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With the advance of technology, it is increasingly common that
data set is so large that it cannot be stored in a single machine

Social media (views, likes, comments, images...)
Meteorological and environmental surveillance
Transactions in e-commerce
Others...

Figure: A server room in Council Bluffs, Iowa. Photo: Google/Connie
Zhou.
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Divide and Conquer (D&C)

To take advantage of the opportunities in massive data, we
need to deal with storing (disc) and computational
(memory, processor) bottlenecks.

Divide and Conquer:

Randomly divide N samples into S groups;
Conduct parallel computing based on each subset,
implemented by e.g., Hadoop;
Individual sub-estimates or sub-inference results are
aggregated in the end.

Data that are stored in distributed locations can be
analyzed in a similar manner.
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Does D&C fit for statistical analysis?

Sometimes it does, but sometimes it doesn’t...

In the following, we give two simple examples.
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Example 1: Sample Mean

Problem(N)

subproblem
(n)

subproblem
(n)

subproblem
(n)

subproblem
(n)

Xn,1 Xn,2
Xn,3

Xn,4

1

4

4∑

s=1

Xs =
1

4n

4∑

s=1

n∑

i=1

Xis =
1

N

N∑

i=1

Xi = XN .

It fits!
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Example 2: Sample Median

Problem(N)

subproblem
(n)

subproblem
(n)

subproblem
(n)

subproblem
(n)

X1
(0.5) X2

(0.5)
X3

(0.5)
X4

(0.5)

Xs
(0.5) = the middle value of ordered n samples in s group;

X(0.5) = overall median

1

4

4∑

s=1

Xs
(0.5)

??
= X(0.5)
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Example 2: Sample Median

Simulation 1: Xi ∼ N(0, 1); Simulation 2: Xi ∼ Exponential(1).
N = 215. True median v.s. simulated S−1
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Specific Goals

When does the D&C algorithm work?

Especially for skewed and heavy tail distribution

Statistical inference

Asymptotic distribution

Inference for the “whole” underlying distribution?

Take advantage of massive size to discover subtle patterns
hidden in the “whole” distribution
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Outline

1 Quantile Regression

2 Two-Step Algorithm: D&C and Quantile Projection

3 Oracle Rules: Linear Model and Nonparametric Model

4 Simulation
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Quantile

Response Y , predictors X. For τ ∈ (0, 1), conditional quantile
curve Q(·; τ) of Y ∈ R conditional on X is defined through

P (Y ≤ Q(X; τ)|X = x) = τ ∀x.

Q(x; τ) at τ = 0.1, 0.25, 0.5, 0.75, 0.9 under different models
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Quantile Regression v.s. Mean Regression

Mean Regression:
Yi = m(Xi) + εi, E[ε|X = x] = 0

m: regression function, object of
interest.

εi: “errors.”

Quantile Regression:
P (Y ≤ Q(x; τ)|X = x) = τ

No strict distinction between “signal”
and “noise.”

Object of interest: properties of
conditional distribution of Y |X = x.

Contains much richer information
than just mean trend.
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Quantile Regression Two-step Algorithm Oracle Rules Simulation

Quantile Curves v.s. Conditional Distribution

Let FY |X(y|x) be the conditional dist. function of Y given X.

Q(x0; τ) = F−1(τ |x0).
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Quantile Regression as Optimization

Koenker and Bassett (1978): if Q(x; τ) = β(τ)>x, estimate by

β̂or(τ) := arg min
b

N∑

i=1

ρτ (Yi − b>Xi) (1.1)

where ρτ (u) := τu+ + (1− τ)u− is the so-called “check function.”

Remark: Optimization problem (1.1) is convex (but
non-smooth), and can be solved by linear programming.
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A General Series Approximation Framework:

Q(x; τ) ≈ Z(x)>β(τ)

m := dim(Z) (it is possible that m→∞). Solve

β̂or(τ) := arg min
b

N∑

i=1

ρτ
{
Yi − b>Z(Xi)

}

Examples of Z(x) include

linear model with fixed/increasing dimension;
B-splines, polynomials, trigonometric polynomials.
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Motivation for Two-Step Algorithm

To infer the “whole” conditional distribution by

FY |X(y|x0) =

∫ 1

0
1{Q(x0; τ) < y}dτ,

we need to compute Q(x0; τ) for {τ1, . . . , τK} ∈ [τL, τU ]K ;

What is the minimal number of K?

For each fixed τj , we have to distribute data to S machines

since β̂or(τ) is computationally infeasible.

What is the maximum number of S?
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Step I: D&C Algorithm at Any Fixed τ

Problem(N)

subproblem
(n)

subproblem
(n)

subproblem
(n)

subproblem
(n)

β̂1(τ1) β̂2(τ1) β̂3(τ1)
β̂4(τ1)

β̂s(τ) := arg min
b∈Rm

n∑

i=1

ρτ
{
Yis − b>Z(Xis)

}

β(τ) :=
1

S

S∑

s=1

β̂s(τ).
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Step II: Quantile Projection Algorithm

We want to estimate β(τ) as a function over τ based on
{β(τ1), . . . ,β(τK)} obtained in Step I:

β̂(τ) := Ξ̂>B(τ). (2.1)

B := (B1, ..., Bq)
> is B-spline basis (along τ -direction)

defined on {t1, ..., tG} ⊂ T with degree rτ ∈ N;

Ξ̂ is computed as [α̂1 α̂2 ... α̂m], where

α̂j := arg min
α∈Rq

K∑

k=1

(
βj(τk)−α>B(τk)

)2
. (2.2)

Quantile projection requires only {β(τ1), ...,β(τK)} of size
m×K, without the need to access the raw data set.
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Estimation of FY |X(y|x)

Now we can estimate FY |X as

F̂Y |X(y|x0) := τL +

∫ τU

τL

1{Q̂(x0; τ) < y}dτ,

where Q̂(x0; τ) = Z(x0)
>β̂(τ), and τk ∈ [τL, τU ] for 1 ≤ k ≤ K.
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Computational Cost of Two-Step Procedure

The two-step procedure requires only one pass through the
entire data;

The computational cost and statistical performance are
determined by the number of machines S and the number
of quantiles K in the projection, which both grow as N .

Find an upper bound of S and an lower bound of K s.t.
β̂(τ) are “close” to β̂or(τ) in some statistical sense;
The sharp upper and lower bounds characterize the intrinsic
computational limit.
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Oracle Rule

Chao, Volgushev and C. (2016) showed that

aNu
>(β̂or(τ)− β(τ)

)
 G(τ) in `∞(T ) for T ⊂ (0, 1), (3.1)

where G is a mean-zero Gaussian process.

We say that β̂(τ) satisfies oracle rule if it shares the same
weak convergence as β̂or(τ), i.e., (3.1);

Statistical inferential accuracy (based on F̂Y |X(·|x0)) for
FY |X(·|x0) achieves its oracle level if the above oracle rule
holds.



Quantile Regression Two-step Algorithm Oracle Rules Simulation

Oracle Rule

Chao, Volgushev and C. (2016) showed that

aNu
>(β̂or(τ)− β(τ)

)
 G(τ) in `∞(T ) for T ⊂ (0, 1), (3.1)

where G is a mean-zero Gaussian process.

We say that β̂(τ) satisfies oracle rule if it shares the same
weak convergence as β̂or(τ), i.e., (3.1);

Statistical inferential accuracy (based on F̂Y |X(·|x0)) for
FY |X(·|x0) achieves its oracle level if the above oracle rule
holds.



Quantile Regression Two-step Algorithm Oracle Rules Simulation

Oracle Rule

Chao, Volgushev and C. (2016) showed that

aNu
>(β̂or(τ)− β(τ)

)
 G(τ) in `∞(T ) for T ⊂ (0, 1), (3.1)

where G is a mean-zero Gaussian process.

We say that β̂(τ) satisfies oracle rule if it shares the same
weak convergence as β̂or(τ), i.e., (3.1);

Statistical inferential accuracy (based on F̂Y |X(·|x0)) for
FY |X(·|x0) achieves its oracle level if the above oracle rule
holds.



Quantile Regression Two-step Algorithm Oracle Rules Simulation

Two Leading Models

Linear model: m = dim(Z(x)) is fixed and Q(x; τ) = Z(x)>β(τ);

Univariate spline model: m = dim(Z(x)) → ∞ with the spline
approximation error defined as cN (γN ) :=

∣∣Q(x; τ)−Z(x)>γN (τ)
∣∣,

γN (τ) := arg min
γ∈Rm

E
[
(Z>γ −Q(X; τ))2f(Q(X; τ)|X)

]
. (3.2)
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“Theoretical” Phase Transitions

K

S
N1/2

log2N

N1/(2ητ )

N1/2

?

?

N1/2

m1/2 log2N

(
N
m

)1/2

(
N
m

)1/(2ητ )

Figure: Regions (S,K) for the oracle rule of linear model and spline
nonparametric model. ”?” region is the discrepancy between the
sufficient and necessary conditions.
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Simulations for Nonparametric Spline Model

B: cubic B-spline with q = dim(B) defined on G = 4 + q
equidistant knots. Require K > q so that β̂(τ) is
computable (see (2.2));

Xi follows a multivariate uniform distribution U([0, 1]m−1)
with covariance matrix ΣX := E[XiX

>
i ] with

Σjk = 0.120.7|j−k| for j, k = 1, ...,m− 1;

x0 = (1, (m− 1)−1/2l>m−1)
> and N = 214;

y0 = Q(x0; τ) so that FY |X(y0|x0) = τ ;

Our theorem suggest the following CI for τ :

[
F̂Y |X(Q(x0; τ)|x0)±N−1/2

√
τ(1− τ)x>0 Σ−1X x0Φ

−1(1− α/2)
]
.

(4.1)
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FY |X(y|x), ε ∼ N (0, 0.12) and m = 4
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FY |X(y|x), ε ∼ N (0, 0.12) and m = 32
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FY |X(y|x), ε ∼ Exp(0.8) and m = 4
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FY |X(y|x), ε ∼ Exp(0.8) and m = 32
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Empirical Observations from Simulations

Either S > S∗ or q < q∗ leads to the collapse of the oracle
rule.

Increase in q and K improves the coverage probability;

Coverage is no longer symmetry around τ even when model
error is normal;
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Thanks for your attention
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