCV

continues decreasing and becomes closer to hFS , but never reaches hFS . This is consistent with

their different asymptotic orders (recall hFS � n−1/(2m+1/2) and hGCV � n−1/(2m+1)).

n c λ
1/4
FS RPFS RPPLRT λ

1/4
GCV RPGCV RP ′GCV

50

0

0.126

0.046 0.052 0.142(0.008) 0.052 0.054

1 0.100 0.092 0.138(0.009) 0.088 0.084

2 0.396 0.340 0.134(0.009) 0.323 0.310

3 0.822 0.764 0.128(0.009) 0.752 0.748

100

0

0.108

0.048 0.048 0.122(0.007) 0.053 0.052

1 0.264 0.170 0.117(0.008) 0.167 0.144

2 0.650 0.558 0.112(0.007) 0.493 0.474

3 0.976 0.934 0.110(0.003) 0.924 0.918

200

0

0.092

0.050 0.048 0.104(0.006) 0.051 0.050

1 0.368 0.334 0.102(0.007) 0.325 0.290

2 0.896 0.862 0.098(0.006) 0.832 0.816

3 1.00 1.00 0.094(0.003) 1.00 1.00

300

0

0.084

0.046 0.048 0.096(0.006) 0.048 0.048

1 0.426 0.404 0.094(0.006) 0.397 0.394

2 0.968 0.946 0.092(0.005) 0.930 0.914

3 1.00 1.00 0.090(0.005) 1.00 1.00

400

0

0.079

0.052 0.050 0.091(0.004) 0.049 0.054

1 0.668 0.640 0.087(0.005) 0.631 0.618

2 1.00 1.00 0.085(0.004) 1.00 1.00

3 1.00 1.00 0.084(0.003) 1.00 1.00

Table 1
Simulation results for simple hypothesis testing. λGCV is an average value over 500 replicates (that varies as c).

RPFS, RPPLRT , RPGCV and RP ′GCV are average rejection proportions by T̃n with λFS, PLRT with λFS, T̃n with
λGCV and PLRT with λGCV respectively, over 500 replicates.

For composite hypothesis, we compare two testing procedures:

(C1) The proposed T̃ comn,λ with hcomFS , selected by numerically minimizing the separation function

2The hGCV is obtained by using the ssr function in the R package assist
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Empirical observations

Overall, all four procedures have comparable type I errors, i.e.,
c = 0, for any sample size;

As for power performances, we note that

(i) the test using λFS is always more powerful than those
using λGCV . This justi�es the �nite sample advantage of the
non-asymptotic formula in selecting λ;
(ii) T̃n is always more powerful than PLRT given the same
choice of λ. In other words, S1 is always the most powerful
one. This supports the need of removing estimation bias in
nonparametric testing;

The third observation is that as c increases, λGCV continues
decreasing and becomes closer to λFS , but never reaches λFS .
This is consistent with their di�erent asymptotic orders, i.e.,
λFS � n−2m/(2m+1/2) and λGCV � n−2m/(2m+1).
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Discussions

The �non-asymptotic Bahadur representation� seems a possible
direction to pursue in �nite-sample inference;

The practical usefulness of �nite-sample inference procedures
rely on �computably sharp� concentration inequality. Can this
be done through data re-sampling or MCMC?

Does it exist something like �non-asymptotic� Fisher
information?

Can the non-asymptotic approach be extended to Bayesian
domain, e.g., choose hyper-parameter in hierarchical priors?
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Questions?

Thanks to ONR for support
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Some necessary notation

In smoothing spline models, we set H as an m-th order Sobolev
space, denoted as Sm(I), and ‖f‖2H as

∫
I{f

(m)(x)}2dx;
De�ne 〈f, g〉 = E{f(X)g(X)}+ λ

∫
I f

(m)(x)g(m)(x)dx.
Endowed with 〈·, ·〉, Sm(I) is an RKHS;

Let K(x1, x2) be the reproducing kernel function satisfying
〈Kx, f〉 = f(x) with Kx(·) = K(x, ·). The underlying
eigen-system is denoted as {ρν , φν(·)}∞ν=1, where ρν � ν−2m;
For later use, de�ne

cK = λ
1

4m sup
x∈I

K1/2(x, x),

ρK = λ
1

2mE[K2(X1, X2)] with X1, X2
iid∼ X.
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