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Abstract: A common practice in obtaining an efficient semiparametric estimate is through

iteratively maximizing the (penalized) full log-likelihood w.r.t. its Euclidean parameter and

functional nuisance parameter. A rigorous theoretical study of this semiparametric iterative

estimation approach is the main purpose of this paper. We first show that the grid search

algorithm produces an initial estimate with the proper convergence rate. Our second contri-

bution is to provide a formula in calculating the minimal number of iterations k
∗ needed to

produce an efficient estimate θ̂
(k∗)
n . We discover that (i) k∗ depends on the convergence rates

of the initial estimate and the nuisance functional estimate; and (ii) k
∗ iterations are also

sufficient for recovering the estimation sparsity in high dimensional data. The last contribu-

tion is the novel construction of θ̂
(k)
n which does not require knowing the explicit expression

of the efficient score function. The above general conclusions apply to semiparametric mod-

els estimated under various regularizations, e.g., kernel or penalized estimation. As far as we

are aware, this paper provides a first general theoretical justification for the “one-/two-step

iteration” phenomena observed in the semiparametric literature.

Keywords and phrases: Generalized Profile Likelihood, Higher Order Asymptotic Efficien-

cy, K-step Estimation, Newton Raphson Algorithm, Semiparametric Models.

Short title: k-step Semiparametric Estimation

1. Introduction

Semiparametric models indexed by a Euclidean parameter of interest θ ∈ Θ ⊂ R
d and an infinite-

dimensional nuisance parameter η ∈ H are proven to be useful in a variety of contexts, e.g.,

[4, 15, 18, 29, 33]. The semiparametric MLE for θ can be viewed as a solution of the implicitly

defined efficient score function whose nonparametric estimation is only possible in some special

cases, e.g., [18]. Therefore, it is generally hard to solve the MLE from the efficient score function

analytically or numerically. A common practice is to maximize the log-profile likelihood

log pln(θ) = sup
η∈H

log likn(θ, η), (1)
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where likn(θ, η) =
∏n
i=1 lik(Xi; θ, η) is the likelihood based on i.i.d. data (X1, . . . ,Xn), via some

optimization algorithm. For example, the Newton-Raphson algorithm is applied to the partial

likelihood of the Cox model in the software R (with the command coxph).

A general approach of obtaining an efficient semiparametric estimate of θ is as follows:

General Semiparametric Iterative Estimation Approach

I. Identify an initial estimate θ̂
(0)
n ;

II. Apply the Newton-Raphson (NR) or other optimization algorithm to the generalized profile

likelihood ([32]):

Ŝn(θ) = log likn(θ, η̂(θ)), (2)

at θ = θ̂
(0)
n to obtain θ̂

(1)
n . The above η̂(θ) is defined as the nuisance estimate for any fixed

θ ∈ Θ. We can construct it either by pure nonparametric approach, e.g., isotonic estimation,

or under some regularization, e.g., kernel or sieve estimation;

III. Update k∗ times the value of θ in the optimization algorithm of Step II until

‖Ŝn(θ̂(k
∗)

n )− Ŝn(θ̂
(k∗−1)
n )‖ ≤ ǫ

for some norm ‖ · ‖ and pre-determined small ǫ > 0.

Note that, in Step II, we first obtain η̂(θ) by maximizing some log-likelihood based criterion function,

e.g., (31), given the current value θ, and then update the value of θ according to the criterion function

Ŝn(θ) built upon η̂(θ). Hence, the whole algorithm iteratively maximizes the log-likelihood w.r.t.

θ and η in an implicit manner. If η̂(θ) is the nonparametric MLE (NPMLE), then Ŝn(θ) is just

the profile likelihood defined in (1). The above likelihood estimation procedure or its M-estimation

variant has been extensively implemented in the literature. Here is an incomplete list: (i) Odds-

Rate Regression Model under Survival Data, e.g., [18]; (ii) Semiparametric Regression under Shape

Constraints, e.g., [5]; (iii) Logistic Regression with Missing Covariates, e.g., [29]; (iv) Generalized

Partly Linear (Single Index) Model, e.g., [4, 15]; (v) Conditionally Parametric Model, e.g. [32, 33].

The above iterative procedure is also widely applied to the sparse semiparametric estimation, i.e.,

some components of the true value θ0 are zero, by using a penalized version of (2), see Section 5.2.

Unfortunately, the rigorous statistical analyses are unavailable for the above semiparametric

estimation approach. This is mainly because the higher order asymptotic analysis on the implicitly

defined Ŝn(θ) is very hard to derive. In this paper, by using the empirical processes theories, we

have made the following three contributions.

It is well known that identifying the proper initial estimate θ̂
(0)
n is critical in guaranteeing the

fast convergence of the above approach. Occasionally, we can exploit some simple semiparametric

models to produce a
√
n-consistent θ̂

(0)
n , e.g., partly linear model [38]. However, a general strategy

is to conduct a search of Ŝn(θ) at finitely many θ-value and use the maximizer as θ̂
(0)
n , e.g., [36]. Our
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first contribution is to provide very weak sufficient conditions for the above grid search to produce

θ̂
(0)
n with the desired convergence rate. When the dimension of θ is large, θ̂

(0)
n may have the slower

than root-n rate. This motivates our second contribution below, which is particularly useful for the

suboptimal θ̂
(0)
n .

Our second contribution is to answer the title of this paper from a theoretical point of view.

We provide a formula in calculating the minimal number of iterations k∗ needed to produce a

semiparametric efficient θ̂
(k∗)
n . Specifically, we discover that (a) k∗ depends on the convergence

rates of θ̂
(0)
n and η̂(θ); (b) more than k∗ iterations will not change the limiting distribution but

improve the higher order asymptotic efficiency of the iterative estimate; (c) k∗ iterations are also

sufficient for recovering the estimation sparsity, i.e., estimating the zero components as exactly zero

with large probability, under high dimensional data. Surprisingly, the value of k∗ could be quite

large when η is estimated at a very slow rate, e.g., k∗ = 8 in conditionally exponential models; see

Table 3.

The last contribution is the novel construction of θ̂
(k)
n . In contrast with the literature, i.e., [2, 30],

our construction does not require knowing the explicit expression/characterization of the efficient

score function or applying the sample splitting (drop-one-out) technique.

All the above conclusions apply to a wide range of semiparametric models estimated under

various regularizations, e.g., kernel or penalized estimation. A special case of our general theory

is the simple case of (parametric) GEE setting when the iteration is needed between the mean

parameter estimates and variance/covariance parameter estimates; see [20]. It is known that one

iteration is sufficient to achieve the asymptotical efficiency. The bootstrap results in this setup have

also been studied by [6, 23]. Note that our theory does not directly cover the semiparametric models

with bundled parameters (a terminology used by [19]) in which the parameter of interest and the

nuisance parameter are bundled together, i.e., the function η also depends on θ. An example is the

semiparametric binary regression model studied by [11, 13].

On the other hand, one has to be careful in applying the theoretical results of this paper, because

we focus more on the general theoretical explorations. In specific models, it might be possible to

modify the grid search of θ̂
(0)
n or the construction of θ̂

(k)
n to better capture the model features so

that the finite sample behaviors become better. Due to the space limitation, we only consider the

NR algorithm in this paper, but notice that the extensions to the modified NR are possible by

considering the discussions in Page 534 of [28].

Section 2 provides some necessary review on the semiparametric efficient estimation. In Section 3,

we propose two grid search algorithms for identifying the initial estimate whose convergence rate will

be rigorously proven. In Section 4, we consider the semiparametric maximum likelihood estimation

in which Ŝn(θ) is the possibly non-differentiable profile likelihood (1). In Section 5, we consider the

semiparametric estimation under two types of regularization, i.e., kernel estimation and penalized

estimation. Some simulation experiment is also performed to empirically confirm our theory. As an
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example, we also consider the sparse and efficient estimation of the partial linear models. Several

semiparametric models ranging from survival models, mixture models to conditionally exponential

models are treated to illustrate the applicability of our theories. All the proofs are postponed to

the Appendix or Supplementary Materials. The latter is available on the journal’s web site.

2. Preliminary

We assume that the data X1, . . . ,Xn are i.i.d. throughout the paper. In what follows, we first

briefly review the concepts of the efficient score function and least favorable submodel (LFS), and

then relate the estimation of LFS to that of θ as discussed in [32]. Unless otherwise specified, the

notation E is reserved for the expectation taken under the true value (θ0, η0).

The score functions for θ and η are defined as, respectively,

ℓ̇0(Xi) =
∂

∂θ
|θ=θ0 log lik(Xi; θ, η0),

Aθ0,η0h(Xi) =
∂

∂t
|t=θ0 log lik(Xi; θ0, η(t)), (3)

where h is a “direction” along which η(t) ∈ H approaches η0 as t → θ0. Aθ0,η0 : H 7→ L0
2(Pθ0,η0)

is the score operator for η, where H is some closed and linear direction set. The efficient score

function ℓ̃0 is defined as the orthocomplement projection of ℓ̇0 onto the tangent space T , i.e., the

closed linear span of tangent set {Aθ0,η0H = (Aθ0,η0h1, . . . , Aθ0,η0hd)
′ : hj ∈ H}. Therefore, we can

write the efficient score function at (θ0, η0) as ℓ̃0 = ℓ̇0 −Π0ℓ̇0, where Π0ℓ̇0 = argmint∈T E‖ℓ̇0 − t‖2.
The variance of ℓ̃0 is defined as the efficient information matrix Ĩ0. The inverse of Ĩ0 is shown to

be Cramér-Rao bound for estimating θ in the presence of an infinite dimensional η, see [3].

A main idea of estimating θ is to reduce a high dimensional semiparametric model to a low

dimensional random submodel of the same dimension as θ called the least favorable submodel

(LFS). The LFS is constructed as t 7→ log lik(x; t, η∗(t)) which satisfies

η∗(θ0) = η0 and
∂

∂t
|t=θ0 log lik(x; t, η∗(t)) = ℓ̃0(x). (4)

The least favorable curve η∗(t) turns out to be

η∗(t) = arg sup
η∈H

E log lik(X; t, η) for any fixed t ∈ Θ. (5)

The existence of LFS is implied by the closedness of the tangent set. By (5) and standard arguments,

we can establish that the maximizer of Sn(θ) ≡
∑n

i=1 log lik(Xi; θ, η∗(θ)) is semiparametric efficient.

In addition, based on (4), we can derive that

Ĩ0 = E

(
∂ log lik(X; t, η∗(t))

∂t
|t=θ0

)⊗2

= −E
(
∂2 log lik(X; t, η∗(t))

∂ti∂tj
|t=θ0

)

i,j=1,2,...,d

. (6)
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Define

θ̂n = arg sup
θ∈Θ

log likn(θ, η̂(θ)) = arg sup
θ∈Θ

Ŝn(θ). (7)

In view of the above discussions, we can show that θ̂n is semiparametric efficient if η̂(θ) is a consistent

estimate of η∗(θ); see Section 4 of [32] for more details. Note that the form of θ̂n depends on how

we estimate the abstract η∗(θ) defined in (5). For example, θ̂n is just the semiparametric MLE

if η̂(θ) is the NPMLE. When the infinite dimensional H is too large, we may consider estimating

η∗(θ) under some form of regularization, e.g., penalization. In this paper, we will consider two types

of θ̂n defined in (7) according to the way we estimate η∗(θ): (i) pure nonparametric estimation in

Section 4; (ii) nonparametric estimation under regularization in Section 5.

We use N (θ0) to denote some neighborhood of θ0. Let vi denote the i-th unit vector in R
d. Define

the i-th ((i, j)-th) element of a vector V (Matrix M) as Vi (Mij). For a tensor T (3)(θ) ([17]), we

define V T ⊗ T (3)(θ) ⊗ V as a d-dimensional vector with i-th element V T (∂2/∂θ2)(Ṫ (θ))iV , where

Ṫ (θ) is the gradient of T (θ). Denote int[x] and ĩnt[x] as the smallest nonnegative integer ≥ x and

> x, respectively. The symbols Pn and Gn ≡ √
n(Pn − P ) are used for the empirical distribution

and the empirical process of the observations, respectively.

3. Initial Estimate

In this paper, we assume the initial estimate θ̂
(0)
n to be nψ-consistent for some 0 < ψ ≤ 1/2. We will

prove that the grid search of Ŝn(θ) will produce such an initial estimate in this section. The proof

is nontrivial since Ŝn(θ) usually has no explicit form and is possibly non-differentiable. In fact,

our theoretical results on searching θ̂
(0)
n , i.e., Theorem 1, can be applied to any objective functions

satisfying the below Conditions I1-I2, and are thus of independent interest.

We first state two primary conditions I1-I2 on Ŝn(θ).

I1. [Asymptotic Uniqueness] For any random sequence {θ̃xn} ∈ Θ,

[Ŝn(θ̃n)− Ŝn(θ̂n)]/n = oP (1) implies that θ̃n − θ0 = oP (1). (8)

I2. [Asymptotic Expansion] For any consistent θ̃n and sufficiently large n, Ŝn satisfies

Ŝn(θ̃n) = Ŝn(θ0) + n(θ̃n − θ0)
′
Pnℓ̃0 −

n

2
(θ̃n − θ0)

′Ĩ0(θ̃n − θ0) + ∆n(θ̃n), (9)

where ∆n(θ) = n‖θ − θ0‖3 ∨ n1−2v‖θ − θ0‖, for some 1/4 < v ≤ 1/2.

Conditions I1-I2 are very mild. Condition I1 is usually implied by the model identifiability condi-

tions. Condition I2 is very weak since we only assume the existence of the asymptotic expansion (9)

but not require the differentiability of Ŝn(·). When Ŝn(·) is the possibly non-differentiable log pln(·),
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I2 is implied by model Assumptions M1-M4 in Section 4 with v equal to r in (12). As for the d-

ifferentiable Ŝn, we can verify I2 using a three term Taylor expansion of Ŝn(·) with v being g in

Condition G of Section 5.

Now we consider two types of grid search: deterministic type and stochastic type. In the former,

we form a grid of cubes with sides of length sn−ψ over Rd for some s > 0 and 0 < ψ ≤ 1/2, and thus

obtain a set of points Dn = {θiD} regularly spaced throughout Θ with cardinality card(Dn) ≥ Cndψ

for some C > 0. The grid point maximizing Ŝn(θ) is thought of as θ̂
(0)
n . However, this deterministic

search could be very slow if the dimension of θ is high. This motivates us to propose the stochastic

search in which the search points are the realizations of some independent random variable θ̄. The

magnitude of the stochastic search points remains nψ no matter how large the dimension d is.

In theory, the stochastic grid search has significant computational savings over the deterministic

approach. Theorem 1 below rigorously prove the convergence rates of the above numerical outcomes.

Theorem 1. Let Dn be a set of points regularly spaced throughout Θ with card(Dn) ≥ Cndψ for

some C > 0 and 0 < ψ ≤ 1/2. Assume that θ̄ is independent of the data and admits a density

having support Θ and bounded away from zero in some neighborhood of θ0. Let Sn be a set of

realizations of θ̄ with card(Sn) ≥ C̃nψ for some C̃ > 0 and 0 < ψ ≤ 1/2. Suppose that Conditions

I1-I2 hold, and that the parameter space Θ is compact. Then, if θ̂n defined in (7) is consistent and

Ĩ0 is nonsingular, we have

θDn − θ0 = OP (n
−ψ), (10)

θSn − θ0 = OP (n
−ψ), (11)

where θDn = argmaxθ∈Dn Ŝn(θ) and θ
S
n = argmaxθ∈Sn Ŝn(θ).

Similar theorem is also proven in Robinson (1988) for parametric models. The strictly positive

density assumption on θ̄ is reasonable. For example, θ̄ can be assumed to follow uniform or truncated

normal distribution over the compact Θ. In practice, the search for the initial estimate is usually

done over some compact set. Thus, the compactness of Θ is also reasonable.

In the following two models, there is no theoretically justified initial estimate available in the

literature. Hence, we naturally appply the above grid search to obtain θ̂
(0)
n .

Example 1: Cox Model under Current Status Data

In the Cox proportional hazards model, the hazard function of the survival time T of a subject

with covariate Z is expressed as:

λ(t|z) ≡ lim
∆→0

1

∆
Pr(t ≤ T < t+∆|T ≥ t, Z = z) = λ(t) exp(θ′z),

where λ is an unspecified baseline hazard function. We consider the current status data where

each subject is observed at a single examination time Y to determine if an event has occurred,

but the event time T cannot be known exactly. Specifically, the observed data are n realizations
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of X = (Y, δ, Z) ∈ R+ × {0, 1} × R, where δ = I{T ≤ Y }. The cumulative hazard function

η(y) =
∫ y
0 λ(t)dt is considered as the nuisance parameter. The parameter space H for η is restricted

to a set of nondecreasing and cadlag functions on some compact interval. In this model, it is well

known that both η̂(θ) and Ŝn(θ) = log pln(θ) have no explicit forms, and can only be calculated

numerically via the iterative convex minorant algorithm, see [18]. As for the convergence rate of η,

Murphy and van der Vaart (1999) showed ‖η̂(θ̃n)−η0‖2 = OP (‖θ̃n−θ0‖∨n−1/3), where ‖ ·‖2 is the

L2 norm. According to (S.1) in supplementary material, we know that I2 is satisfied with v = 1/3.

Condition I1 is verified in Lemma 2 of [22] for this model.

Example 2: Semiparametric Mixture Model in Case-Control Studies

Roeder, Carroll and Lindsay (1996) consider the logistic regression model with a missing covariate

for case-control studies. In this model, they observe two independent random samples: one complete

component YC = (DC ,WC) and ZC of the size nC , and one reduced component YR = (DR,WR) of

the size nR. Following the assumptions given in [29], the likelihood for x = (yC , yR, zC) is given as

lik(θ′, η)(x) = pθ′(yC |zC)η{zC}
∫
pθ′(yR|z)dη(z),

where dη denotes the density of η w.r.t. some dominating measure, and

pθ′(y|z) =
(

exp(γ + θez)

1 + exp(γ + θez)

)d( 1

1 + exp(γ + θez)

)1−d

φσ(w − α0 − α1z),

where φσ(·) denotes the density for N(0, σ). The unknown parameters are θ′ = (θ, α0, α1, γ, σ)

over the compact Θ′ ⊂ R
4 × (0,∞) and the distribution η of the regression variable restricted to

the set of nondegenerate probability distributions with a compact support. In this model, we will

concentrate on θ while treating θ2 = (α0, α1, γ, σ) and η as nuisance parameters. The NPMLE η̂(θ)

is a weighted average of two empirical distributions and Ŝn(θ) = log pln(θ) has no explicit form,

both of which is computed efficiently via the iterative algorithm in [29]. For each fixed θ, denote

the profile estimate as (θ̂2,θ, η̂(θ)) so that θ̂′θ = (θ, θ̂2,θ). Murphy and van der Vaart (1999) showed

that, for any θ̃n
P→ θ0, ‖η̂(θ̃n) − η0‖BL1 + ‖θ̂′

θ̃n
− θ′0‖ = OP (|θ̃n − θ0| ∨ n−

1
2 ), where ‖ · ‖BL1 is the

weak topology. According to (S.1) in supplementary materials, we know that I2 is satisfied with

v = 1/2. Condition I1 is verified in Lemma 3 of [22].

4. Semiparametric Maximum Likelihood Estimation

In this section, we consider the MLE of θ corresponding to the case that η̂(θ) is the well defined

NPMLE for η∗(θ) and Ŝn(θ) = log pln(θ). We first discuss the construction of θ̂
(k)
n even when

the profile likelihood is unnecessarily differentiable, and then show that the minimal number of

iterations k∗ is jointly determined by the convergence rates of θ̂
(0)
n and η̂(θ).

In this section, we first assume the following convergence rate Condition (12) and then the LFS

Conditions M1 – M4. For any random sequence θ̃n
P→ θ0, we assume

‖η̂(θ̃n)− η0‖ = OP (‖θ̃n − θ0‖ ∨ n−r), (12)
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where ‖ · ‖ is some norm in H and 1/4 < r ≤ 1/2. Of course, we take the largest such r in the

following and call it the convergence rate for estimating η. The above range of r holds in regular

semiparametric models, which we can define without loss of generality to be models where the

entropy integral converges. The value of r depends on the entropy number of H; see Theorems

3.1-3.2 in [25]. In this section, we construct the LFS by following [8]. Specifically, we first assume

the existence of a smooth map from the neighborhood of θ into H, which has the form t 7→ η∗(t, θ, η)

and satisfies η∗(θ, θ, η) = η for any fixed (θ, η) ∈ Θ × H (with a bit abuse of notation), and then

define the map t 7→ ℓ(x; t, θ, η) as follows: ℓ(x; t, θ, η) = log lik(x; t, η∗(t, θ, η)). Thus, log pln(θ) =∑n
i=1 ℓ(Xi; θ, θ, η̂(θ)). From now on, we use the notation ℓ(t, θ, η) for simplicity. We define ℓ̇(t, θ, η),

ℓ̈(t, θ, η) and ℓ(3)(t, θ, η) as the first, second and third derivative of ℓ(t, θ, η) with respect to t,

respectively. Also denote ℓt,θ(t, θ, η) as (∂
2/∂t∂θ)ℓ(t, θ, η).

M1. We assume that the derivatives (∂l+m/∂tl∂θm)ℓ(t, θ, η) have integrable envelop functions in

L1(P ) for (l+m) ≤ 3, and that the Fréchet derivatives of η 7→ ℓ̈(θ0, θ0, η) and η 7→ ℓt,θ(θ0, θ0, η)

are bounded around η0;

M2. Eℓ̇(θ0, θ0, η) = O(‖η − η0‖2) for all η around η0;

M3. Gn(ℓ̇(θ0, θ0, η̂(θ̃n))− ℓ̇(θ0, θ0, η0)) = OP (n
−2r+1/2 ∨ n1/2−r‖θ̃n − θ0‖) for any θ̃n P→ θ0;

M4. The classes of functions {ℓ̈(t, θ, η)(x) : (t, θ, η) ∈ V } and {ℓt,θ(t, θ, η)(x) : (t, θ, η) ∈ V }
are P -Donsker, and {ℓ(3)(t, θ, η)(x) : (t, θ, η) ∈ V } is P -Glivenko-Cantelli, where V is some

neighborhood of (θ0, θ0, η0).

See Section 2.2 of [8] for the discussions on M1-M4.

Under Conditions M1 – M4 and (12), Cheng and Kosorok (2008b) showed the following second

order asymptotic linear expansion result:

√
n(θ̂n − θ0) =

1√
n

n∑

i=1

Ĩ−1
0 ℓ̃0(Xi) +OP (n

−2r+1/2). (13)

We need to estimate
∑n

i=1 ℓ̃0(Xi)/n and Ĩ0 in (13) to construct the NR estimate θ̂
(k)
n . In view of

(4) and (6), we can estimate them based on the following numerical derivatives of the log-profile

likelihood:

[
ℓ̂n(θ, sn)

]
i
=

log pln(θ + snvi)− log pln(θ)

nsn
, (14)

[
În(θ, tn)

]
i,j

= − log pln(θ + tn(vi + vj)) + log pln(θ)

nt2n
+

log pln(θ + tnvi) + log pln(θ + tnvj)

nt2n
. (15)

Note that the above În is exactly the observed profile information proposed in Murphy and van

der Vaart (1999). Lemma A.1 of Appendix implies that (14) and (15) are indeed consistent. Now

we can construct θ̂
(k)
n as

θ̂(k)n = θ̂(k−1)
n +

[
În

(
θ̂(k−1)
n , t(k−1)

n

)]−1
ℓ̂n

(
θ̂(k−1)
n , s(k−1)

n

)
, (16)
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where step sizes s
(k−1)
n ∨ t(k−1)

n = o(1). A close inspection of (16) reveals that we have constructed

θ̂
(k)
n even without knowing the forms of ℓ̃0 and Ĩ0. Therefore, it is a general construction approach.

The convergence of θ̂
(k)
n to θ̂n, which is exactly the maximizer of log pln(θ), as k → ∞ is guar-

anteed by the asymptotic parabolic form of log pln(θ) proven in [26]. However, to figure out the

minimal k∗ such that ‖θ̂(k
∗)

n − θ̂n‖ = oP (n
−1/2), we need to make use of the second order asymp-

totic quadratic expansion of log pln(θ) derived in [8]. As seen from (16), the orders of step sizes

(s
(k−1)
n , t

(k−1)
n ) are critical in determining the convergence rate of θ̂

(k)
n to θ̂n, and thus need to be

properly chosen at each iteration. Lemma 1 below presents the theoretically optimal step sizes,

under which the fastest convergence rate is achieved, at each iteration. The data dependent choice

of step sizes is important, and will be dealt in a separate paper due to the space limitation.

Denote the convergence rate of ‖θ̂(k−1)
n −θ̂n‖ as OP (n−rk−1). DefineRn ≍ rn if rn/M ≤ Rn ≤ rnM

for some M ≥ 1.

Lemma 1. Suppose (12) and Conditions M1-M4 hold. Also suppose that θ̂n is consistent and Ĩ0

is nonsingular. The convergence rate of ‖θ̂(k)n − θ̂n‖ is improved through the following three stages:

(i) ‖θ̂(k)n − θ̂n‖ = OP (‖θ̂(k−1)
n − θ̂n‖3/2) when rk−1 < r and (s

(k−1)
n , t

(k−1)
n ) ≍ (n−3rk−1/2, n−rk−1/2);

(ii) ‖θ̂(k)n −θ̂n‖ = OP (‖θ̂(k−1)
n −θ̂n‖1/2n−r) when r ≤ rk−1 < 1/2 and (s

(k−1)
n , t

(k−1)
n ) ≍ (n−r−rk−1/2, n−rk−1/2);

(iii) ‖θ̂(k)n − θ̂n‖ = OP (n
−r−1/4) when rk−1 ≥ 1/2 and (s

(k−1)
n , t

(k−1)
n ) ≍ (n−r−1/4, n−rk−1/2).

Now we present our second main theorem, i.e., Theorem 2, proving ‖θ̂(k)n − θ̂n‖ = OP (n
−S(ψ,r,k)),

where θ̂
(0)
n is nψ-consistent. From the form of S(ψ, r, k), we can figure out the value of k∗. For

example, according to the above Lemma 1, it is easily seen that S(1/2, r, k) = r + 1/4 for any

1/4 < r ≤ 1/2 and k ≥ 1 (thus k∗ = 1); and S(1/3, 1/2, 1) = 1/2 and S(1/3, 1/2, k) = 3/4 for

any k ≥ 2 (thus k∗ = 2). This former case is the one-step iteration result in the seimparametric

literature (given
√
n-consistent θ̂

(0)
n ). As discussed in Section 1, θ̂

(0)
n may also have the sub-optimal

rate. This explains why we are interested in deriving the general form of S(ψ, r, k) for ψ ≤ 1/2.

Let S1(ψ, k) = ψ(3/2)k , K1(ψ, r) = int [log(r/ψ)/ log(3/2)] and S̃1(ψ, r) = S1(ψ,K1(ψ, r)).

Define, if S̃1(ψ, r) ≥ 1/2,

S(ψ, r, k) =

{
S1(ψ, k) k ≤ K1(ψ, r)

r + 1/4 k ≥ K1(ψ, r) + 1
,

and, if r ≤ S̃1(ψ, r) < 1/2,

S(ψ, r, k) =





S1(ψ, k) k ≤ K1(ψ, r)

S2(S̃1(ψ, r), r, k −K1(ψ, r)) K1(ψ, r) < k ≤ K1(ψ, r) + K̃2(ψ, r)

r + 1/4 k ≥ K1(ψ, r) + K̃2(ψ, r) + 1

,

where S2(ψ, r, k) = 2r+2−k(ψ−2r), K2(ψ, r) = int[log{(2r−ψ)/(2r−1/2)}/ log 2] and K̃2(ψ, r) =

K2(S̃1(ψ, r), r).
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Theorem 2. Suppose that Conditions in Lemma 1 hold and proper step sizes are chosen ac-

cording to Lemma 1. Let θ̂
(k)
n be the k-step estimator defined in (16) and θ̂

(0)
n be nψ-consistent for

0 < ψ ≤ 1/2. Recall that ‖θ̂(k)n − θ̂n‖ = OP (n
−rk). We show that rk increases from ψ to (r + 1/4)

as k → ∞. Specifically, we have

‖θ̂(k)n − θ̂n‖ = OP (n
−S(ψ,r,k)). (17)

This implies that

‖θ̂(k∗)n − θ̂n‖ = oP (n
−1/2), (18)

where k∗ = K1(ψ, r) + ĩnt[log((2r − S̃1(ψ, r))/(2r − 1/2))/ log 2].

Interestingly, we notice that the optimal bound of ‖θ̂(k)n − θ̂n‖, i.e. OP (n−r−1/4), is intrinsically

determined by how accurately we estimate the nuisance parameter, i.e., the value of r. This bound

can not be further improved unless we are willing to make stronger assumptions than M1-M4, which

seem unrealistic. The form of S(ψ, r, k) implies that more accurate initial estimate leads to more

efficient θ̂
(k)
n (in terms of closer distance to θ̂n).

We apply Theorem 2 to the previous two examples, and the required Conditions are verified in

[7, 8] for them.

Example 1: Cox Model under Current Status Data (Cont’)

According to Theorem 2, we establish the following table to depict the convergence of θ̂
(k)
n to θ̂n

given different initial estimates until it reaches the lower bound OP (n
−7/12).

Table 1. Cox Model under Current Status Data (r = 1/3)

ψ = 1/2 ψ = 1/3 ψ = 1/4

Cox r1 = 7/12 r1 = 1/2, r2 = 7/12 r1 = 3/8, r2 = 25/48, r3 = 7/12

Models k∗ = 1 k∗ = 2 k∗ = 2

Remark: Define ‖θ̂(0)n − θ̂n‖ = OP (n
−ψ) and ‖θ̂(k)n − θ̂n‖ = OP (n

−rk).

Example 2: Semiparametric Mixture Model in Case-Control Studies (Cont’)

The following Table 2 is similar as Table 1. In Table 2, we notice that θ̂
(k)
n converges to θ̂n at a

faster rate due to the larger r.

Table 2. Semiparametric Mixture Model in Case-Control Studies (r = 1/2)

ψ = 1/2 ψ = 1/3 ψ = 1/4

Mixture r1 = 3/4 r1 = 1/2, r2 = 3/4 r1 = 3/8, r2 = 9/16, r3 = 3/4

Models k∗ = 1 k∗ = 2 k∗ = 2

Remark: Define ‖θ̂(0)n − θ̂n‖ = OP (n
−ψ) and ‖θ̂(k)n − θ̂n‖ = OP (n

−rk).
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5. Semiparametric Estimation under Regularization

In this section, we consider the semiparametric estimation under two types of regularizations, i.e.,

kernel estimation and penalized estimation. In contrast with the profile likelihood estimation, the

regularized Ŝn(θ) is usually smooth and differentiable although its form may vary under different

regularizations. We first present a unified framework for studying θ̂
(k)
n when Ŝn(θ) is third order

differentiable, and then give easy-to-verify sufficient conditions for kernel estimate and penalized

estimation, respectively. In the end, we discuss the iterative sparse estimation of partly linear models

as an extension of the penalized estimation.

In this section, we construct θ̂
(k)
n as follows:

θ̂(k)n = θ̂(k−1)
n +

[
În(θ̂

(k−1)
n )

]−1
ℓ̂n(θ̂

(k−1)
n ), (19)

where ℓ̂n(·) = Ŝ
(1)
n (·)/n and

În(·) = −Ŝ(2)
n (·)/n, (20)

where Ŝ
(j)
n (·) is the j-th derivative of Ŝn(·). When Ŝ

(2)
n (θ) has no explicit form or is hard to compute,

we may prefer constructing [În(θ)]ij as

− 1

n
× [Ŝ

(1)
n (θ + n−1/2t2vj)]i − [Ŝ

(1)
n (θ + n−1/2t1vj)]i

n−1/2t2 − n−1/2t1
, (21)

where t1 and t2 (t1 < t2) are arbitrarily fixed real numbers.

Recall that Sn(θ) =
∑n

i=1 log lik(Xi; θ, η∗(θ)) and define S
(j)
n (·) as the j-th derivative of Sn(·).

In view of the discussions in Section 2, i.e. (4) & (6), we expect that θ̂
(k)
n converges to θ̂n if Ŝ

(j)
n (·)

approximates S
(j)
n (·) well enough round θ0 for j = 1, 2, 3. Therefore, we assume the following general

condition G.

G. Assume that

1

n
Ŝ(1)
n (θ0)−

1

n
S(1)
n (θ0) = OP (n

−2g), (22)

sup
θ∈N (θ0)

∣∣∣∣
1

n
Ŝ(2)
n (θ)− 1

n
S(2)
n (θ)

∣∣∣∣ = OP (n
−g), (23)

sup
θ∈N (θ0)

∣∣∣∣
1

n
Ŝ(3)
n (θ)

∣∣∣∣ = OP (1), (24)

where 1/4 < g ≤ 1/2.

In the kernel (penalized) estimation, the value of g is determined by the bandwidth order of the

kernel function (the order of the smoothing parameter). We may verify (24) by showing

sup
θ∈N (θ0)

∣∣∣∣
1

n
Ŝ(3)
n (θ)− 1

n
S(3)
n (θ)

∣∣∣∣ = oP (1), (25)
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and that the class of functions {(∂3/∂θ3) log lik(x; θ, η∗(θ)) : θ ∈ N (θ0)} is P-Glivenko-Cantelli and

sup
θ∈N (θ0)

E
∣∣(∂3/∂θ3) log lik(X; θ, η∗(θ))

∣∣ <∞.

Now we present our third main theorem, i.e., Theorem 3. Define

R(ψ, g, k) =




R1(ψ, g, k) k ≤ L1(ψ, g)

R2(R1(ψ, g, L1(ψ, g)), g, k − L1(ψ, g)) k > L1(ψ, g)
(26)

where R1(ψ, g, k) = (1/2 − g) + 2k(ψ + g − 1/2), L1(ψ, g) = int[log(g/(g + ψ − 1/2))/ log 2],

L̃1(ψ, g) = ĩnt[log(g/(g + ψ − 1/2))/ log 2] and R2(ψ, g, k) = kg + ψ.

Theorem 3. Suppose that Condition G holds, θ̂n defined in (7) is consistent and Ĩ0 is nonsin-

gular. We have the following asymptotic linear expansion of θ̂:

√
n(θ̂n − θ0) =

1√
n

n∑

i=1

Ĩ−1
0 ℓ̃0(Xi) +OP (n

1/2−2g). (27)

Let θ̂
(k)
n be the k-step estimator defined in (19) and θ̂

(0)
n be nψ-consistent for (1/2 − g) < ψ ≤ 1/2.

Define ‖θ̂(k)n − θ̂n‖ = OP (n
−rk). We show that rk increases from ψ to ∞ as k → ∞. Specifically,

we show

‖θ̂(k)n − θ̂n‖ = OP (n
−2kψ) if În(·) is defined in (20), (28)

‖θ̂(k)n − θ̂n‖ = OP (n
−R(ψ,g,k)) if În(·) is defined in (21). (29)

This implies that ‖θ̂(k
∗)

n − θ̂n‖ = oP (n
−1/2), where k∗ = ĩnt[log(1/2ψ)/ log 2] for (28) and k∗ =

L̃1(ψ, g) for (29).

Note that (28) is a statistical counterpart to the well known quadratic convergence of the Newton-

Raphson algorithm; see Page 312 of [27]. Theorems 2 and 3 imply that (i) θ̂
(k∗)
n shares the same limit

distribution as θ̂n and gains more asymptotic efficiency, i.e., smaller error term in its asymptotic

linear expansion, if more iterations are implemented; (ii) the higher order asymptotic efficiency of

θ̂
(k)
n is determined by how accurately η is estimated, i.e., the values of r or g; (iii) θ̂

(k)
n converges to

θ̂n faster when În is constructed as an analytical derivative no matter whether the regularization

is used or not.

A by-product of Theorem 3 is its application to the parametric models, i.e., η is known, where

Ŝn(θ) becomes the parametric log-likelihood. We skip the relevant discussions due to the similarity.

Remark 1. Given that the initial estimate is
√
n consistent, we have

‖θ̂(k)n − θ̂n‖ = OP (n
−2k−1

) if În(·) is constructed as in (20),

‖θ̂(k)n − θ̂n‖ = OP (n
−(1/2+kg)) if În(·) is constructed as in (21)

based on Theorem 3. This implies k∗ = 1.
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Remark 2. Theorems 2-3 together with the previous Theorem 1 offer rigorous statistical anal-

ysis for the iterative semiparametric estimation approach. Those theorems also indicate a tradeoff

between the computational cost of searching for an initial estimate, i.e. card(Dn) or card(Sn), and
that of generating an efficient estimate, i.e., k∗.

5.1. Kernel Estimation in Semiparametric Models

In this subsection, we consider the kernel estimation in semiparametric models; see [1, 35]. In

particular, the kernel approach is proven to be a powerful inferential tool for the class of condition-

ally parametric models (CPM), see [32, 33]. The practical performance of the iterative estimation

procedure (I)-(IV) for the CPM is extensively studied in [33]. Thus, we will focus on the class of

CPM although our conclusions can be extended to more general class of semiparametric models

by incorporating the results in [1]. Under kernel estimation, k∗ is shown to depend on the order of

bandwidth used in the kernel function.

The class of CPM was first introduced by Severini and Wong (1992) and further generalized to

the quasi-likelihood framework by Severini and Staniswalis (1994). Specifically, we observe X =

(Y,W,Z) such that the distribution of Y conditional on partitioned covariates W = w and Z = z

is parameterized by a finite dimensional parameter φ = (θ, λz), where λz ∈ H ⊂ R depends on the

value of z as a function η(z). The joint distribution of (W,Z) is assumed to be independent of φ.

We assume that η ∈ C2(Z), where Z is the support of z. An important feature of CPM is that

its least favorable curve can be expressed as (see [32] for details)

η∗(z; θ) = arg sup
η∈C2(Z)

E[log lik(X; θ, η)|Z = z], (30)

and thus its kernel estimate is written as

η̂(z; θ) = arg sup
η∈C2(Z)

n∑

i=1

log lik(Xi; θ, η(Zi))K

(
z − Zi
bn

)
, (31)

where K(·) is a kernel with the bandwidth bn → 0. For example, if (Y |w = W,Z = z) ∼
N(θ′w, η(z)), then we have

η̂(z; θ) =

∑n
i=1(Yi − θ′Wi)

2K((z − Zi)/bn)∑n
i=1K((z − Zi)/bn)

,

Ŝn(θ) = −1

2

n∑

i=1

(Yi − θ′Wi)

η̂(Zi; θ)
− 1

2

n∑

i=1

log η̂(Zi; θ). (32)

In general, η̂(θ) and Ŝn(θ) have no explicit form. However, based on (31), we can control the

asymptotic behaviors of η̂(θ) (and thus Ŝn(θ)) through proper kernel conditions.

By exploiting the parametric structure of CPM, we will show that Ŝn(θ) satisfies the general

Condition G under the below Conditions K1-K2 and C1-C2.
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K1. For arbitrary θ1 ∈ Θ and λ1 ∈ H, Eθ1,λ1 log lik(X; θ, λ) < Eθ1,λ1 log lik(X; θ1, λ1) if θ 6= θ1;

K2. Assume that

E

{
sup

(θ,λ)∈Θ×H

∣∣∣∣
∂r+s log lik(X; θ, λ)

∂θr∂λs

∣∣∣∣
2
}
<∞ (33)

for all r, s = 0, . . . , 4 and r + s ≤ 4.

Conditions C1-C2 below are about the smoothness and convergence rate of η∗(θ) and η̂(θ). Denote

the s-th derivative of η∗(θ) (η̂(θ)) w.r.t. θ as η
(s)
∗ (θ) (η̂(s)(θ)), and their values at θ0 as η

(s)
∗0 (η̂

(s)
0 ).

C1. Assume that, for all r, s = 0, 1, 2, 3 and r+s ≤ 3, (∂r+s/∂zr∂θs)η∗(z; θ) and (∂r+s/∂zr∂θs)η̂(z; θ)

exist and supθ∈N (θ0) ‖η
(s)
∗ (θ)‖∞ <∞.

C2. Assume that

sup
θ∈N (θ0)

‖η̂(s)(θ)− η
(s)
∗ (θ)‖∞ = OP (n

−g) for s = 0, 1, 2, (34)

sup
θ∈N (θ0)

‖η̂(3)(θ)− η
(3)
∗ (θ)‖∞ = oP (1), (35)

∥∥∥∥
∂

∂z
η̂0(z) −

∂

∂z
η∗0(z)

∥∥∥∥
∞

= oP (n
−δ), (36)

∥∥∥∥
∂

∂z
η̂
(1)
0 (z)− ∂

∂z
η
(1)
∗0 (z)

∥∥∥∥
∞

= oP (n
−δ). (37)

for some g ∈ (1/4, 1/2] and (2g − 1/2) ≤ δ ≤ g.

In view of (30)-(31), we can verify C2 by applying the kernel theories under some proper kernel

conditions and K1-K2; see Lemma 2 below. Note that Condition C2 implies (12) assumed for the

NPMLE since ‖η̂(θ̃n) − η0‖ ≤ ‖η̂(θ̃n) − η̂(θ0)‖∞ + ‖η̂(θ0) − η∗(θ0)‖∞ ≤ OP (‖θ̃n − θ0‖ ∨ n−g) by

the construction that η∗(θ0) = η0, C1-C2 and (34). Thus, our conditions K1-K2 and C1-C2 for the

class of CPM are generally stronger than M1-M4 and (12).

Theorem 4. Assuming that Conditions K1-K2 and C1-C2 hold, then the Condition G required

in Theorem 3 is satisfied for the kernel estimation in CPM.

The consistency of θ̂n required in Theorem 3 can be established if we further require the global

condition supθ∈Θ ‖η̂(θ) − η∗(θ)‖∞ → 0, see Proposition 1 of [32]. In the third example, we apply

Theorems 1 and 4 to a subclass of CPM, called conditionally exponential models (CEM), in which

η̂(θ) has a closed-form. This makes the verifications of C1-C2 much easier. The relation between

k∗ and the order of bn in (31) is specified in Lemma 2.

Example 3. Conditionally Exponential Models

In CEM, there exists a function ψθ(·) such that the conditional distribution of ψθ(Y,W ) given

Z = z does not depend on θ and forms an exponential family. And its log-likelihood is expressed as
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log lik(X; θ, η) = ψθ(Y,W )T (η(Z))−A(η(Z))+S(ψθ(Y,W )) for some functions T , A and S. Some

simple algebra gives that

η̂(z; θ) = ρ

(∑n
i=1 ψθ(Yi,Wi)K((z − Zi)/bn)∑n

i=1K((z − Zi)/bn)

)
, (38)

where η = ρ{Eθ,η(ψθ(Y,W ))}. In the previous conditional normal model, we have ψθ(Y,W ) =

(Y − θ′W )2 and ρ(t) = t. Another example is that (Y |W = w,Z = z) ∼ Exp(0, exp(θ′w+ η(z))) in

which ψθ(Y,W ) = Y exp(−θ′W ) and ρ(t) = log t.

We first apply Theorem 1 to obtain θ̂
(0)
n . Condition I1 can be verified by adapting the consistency

proof of θ̂n in [32], see its Proposition 1. Condition I2 just follows from Condition G with v being g

given in (39) as discussed in Section 3. We next discuss how to verify K1-K2 & C1-C2 in Theorem 4.

Conditions K1-K2 are easily verified when Θ × H is assumed to be compact. However, we need

the following Lemma to verify Conditions C1-C2. Let ψ
(j)
θ (·) be (∂j/∂θj)ψθ(·) and fθj(·|z) be its

conditional density. Denote f(z) as the marginal density of Z. Let M be a compact set so that

mθ(z) ≡ E[ψθ(Y,W )|Z = z] ∈ int(M) for all z, θ.

Lemma 2. Assume the following conditions hold:

(a) E{supθ |ψ(j)
θ |} <∞ for j = 0, 1, 2, 3;

(b) For some even integer q ≥ 10, supθ E{|ψ(j)
θ |q} <∞ for j = 0, 1, 2, 3;

(c) supθ supx |f (r)θj (y,w|z)| <∞ for j = 0, 1, 2 and r = 0, . . . , 4;

(d) supz |f (r)(z)| <∞ for r = 0, . . . , 4;

(e) 0 < infz f(z) ≤ supz f(z) <∞;

(f) supm∈M |ρ(j)(m)| <∞ for j = 0, . . . , 4.

Suppose that the kernel function K(·) in (38) satisfies
∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du <∞ and sup

u
|K(r)(u)| <∞ for r = 0, . . . , 4.

Condition C1 holds under the above conditions. If we choose bn ≍ n−α for 1/8 < α < (q− 2)/(4q+

16), then Condition C2 is satisfied with, for any ǫ > 0,

g = 2α ∧
(

q

2q + 4
− α(q + 4)

q + 2
− ǫ

)
, (39)

δ =
q

2q + 4
− α(2q + 6)

q + 2
− 2ǫ. (40)

The above Lemma specifies the relation between the bandwidth order α in (38) and k∗ in The-

orem 3. By some algebra, we can verify that g ∈ (1/4, 1/2] and (2g− 1/2) ≤ δ ≤ g given the above

range of α and q. We want to point out that the convergence rates of η̂(θ) (and its derivatives) may

be improved, i.e., larger value of g, under more restrictive kernel conditions, see [1, 34].

Now we are ready to apply Theorem 4 and Lemma 2 to the previous conditional normal (expo-

nential) example, in which q is shown to be arbitrarily large and M is chosen as a sufficiently large
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compact subset of (0,∞). In the below table, we assume that q = 28, bn ≍ n−1/5, ǫ = 1/600 such

that g = 151/600 > 1/4 and δ = 1/20 according to (39)-(40).

Table 3. Conditional Normal (Exponential) Model (g = 151/600)

ψ = 1/2 ψ = 1/3

Construction I r1 = 1 r1 = 2/3

k∗ = 1 k∗ = 1

Construction II r1 = 451/600 r1 = 251/600, r2 = 353/600

k∗ = 1 k∗ = 2

ψ = 1/4

Construction I r1 = 1/2, r2 = 1

k∗ = 2

Construction II r1 = 151/600, r2 = 153/600, r3 = 157/600, r4 = 165/600

r5 = 181/600, r6 = 213/600, r7 = 277/600, r8 = 405/600

k∗ = 8

Remark: Define ‖θ̂(0)n − θ̂n‖ = OP (n
−ψ) and ‖θ̂(k)n − θ̂n‖ = OP (n

−rk); Construction

I: În is constructed by (20); Construction II: În is constructed by (21).

In the end of this section, we empirically verify our theoretical results via some simulations. For

simplicity, we consider the conditional exponential model (Y |W = w,Z = z) ∼ Exp(0, exp(θw +

η(z))), where θ0 = 1 and η0(z) = −z2. The covariates Z and W were generated from Unif [0, 1]

independently. According to (38), the nonparametric estimate is calculated as

η̂(z; θ) = log

(∑n
i=1 Yi exp(−θWi)K((z − Zi)/bn)∑n

i=1K((z − Zi)/bn)

)
,

where K(·) is Gaussian kernel with the smoothing bandwidth bn selected by R function “density”;

see [31]. The initial estimate was identified by the deterministic grid search with the grid size

approximately n−1/4, e.g., approximately 0.25 for n = 250. Hence, the initial estimate θ̂(0) has the

convergence rate n−1/4, i.e., ψ = 1/4. The sample size was taken to be 150, 200, 250. In Figures 1

and 2, we plot the mean and standard deviation of θ̂
(k)
n v.s. k for k = 1, 2, . . . , 8 out of 100 simulated

data sets under Constructions I and II (with t1 = 1 and t2 = 2), respectively. Under Construction

II, i.e., (21), we find that our simulation results are insensitive to the choice of (t1, t2) due to the

differentiability of Ŝ
(1)
n . It is clear to see that the mean (s.d.) of θ̂

(k)
n converges to approximately

1 (4.2) after 2 steps in Construction I and 4 steps in Construction II. In view of Table 3, we

empirically confirm our theoretical finding that the iterative estimate needs less steps to achieve

convergence in Construction I. Note that the derived convergence rate n−151/600 in Example 3 may

not be sharp; see discussions after Lemma 2. This may explain why 4 rather than 8 iterations are

imsart ver. 2006/01/04 file: SJS_revision_v2.tex date: September 27, 2012



Guang Cheng/k-step Semiparametric Estimation 17

1 2 3 4 5 6 7 8

0
.9

6
9
0

0
.9

7
0
0

k

m
e
a
n

n=150

1 2 3 4 5 6 7 8

1
.0

5
3
5

1
.0

5
4
5

k

n=200

1 2 3 4 5 6 7 8

0
.9

8
0
0

0
.9

8
1
0

k

n=250

1 2 3 4 5 6 7 8

4
.5

9
4

4
.6

0
0

k

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

n=150

1 2 3 4 5 6 7 8

4
.1

4
4

4
.1

4
7

k

n=200

1 2 3 4 5 6 7 8

4
.2

5
0

4
.2

5
4

k

n=250

Fig 1. Mean and standard deviation of θ̂
(k)
n under Construction I (100 simulated datasets).

needed in practice under Construction II.

5.2. Penalized Estimation in Semiparametric Models

In many semiparametric models, it is also common to perform estimation using penalization which

also yields fully efficient estimates for θ, e.g., [24]. In this case, we will show that the value of k∗

relates to the order of the smoothing parameter λn. A surprising result we find is that k∗ iterations

are also sufficient for recovering the estimation sparsity in high dimensional data, see the partly

linear example below.

In this subsection, we assume that η belongs to the Sobolev class of functions Hk ≡ {η : J2(η) =∫
Z(η

(k)(z))2dz < ∞}, where η(j) is the j-th derivative of η and Z is some compact set on the real

line. The penalized log-likelihood in this context is defined as

log likλn(θ, η) = log likn(θ, η)− nλ2nJ
2(η), (41)

where λn is a smoothing parameter. We assume the following bounds for λn:

λn = oP (n
−1/4) and λ−1

n = OP (n
k/(2k+1)). (42)

In practice, λn can be obtained by cross-validation [37]. Here, Ŝn(θ) becomes the log-profile pe-

nalized likelihood Ŝλn(θ): Ŝλn(θ) = log likλn(θ, η̂λn(θ)), where η̂λn(θ) = arg supη∈Hk
log likλn(θ, η)

for any fixed θ and λn. We define the penalized estimate as θ̂λn . The construction of the k-step

penalized estimate θ̂
(k)
λn

follows from (19) just with the change of Ŝn(·) to Ŝλn(·). For the penalized

estimation, we need to slightly modify Condition G as follows:
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Fig 2. Mean and standard deviation of θ̂
(k)
n under Construction II (100 simulated datasets).

G’. Assume that, for some constant c 6= 0,

1

n
Ŝ
(1)
λn

(θ0)−
c

n

n∑

i=1

ℓ̃0(Xi) = OP (λ
2
n), (43)

sup
θ∈N (θ0)

∣∣∣∣
1

n
Ŝ
(2)
λn

(θ) + cĨ0

∣∣∣∣ = OP (λn ∨ ‖θ − θ0‖), (44)

sup
θ∈N (θ0)

∣∣∣∣
1

n
Ŝ
(3)
λn

(θ)

∣∣∣∣ = OP (1). (45)

It is easy to verify Condition G’ if η̂λn(θ) has an explicit expression and log likλn(θ, η) is smooth

w.r.t. (θ, η), see the Example 4 below. We also want to point out that Condition G’ is relaxable to

a large extent, see Remark 3.

In view of (4) and (6), we can prove Theorem 5 similarly as Theorem 3. Theorem 5 implies that

k∗ depends on the order of the smoothing parameter λn, i.e., the value of g, see (29).

Theorem 5. Suppose Condition G’ holds, the penalized MLE θ̂λn is consistent and Ĩ0 is non-

singular. We have

√
n(θ̂λn − θ0) =

1√
n

n∑

i=1

Ĩ−1
0 ℓ̃0(Xi) +OP (

√
nλ2n). (46)

Define g = max{g′ : λn = OP (n
−g′)}, and thus 1/4 < g ≤ k/(2k + 1) based on Condition (42).

Construct θ̂
(k)
λn

as in (19) with the change of Ŝn(·) to Ŝλn(·). Then all the conclusions for θ̂
(k)
n in

Theorem 3 also hold for θ̂
(k)
λn

.
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Remark 3. We want to mention that the penalized profile log-likelihood may not be differentiable

in some semiparametric models, e.g., the partly linear models under current status data studied in

[9]. In such cases, we can take the discretization approach to construct θ̂
(k)
n as in the profile likelihood

framework, i.e., (16), and obtain similar results as in Theorem 2 by assuming the condition that

‖η̂λn(θ̃n)−η0‖ = OP (‖θ̃n−θ0‖∨λn) for any consistent θ̃n. This requires the use of the higher order

quadratic expansion of the penalized profile likelihood derived in [9].

We next apply Theorem 5 to the following partly linear models under sparse assumption. Inter-

estingly, we discover that one step iteration is sufficient for achieving the semiparametric estimation

efficiency and recovering the estimation sparsity simultaneously.

Example 4. Sparse and Efficient Estimation of Partial Spline Model

In the partial smoothing spline model, we consider Y = W ′θ + η(Z) + ǫ, where η ∈ Hk and

0 ≤ Z ≤ 1. For simplicity, we assume that ǫ
iid∼ N(0, σ2) and is independent of (W,Z). The

normality of ǫ can be relaxed to the sub-exponential tail condition. In this example, we assume

that some components of θ0 are exactly zero which is common for high dimensional data. To

achieve the estimation efficiency and recover the sparsity of θ, Cheng and Zhang (2010) proposed

the following double penalty regularization:

(θ̂λn , η̂λn) = arg min
Θ×Hk





n∑

i=1

(Yi −W ′
iθ − η(Zi))

2 + nλ2nJ
2(η) + nτ2n

d∑

j=1

|θj |
|θ̃j |γ



 , (47)

where γ is a fixed positive constant, θ̃ = (θ̃1, . . . , θ̃d)
′ is the consistent initial estimate and τn is the

smoothing parameter for the purpose of sparsity.

The standard smoothing spline theory suggests that

η̂λn(z; θ) = A(λn)(y −wθ), (48)

where η̂λn(z; θ) = (η̂λn(z1; θ), . . . , η̂λn(zn; θ))
′, y = (y1, . . . , yn)

′ and w = (w′
1, . . . , w

′
n)

′. The expres-

sion of the n× n influence matrix A(λn) can be found in [16]. Therefore, η̂λn(θ) is a natural spline

of order (2k − 1) with knots on zi’s for any fixed θ. Plugging (48) back to (47), we have

Ŝλn(θ) = S̃λn(θ) + nτ2n

d∑

j=1

|θj|
|θ̃j|γ

, (49)

where

S̃λn(θ) = (y −wθ)′[I −A(λn)](y −wθ) (50)

and I is the identity matrix of size n. Note that θ̂λn does not have an explicit expression, and has

to be iteratively computed using software like Quadratic Programming or LARS [14]. Specifically,

based on (19)-(20), we construct θ̂
(1)
λn

as follows:

θ̂
(1)
λn

= θ̂
(0)
λn

+

[
w′(I −A(λn))w

n

]−1
[
w′(I −A(λn))(y −wθ̂

(0)
λn

)

n
− τ2n

2
δn(θ̂

(0)
λn

)

]
,
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where δn(θ) = (sign(θ1)/|θ̃1|γ , . . . , sign(θd)/|θ̃d|γ)′. The partial smoothing spline estimate or the

difference based estimate [38], which are both
√
n consistent, can serve as θ̃ or θ̂

(0)
λn

.

We will show that θ̂
(1)
λn

possesses the same semiparametric oracle property, whose definition is

given below, as θ̂λn . Without loss of generality, we write θ0 = (θ′1, θ
′
2)

′, where θ1 consists of all q

nonzero components and θ2 consists of the rest (d− q) zero elements, and define θ̂λn = (θ̂′λn,1θ̂
′
λn,2

)′

accordingly. We assume that W has zero mean, strictly positive definite covariance matrix Σ and

finite fourth moment. The observations zi’s (real numbers) are sorted and satisfy
∫ zi
0 u(w)dw =

(i/n)z for i = 1, 2, . . . , n, where u(·) is a continuous and strictly positive function. The above

regularity conditions are commonly used in the literature, e.g., [12, 16]. In this example, we say θ̂λn
satisfies the semiparametric oracle property if

O1.
√
n(θ̂λn,1 − θ1)

d−→ N(0, σ2Σ−1
11 ), where Σ11 is the q × q upper-left submatrix of Σ;

O2. θ̂λn,2 = 0 with probability tending to one.

Note that σ2Σ−1
11 in O1 is the semiparametric efficiency bound for θ1 due to the fixed z.

Corollary 1. If nk/(2k+1)λn → λ0 > 0 and nk/(2k+1)τn → τ0 > 0, then θ̂λn is
√
n-consistent

and satisfies the semiparametric oracle property. Given that θ̂
(0)
λn

is
√
n-consistent and γ = 1, then

‖θ̂(1)λn − θ̂λn‖ = OP (n
−1) and θ̂

(1)
λn

also enjoys the semiparametric oracle property.

The above Corollary is a simple but interesting application of Theorem 5. We can definitely

relax its conditions to the general γ and non-
√
n consistent θ̂

(0)
λn

in which we may require more than

one iteration. It is also possible to extend the conclusions of Corollary 1 to the semiparametric

quasi-likelihood framework proposed in [24].

Acknowledgment. The author thanks the Ph.D. student Zhuqing Yu for the simulations.

APPENDIX

The supplementary material contains the proofs of Lemmas A.1 – A.5 and Lemmas 1 – 2.

A.1. Useful Lemmas

The first two Lemmas are used in the proof of Lemma 1. The Lemmas A.3, A.4 and A.5 are used

in the proofs of Theorem 3, Theorem 4 and Corollary 1, respectively.

Lemma A.1. Suppose that Conditions M1-M4 and (12) hold. If θ̃n is nψ-consistent, then we have

ℓ̂n(θ̃n, sn) = Pnℓ̃0 +OP

(
n−ψ ∨ |sn| ∨

gr(n
−ψ ∨ |sn|)
n|sn|

)
, (A.1)

ℓ̂n(θ̂n + Un, sn) = ℓ̂n(θ̂n, sn)− Ĩ0Un +OP

(
gr(|sn| ∨ ‖Un‖) ∨ n1/2−2r

n|sn|

)
, (A.2)

În(θ̃n, tn) = Ĩ0 +OP

(
gr(‖θ̃n − θ̂n‖ ∨ |tn|) ∨ ntn‖θ̃n − θ̂n‖ ∨ n1/2−2r

nt2n

)
, (A.3)
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where gr(t) = nt3 ∨ n1−2rt and Un = oP (1).

Lemma A.2. Suppose that Conditions M1-M4 and (12) hold. If

În(θ̂
(k−1)
n , tn)− Ĩ0 = OP (r

(k−1)
n ), (A.4)

then we have ‖θ̂(k)n − θ̂n‖ =

OP

(
|sn| ∨ ‖θ̂(k−1)

n − θ̂n‖r(k−1)
n ∨ gr(|sn| ∨ ‖θ̂(k−1)

n − θ̂n‖) ∨ n1/2−2r

n|sn|

)
(A.5)

for k = 1, 2, . . ..

Lemma A.3. Suppose that Condition G holds. If θ̃n is a nψ-consistent estimator for 0 < ψ ≤ 1/2,

then we have

n−1[Ŝ(1)
n (θ̃n)− Ŝ(1)

n (θ0)] = −Ĩ0(θ̃n − θ0) +OP ((n
−g ∨ ‖θ̃n − θ0‖)‖θ̃n − θ0‖), (A.6)

n−1[Ŝ(1)
n (θ̃n + Un)− Ŝ(1)

n (θ̃n)] = −Ĩ0Un +OP ((n
−g ∨ ‖θ̃n − θ0‖)‖Un‖), (A.7)

where Un is a statistic of the order OP (n
−s) for some s ≥ ψ.

Lemma A.4. Suppose Conditions K1-K2 & C1-C2 hold. Then we have

1√
n

n∑

i=1

(
∂

∂θ
|θ=θ0Aθ,η∗(θ)

)
[η̂0 − η∗0](Xi) = OP (n

−δ), (A.8)

1√
n

n∑

i=1

Aθ0,η0 [η̂
(1)
0 − η

(1)
∗0 ](Xi) = OP (n

−δ), (A.9)

1√
n
ṙn(θ0) = OP (n

1/2−2g), (A.10)

where rn(θ) ≡ Ŝn(θ)− Sn(θ)−
∑n

i=1Aθ,η∗(θ)[η̂(θ)− η∗(θ)].

Lemma A.5. Let η0(z) = (η0(z1), . . . , η0(zn))
′ and ǫ = (ǫ1, . . . , ǫn)

′. If λn → 0, then we have

w′A(λn)ǫ = OP (λ
−1/(2k)
n ), (A.11)

w′[I −A(λn)]η0(z) = OP (n
1/2λn), (A.12)

w′(I −A(λn))w/n = Σ+OP (n
−1/2 ∨ n−1λ−1/k

n ). (A.13)

A.2. Proof of Theorem 1

Define Nn = {θ : ‖θ − θ0‖ ≤ Mn−ψ} and N c
n as its complement for any 0 < M < ∞. Note that

Dn ∩ Nn 6= ∅ for large enough M and Dn ∩ N c
n 6= ∅ for large enough n. We first consider (10). For
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sufficiently large M and any C1 > 0, we have

P
(
θDn ∈ N c

n

)
= P

(
θDn ∈ N c

n and θiD ∈ Nn for some i
)

≤ P

(
max

Dn∩Nn

Ŝn(θ) ≤ max
Dn∩N c

n

Ŝn(θ)

)

≤ P

(
max

Dn∩Nn

Ŝn(θ) < Ŝn(θ0)− C1n
1−2ψ

)

+P

({
max

Dn∩Nn

Ŝn(θ) ≤ max
Dn∩N c

n

Ŝn(θ)

}
∩
{

max
Dn∩Nn

Ŝn(θ) ≥ Ŝn(θ0)− C1n
1−2ψ

})

≤ P

(
max

Dn∩Nn

n−1/2(Ŝn(θ)− Ŝn(θ0)) < −C1n
1/2−2ψ ∩ {θon is consistent}

)

+P

(
max
N c

n

n−1/2(Ŝn(θ)− Ŝn(θ0)) ≥ −C1n
1/2−2ψ

)

+P (θon is inconsistent)

≤ I + II + III,

where θon = argmaxDn∩Nn Ŝn(θ).

The definition of Nn implies III → 0 for any M as n → ∞. We next analyze the term I as

follows. In view of (9) and the definition of Nn, we have that

I = P

(√
n(θon − θ0)

′
Pnℓ̃0 −

√
n

2
(θon − θ0)

′Ĩ0(θ
o
n − θ0) + n−1/2∆n(θ

o
n) < −C1n

1/2−2ψ

)

≤ P
(
‖√nPnℓ̃0‖‖θon − θ0‖+ (δmax

√
n/2)‖θon − θ0‖2 + ‖n−1/2∆n(θ

o
n)‖ > C1n

1/2−2ψ
)

≤ P

(
‖√nPnℓ̃0‖ >

C1 − δmaxM
2/2

M
n1/2−ψ + oP (n

1/2−ψ)

)

≤ Ī ,

where δmax is the largest eigenvalue of Ĩ0, and the second inequality follows from the definitions of

Nn and ∆n, and the range that 2v > 1/2 ≥ ψ > 0. Denote θ∗n = argmaxN c
n
Ŝn(θ). We will show

II → 0 by first decomposing it as II1 + II2, where

II1 = P
(
n−1/2(Ŝn(θ

∗
n)− Ŝn(θ0)) ≥ −C1n

1/2−2ψ ∩ {θ∗n is consistent}
)
,

II2 = P
(
(Ŝn(θ

∗
n)− Ŝn(θ0)) ≥ −C1n

1−2ψ ∩ {θ∗n is inconsistent}
)
.

Note that we can write n−1/2∆n(θ
∗
n) as

√
n‖θ∗n− θ0‖2ǫ1n+

√
n‖θ∗n− θ0‖ǫ2n, where ǫ1n = oP (1) and
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ǫ2n = oP (n
−1/2), in the event that {θ∗n is consistent}. Thus, according to (9), we can write II1 as

P

(
(θ∗n − θ0)

′√nPnℓ̃0 +
√
n‖θ∗n − θ0‖ǫ2n ≥

√
n

2
(θ∗n − θ0)

′Ĩ0(θ
∗
n − θ0)−

√
n‖θ∗n − θ0‖2ǫ1n −C1n

1/2−2ψ

)

≤ P

(
‖θ∗n − θ0‖

[
‖√nPnℓ̃0‖+

√
nǫ2n

]
≥

√
n

2
‖θ∗n − θ0‖2δmin −

√
n‖θ∗n − θ0‖2ǫ1n − C1n

1/2−2ψ

)

≤ P

([
‖√nPnℓ̃0‖+

√
nǫ2n

]
≥ √

n‖θ∗n − θ0‖(δmin/2− ǫ1n)−
C1n

1/2−ψ

K

)

≤ P

([
‖√nPnℓ̃0‖+

√
nǫ2n

]
≥ δminK

2/2 −C1

K
n1/2−ψ + oP (n

1/2−ψ)

)

≤ ĪI1,

where δmin > 0 is the smalest eigenvalue of Ĩ0. All the above inequalities follow from the fact that

‖θ∗n − θ0‖ ≥ Kn−ψ for some K > M and ǫ1n = oP (1). The term II2 is shown to converge to

zero by the following contradiction arguments. By assuming that the event {(Ŝn(θDn ) − Ŝn(θ0)) ≥
−C1n

1−2ψ} holds, we have |Ŝn(θDn ) − Ŝn(θ̂n)| = Ŝn(θ̂n) − Ŝn(θ
D
n ) ≤ Ŝn(θ̂n) − Ŝn(θ0) + C1n

1−2ψ.

Note that (9) and the consistency of θ̂n imply Ŝn(θ0) − Ŝn(θ̂n) = oP (n). Then, we can show that

|Ŝn(θDn )−Ŝn(θ̂n)|/n = oP (1) which implies that θDn is consistent by (8). This implication contradicts

with another event in II2, i.e., {θDn is inconsistent}. Therefore we can claim that II2 → 0.

In view of the above discussions, it remains to show that Ī and ĪI1 converge to zero. Note that

‖√nPnℓ̃0‖ in Ī is OP (1), and so is (‖√nPnℓ̃0‖+
√
nǫ2n) in ĪI1. Therefore, by choosing sufficiently

large C1 and K > M , meanwhile keeping the inequality δmaxM
2 < 2C1 < δminK

2 valid, we

show that Ī and ĪI1 can be arbitrarily close to zero. For example, we can take K = M + B and

C1 = (δmaxM
2 + δmin(M + B)2)/4 for some fixed B > 0 and sufficiently large M . This completes

the proof of (10).

Our proof of (11) is similar as that of (10). Denote θiS as an element in Sn. Similarly, we have

P (θSn ∈ N c
n) ≤ E

{
P
(
θSn ∈ N c

n and θiS ∈ Nn for some i|Sn
)}

+ E {P (θiS ∈ N c
n for all i|Sn)}

≤ P

(
max
Sn∩Nn

Ŝn(θ) ≤ max
Sn∩N c

n

Ŝn(θ)

)
+ P (θiS ∈ N c

n for all i)

≤ P

(
max
Sn∩Nn

n−1/2(Ŝn(θ)− Ŝn(θ0)) < −C2n
1/2−2ψ

)
+ P (θiS ∈ N c

n for all i)

+P

(
max
Sn∩N c

n

n−1/2(Ŝn(θ)− Ŝn(θ0)) ≥ −C2n
1/2−2ψ

)

≤ P

(
max
Sn∩Nn

n−1/2(Ŝn(θ)− Ŝn(θ0)) < −C2n
1/2−2ψ ∩ {θ†n is consistent}

)

+P

(
max
N c

n

n−1/2(Ŝn(θ)− Ŝn(θ0)) ≥ −C2n
1/2−2ψ

)

+P (θ†n is inconsistent) + P (θiS ∈ N c
n for all i)

≤ I ′ + II ′ + III ′ + IV ′,
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where C2 is an arbitrary positive constant and θ†n = argmaxSn∩Nn Ŝn(θ).

We first consider the terms III ′ & IV ′. Since θ†n ∈ Nn, we have III ′ → 0 for any M as n→ ∞.

The term IV ′ is computed as

(
1− P (θ̄ ∈ Nn)

)card(Sn) . (A.14)

Since the density of θ̄ is assumed to be bounded away from zero around θ0 and card(Sn) ≥ C̃nψ,

(A.14) is bounded above by

(
1− ρn−ψM

)card(Sn) ≤
(
1− ρMC̃/card(Sn)

)card(Sn) −→ exp(−ρMC̃), (A.15)

for some ρ > 0.

We next consider I ′. According to (9), we can show

n−1/2(Ŝn(θ
†
n)− Ŝn(θ0))

≥ max
Sn∩Nn

{
−
√
n

2
(θ − θ0)

′Ĩ0(θ − θ0)

}
− max

Sn∩Nn

{−√
n(θ − θ0)

′
Pnℓ̃0 −∆n(θ)/

√
n}

≥ − min
Sn∩Nn

{√
n

2
(θ − θ0)

′Ĩ0(θ − θ0)

}
− max

Sn∩Nn

{−√
n(θ − θ0)

′
Pnℓ̃0 −∆n(θ)/

√
n}.

Therefore, we can bound I ′ by I ′1 + I ′2, where

I ′1 = P

(
max
Sn∩Nn

{−√
n(θ − θ0)

′
Pnℓ̃0 − n−1/2∆n(θ)} > (C2/2)n

1/2−2ψ

)
,

I ′2 = P

(
min

Sn∩Nn

{√n(θ − θ0)
′Ĩ0(θ − θ0)} > C2n

1/2−2ψ

)
.

Given sufficiently large C2/M , I ′1 can be arbitrarily close to zero since

I ′1 ≤ P

(
‖√nPnℓ̃0‖ >

C2

2M
n1/2−ψ +OP (n

1/2−2ψ ∨ n1/2−2v)

)

≤ P

(
‖√nPnℓ̃0‖ >

C2

2M
n1/2−ψ + oP (n

1/2−ψ)

)
, (A.16)

where the last inequality follows from the assumption that 2v > 1/2 ≥ ψ. Since minN c
n
{√n(θ −

θ0)
′Ĩ0(θ − θ0)} > C2n

1/2−2ψ by choosing δminM
2 > C2, I

′
2 is bounded above by

P

(
min
Sn

{√n(θ − θ0)
′Ĩ0(θ − θ0)} > C2n

1/2−2ψ

)

≤
[
P (

√
n(θ̄ − θ0)

′Ĩ0(θ̄ − θ0) > C2n
1/2−2ψ)

]card(Sn)

≤
[
1− P (‖θ̄ − θ0‖ ≤ (C2/δmax)

1/2n−ψ)
]card(Sn)

≤
[
1− P

(
‖θ̄ − θ0‖ ≤ (C2/δmax)

1/2C̃/card(Sn)
)]card(Sn)

≤ (1− ρC̃(C2/δmax)
1/2/card(Sn))card(Sn) −→ exp(−ρC̃

√
C2/δmax) (A.17)
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for some ρ > 0. In the above, the third and fourth inequality follows from the assumptions that

card(Sn) ≥ C̃nψ and the density for θ̄ is bounded away from zero around θ0, respectively. By

assuming that 2C2 < K2δmin for some K > M , we can prove that II ′ → 0 in the same manner as

we show II → 0.

Let L = min{K2/2,M2}. In view of (A.15), (A.16), (A.17) and the above discussions on II ′, by

choosing sufficiently large C2, K > M and C2/M , meanwhile keeping the inequality C2 < Lδmin

valid, we can make P (θSn ∈ N c
n) arbitrarily small. For example, we can take C2 = M3/2δmin and

K =M +B, for some fixed B > 0 and sufficiently large M . This completes the whole proof. ✷

A.3. Proof of Theorem 2

According to the proof in Lemma 1, we also need to consider the stochastic order of ‖θ̂(k)n − θ̂n‖
in terms of three stages: (i) rk−1 < r; (ii) r ≤ rk−1 < 1/2; (iii) rk−1 ≥ 1/2. In stage (i), we

have ‖θ̂(k)n − θ̂n‖ = OP (‖θ̂(k−1)
n − θ̂n‖3/2) = OP (n

−S1(ψ,k)) if k ≤ K1(ψ, r). In stage (ii), we have

‖θ̂(k)n − θ̂n‖ = OP (‖θ̂(k−1)
n − θ̂n‖1/2n−r), which implies that ‖θ̂(k)n − θ̂n‖ = OP (n

−S2(ψ,r,k)) if r ≤
ψ < 1/2. It is easy to show that S2(ψ, r, k) ≥ 1/2 if k ≥ K2(ψ, r, 1/2). In the last stage (iii), we

obtain the the smallest order of ‖θ̂(k)n − θ̂n‖, i.e., OP (n−r−1/4). Combining the above analysis of

(i)-(iii), we can conclude that the stochastic order of ‖θ̂(k)n − θ̂n‖ is continuously improving till the

optimal bound OP (n
−r−1/4) and can be expressed as OP (n

−S(ψ,r,k)). (18) also follows from the

above analysis. ✷

A.4. Proof of Theorem 3

We first show (27) by applying Lemma A.3. In (A.6), we replace θ̃n by θ̂n. Since θ̂n is assumed to

be consistent and θ0 is an interior point of Θ, we have Ŝ
(1)
n (θ̂n) = 0. By (4) and (22), we have

√
n(θ̂n − θ0) =

√
nĨ−1

0 Pnℓ̃0 +OP (n
1/2−2g ∨ n1/2‖θ̂n − θ0‖2) (A.18)

given that θ̂n is consistent and Ĩ0 is nonsingular. Considering the range of g, i.e., 1/4 < g ≤ 1/2,

we can show θ̂n is actually
√
n-consistent, and thus simplify (A.18) to (27).

We next show (28). By (19), we can write
√
nÎn(θ̂

(0)
n )(θ̂

(1)
n − θ̂n) as

√
nÎn(θ̂

(0)
n )(θ̂(0)n − θ̂n) + n1/2(ℓ̂n(θ̂

(0)
n )− ℓ̂n(θ̂n))

=
√
nÎn(θ̂

(0)
n )(θ̂(0)n − θ̂n) + n−1/2Ŝ(2)

n (θ̂(0)n )(θ̂(0)n − θ̂n) +OP (
√
n‖θ̂n − θ̂(0)n ‖2)

= OP (
√
n‖θ̂n − θ̂(0)n ‖2)

under Condition G. Further, by (23) and (24), we have the invertibility of În(θ̂
(0)
n ) based on that

of Ĩ0. This implies θ̂
(1)
n − θ̂n = OP (‖θ̂(0)n − θ̂n‖2). By the induction principal, we can thus show

θ̂(k)n − θ̂n = OP (‖θ̂(k−1)
n − θ̂n‖2) for any k ≥ 1. (A.19)
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(28) follows from (A.19) trivially.

To show (29), we first prove ‖θ̂(k)n − θ̂n‖ =

OP

(
n1/2−g‖θ̂(k−1)

n − θ̂n‖2 ∨ n−g‖θ̂(k−1)
n − θ̂n‖

)
. (A.20)

By replacing θ̃n and Un with θ̂n and (θ̂
(k−1)
n −θ̂n) in (A.7), respectively, we establish that n−1/2[Ŝ

(1)
n (θ̂

(k−1)
n )−

Ŝ
(1)
n (θ̂n)] =

−√
nĨ0(θ̂

(k−1)
n − θ̂n) +OP (n

1/2−g‖θ̂(k−1)
n − θ̂n‖). (A.21)

Similarly, by setting θ̃n as θ̂n, and then setting Un as (θ̂
(k−1)
n − θ̂n + n−1/2t1vj) and (θ̂

(k−1)
n − θ̂n +

n−1/2t2vj) in (A.7), respectively, we have that

[În(θ̂
(k−1)
n )]ij = [Ĩ0]ij +OP (n

1/2−g‖θ̂(k−1)
n − θ̂n‖ ∨ n−g) (A.22)

when Î
(k−1)
n is defined in (21). Following similar logic in analyzing (A.19), we can obtain (A.20)

by considering (A.21)-(A.22). Next we will show that (A.20) implies (29) by the following analysis.

Based on (A.20) we have

‖θ̂(k)n − θ̂n‖ =




OP (n

−g‖θ̂(k−1)
n − θ̂n‖) if ‖θ̂(k−1)

n − θ̂n‖ = OP (n
−1/2),

OP (n
1/2−g‖θ̂(k−1)

n − θ̂n‖2) if ‖θ̂(k−1)
n − θ̂n‖−1 = OP (n

1/2).
(A.23)

It is easy to show that ‖θ̂(L1(ψ,g))
n − θ̂n‖ = OP (n

−1/2) and ‖θ̂(L1(ψ,g)−1)
n − θ̂n‖−1 = OP (n

1/2). In

other words, if k ≤ L1(ψ, g), then we have the relation that ‖θ̂(k)n − θ̂n‖ = OP (n
1/2−g‖θ̂(k−1)

n − θ̂n‖2)
based on (A.23). This implies the form of R1(ψ, g, k) in (26). Note that R1(ψ, g, k) is an increasing

function of k under the condition that ψ + g > 1/2. After L1(ψ, g) iterations, we have

‖θ̂(L1(ψ,g))
n − θ̂n‖ = OP (n

−R1(ψ,g,L1(ψ,g))) = OP (n
−1/2). (A.24)

Thus, we have the relation that ‖θ̂(k)n − θ̂n‖ = OP (n
−g‖θ̂(k−1)

n − θ̂n‖) for k ≥ (L1(ψ, g)+1) based on

(A.23). Combining this relation with (A.24), we can show the form of R2(ψ, g, k) when k > L1(ψ, g).

Since R(ψ, g, k) is an increasing function of k given that 1/2− g < ψ ≤ 1/2, the stochastic order of

‖θ̂(k)n − θ̂n‖ is continuously decreasing as k → ∞. The calculation of k∗ also follows from the above

analysis. ✷

A.5. Proof of Theorem 4

We first consider (22) by rewriting its LHS as

1

n

∂

∂θ
|θ=θ0

[
n∑

i=1

Aθ,η∗(θ)[η̂(θ)− η∗(θ)](Xi) + rn(θ)

]
,
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where rn(θ) is defined in Lemma A.4. Therefore, we have

n−1[Ŝ(1)
n (θ0)− S(1)

n (θ0)] =
1

n

n∑

i=1

(
∂

∂θ
|θ=θ0Aθ,η∗(θ)

)
(η̂0 − η∗0) +

1

n

n∑

i=1

Aθ0,η0(η̂
(1)
0 − η

(1)
∗0 ) +

1

n
ṙn(θ0)

= OP (n
−2g)

by Lemma A.4 and the condition that δ ≥ (2g − 1/2). As discussed previously, we will show (23)

together with (25). By Taylor expansion, we have

Ŝn(θ)− Sn(θ) =

n∑

i=1

∫ 1

0

∂ log lik(Xi; θ, ηt(Zi; θ)x)

∂λ
dt[η̂(Zi; θ)− η∗(Zi; θ)]

≡
n∑

i=1

Rθ(Xi)[η̂(Zi; θ);−η∗(Zi; θ)],

where ηt(θ) = η∗(θ) + t(η̂(θ)− η∗(θ)). Hence, to prove (23) and (25), it suffices to show that

sup
θ∈N (θ0)

sup
z∈Z

∣∣∣∣∣n
−1

n∑

i=1

∂j

∂θj
Rθ(Xi)

∣∣∣∣∣ = OP (1) for j = 0, 1, 2, 3 (A.25)

in view of (34) and (35). Considering the smoothness Condition K2, we can prove (A.25) using the

same approach as in the proof of (S.4) in the supplementary materials.

In the end, it remains to show that the class of functions {(∂3/∂θ3) log lik(x; θ, η∗(θ)) : θ ∈ N (θ0)}
is P-Glivenko-Cantelli and that

sup
θ∈N (θ0)

E
∣∣(∂3/∂θ3) log lik(X; θ, η∗(θ))

∣∣ <∞. (A.26)

Let ℓ(3)(θ, η(θ)) = (∂3/∂θ3) log lik(x; θ, η∗(θ)). For any θ1, θ2 ∈ N (θ0), we have

|ℓ(3)(θ1, η∗(θ1))− ℓ(3)(θ2, η∗(θ2))|

≤ sup
θ,λ

∣∣∣∣∣
∂ℓ(3)

∂θ
(θ, λ)

∣∣∣∣∣ ‖θ1 − θ2‖+ sup
θ,λ

∣∣∣∣∣
∂ℓ(3)

∂λ
(θ, λ)

∣∣∣∣∣ ‖η∗(θ1)− η∗(θ2)‖∞

≤ sup
θ,λ

∣∣∣∣∣
∂ℓ(3)

∂θ
(θ, λ)

∣∣∣∣∣ ‖θ1 − θ2‖+ sup
θ,λ

∣∣∣∣∣
∂ℓ(3)

∂λ
(θ, λ)

∣∣∣∣∣ sup
θ∈N (θ0)

‖η(1)∗ (θ)‖∞ × ‖θ1 − θ2‖

≤ A‖θ1 − θ2‖.

By Condition K2 and supθ∈N (θ0) ‖η
(1)
∗ (θ)‖∞ < ∞ in Condition C1, we know that EA2 < ∞.

Thus, by the P-G-C preservation Theorem 9.23 of [21] and compactness of N (θ0), we know that

{(∂3/∂θ3) log lik(x; θ, η∗(θ)) : θ ∈ N (θ0)} is P-Glivenko-Cantelli. The last condition (A.26) follows

from the Conditions K2 and C1 by some algebra. ✷
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A.6. Proof of Corollary 1

For the
√
n consistency of θ̂λn , it suffices to show that, for any given ǫ > 0, there exists a large

constant M such that

P

{
inf

‖s‖=M
∆n(s) > 0

}
≥ 1− ǫ, (A.27)

where ∆n(s) ≡ [Ŝλn(θ0 + n−1/2s)− Ŝλn(θ0)]. According to (49), we have

∆n(s) ≥ S̃λn(θ0 + n−1/2s)− S̃λn(θ0) + nτ2n

q∑

j=1

|θ0j + n−1/2sj| − |θ0j |
|θ̃j |

,

where sj is the j-th element of s. The Taylor expansion further gives

∆n(s) ≥ n−1/2s′S̃
(1)
λn

(θ0) +
1

2
s′[S̃

(2)
λn

(θ0)/n]s+ nτ2n

q∑

j=1

|θ0j + n−1/2sj| − |θ0j |
|θ̃j |

, (A.28)

where S̃
(j)
λn

(θ0) represents the j-th derivative of S̃λn(θ) at θ0. Based on (50), we have

S̃
(1)
λn

(θ0) = −2w′[I −A(λn)](y −wθ0), (A.29)

S̃
(2)
λn

(θ0) = 2w′[I −A(λn)]w. (A.30)

Lemma A.5 implies that

S̃
(1)
λn

(θ0) = OP (n
1/2), (A.31)

S̃
(2)
λn

(θ0) = OP (n) (A.32)

since λn is required to converge to zero. Hence, we know the first two terms in the right hand side

of (A.28) have the same order, i.e. OP (1). And the second term, which converges to some positive

constant, dominates the first one by choosing sufficiently large M . The third term is bounded

by n1/2τ2nM0 for some positive constant M0 since β̃j is the consistent estimate for the nonzero

coefficient. Considering that
√
nτ2n → 0, we have shown the

√
n-consistency of θ̂λn .

To complete the proof of other parts, we first need to show

‖θ̂(1)λn − θ̂λn‖ = OP (n
−1) (A.33)

based on Theorem 5. And then we will verify Condition G’ for the case c = −2. It is easy to show

that Pnℓ̃0 = w′ǫ/n and Ĩ0 = Σ in this example. To verify (43), we have

1

n
Ŝ
(1)
λn

(θ0) + 2Pnℓ̃0 = − 2

n
w′(I −A(λn))η0(z) +

2

n
w′A(λn)ǫ+ τ2nδn(θ0)

= OP (n
−1/2λn ∨ n−1λ−1/(2k)

n ∨ τ2n),
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where the second equality follows from Lemma A.5 and the fact that δn(θ0) = OP (1). Considering

the conditions on τn and λn, we have proved (43). (44) follows from (A.30) and (A.13), and (45)

trivially holds. Having shown the consistency of θ̂λn and verified G’, we are able to show (A.33).

For any sequence of estimate θn, the below arguments show that θn = 0 with probability tending

to one if it is
√
n-consistent. For any

√
n-consistent estimator, it suffices to show that

Ŝλn(θ̄1, 0) = min
‖θ̄2‖≤Cn−1/2

Ŝλn(θ̄1, θ̄2) (A.34)

for any θ̄1 satisfying ‖θ̄1 − θ1‖ = OP (n
−1/2) with probability approaching to 1. In order to show

(A.34), we need to show that ∂Ŝλn(θ)/∂θj < 0 for θj ∈ (−Cn−1/2, 0) and ∂Ŝλn(θ)/∂θj > 0 for

θj ∈ (0, Cn−1/2) holds when j = q + 1, . . . , d with probability tending to 1. By two term Taylor

expansion of S̃λn(θ) at θ0, ∂Ŝλn(θ)/∂θj can be expressed in the following form:

∂Ŝλn(θ)

∂θj
=
∂S̃λn(θ0)

∂θj
+

d∑

k=1

∂2S̃λn(θ0)

∂θj∂θk
(θk − θ0k) + nτ2n

1× sign(θj)

|θ̃j|
,

for j = q + 1, . . . , d. Note that ‖θ̄ − θ0‖ = OP (n
−1/2) by the above construction. Hence, we have

∂Ŝλn(θ)

∂θj
= OP (n

1/2) + sign(θj)
nτ2n

|θ̃j |

by (A.31) and (A.32). We assume that nk/(2k+1)τn → τ0 > 0 which implies that
√
nτ2n/|θ̃j | → ∞

for
√
n consistent θ̃j and j = q + 1, . . . , d. Thus, we show that the sign of θj determines that of

∂Ŝλn(θ)/∂θj . The above arguments apply to θ̂λn,2 and θ̂
(1)
λn,2

since both of them are proven to be√
n consistent in view of the previous discussions, i.e., (A.33).

Now it remains to show the semiparametric efficiency of θ̂λn,1, which immediately implies that

of θ̂
(1)
λn,1

based on (A.33). Since we have shown θ̂λn,2 = 0, we can establish that

∂Ŝλn(θ)

∂θj
|
θ=(θ̂λn,1,0)

= 0 for any j = 1, . . . , q (A.35)

with probability tending to one. Let w1 denote the first q columns of w. Applying Taylor expansion

to (A.35) around θ0, we obtain

√
n(θ̂λn,1 − θ1) =

√
n

{
1

n
w′

1[I −A(λn)]w1

}−1 1

n
w′

1[I −A(λn)](η0(z) + ǫ) +OP (
√
nτ2n)

=
{
Σ11 +OP (n

−1/2 ∨ n−1λ−1/k
n )

}−1 1√
n
w′

1ǫ+OP (
√
nτ2n ∨ n−1/2λ−1/(2k)

n ∨ λn)

=
1√
n
Σ−1
11

n∑

i=1

W1iǫi +OP (
√
nλ2n ∨

√
nτ2n)

based on (A.29) & (A.30). This completes the whole proof. ✷
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Supplementary Materials

In this supplementary note, we provide the complete proofs of Lemmas A.1 – A.5 and Lemmas

1 & 2.

S.1. Proof of Lemma A.1

Under the assumptions M1-M4 and (12), Cheng and Kosorok (2008b) proved the following asymp-

totic expansion of log pln(θ̄n), where θ̄n is consistent,

log pln(θ̄n) = log pln(θ0) + (θ̄n − θ0)′
n∑

i=1

ℓ̃0(Xi)−
n

2
(θ̄n − θ0)′Ĩ0(θ̄n − θ0)

+OP

(
gr(‖θ̄n − θ0‖)

)
, (S.1)

log pln(θ̄n) = log pln(θ̂n)−
1

2
n(θ̄n − θ̂n)′Ĩ0(θ̄n − θ̂n) +OP

(
gr(‖θ̄n − θ̂n‖) ∨ n1/2−2r

)
. (S.2)

We first prove (A.2). (S.2) implies that

log pln(θ̂n + Vn + snvi) = log pln(θ̂n)−
n

2
(Vn + snvi)

′Ĩ0(Vn + snvi)

+OP (gr(|sn| ∨ ‖Vn‖) ∨ n1/2−2r),
log pln(θ̂n + Vn) = log pln(θ̂n)−

n

2
V ′nĨ0Vn +OP (gr(‖Vn‖) ∨ n1/2−2r),

for any random vector Vn = oP (1) and sn
P→ 0. Combining the above two expansions and (14), we

have

[ℓ̂n(θ̂n + Vn, sn)]i = −
sn
2
v′iĨ0vi − v′iĨ0Vn +OP

(
gr(|sn| ∨ ‖Vn‖) ∨ n1/2−2r

n|sn|

)
.

By taking Vn = 0 and Un, respectively, in the above equation, we have proved (A.2). Following

similar analysis in the above, (14) & (S.1) yield (A.1), and (15) & (S.2) yield (A.3). This completes

the whole proof. ✷

S.2. Proof of Lemma A.2

Based on (16), we have

În(θ̂
(k−1)
n , tn)

√
n(θ̂(k)n − θ̂n) =

[√
nÎn(θ̂

(k−1)
n , tn)(θ̂

(k−1)
n − θ̂n)

]
+
√
nℓ̂n(θ̂n, sn)

+
[√

n(ℓ̂n(θ̂
(k−1)
n , sn)− ℓ̂n(θ̂n, sn))

]
. (S.3)

The second term in (S.3) equals to

OP

(
√
n|sn| ∨

gr(|sn|) ∨ n1/2−2r√
n|sn|

)
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according to (14) and (S.2). The third term in (S.3) can be written as

−
√
nĨ0(θ̂

(k−1)
n − θ̂n) +OP

(
gr(|sn| ∨ ‖θ̂(k−1)n − θ̂n‖) ∨ n1/2−2r√

n|sn|

)
.

for k = 1, 2, . . . by replacing Un with (θ̂
(k−1)
n − θ̂n) in (A.2). Combining the above analysis, the

assumption (A.4) and nonsingularity of Ĩ0, we complete the proof of (A.5).

S.3. Proof of Lemma A.3

We first consider (A.6). Using a Taylor’s expansion, we have

1

n
Ŝ(1)
n (θ̃n) =

1

n
Ŝ(1)
n (θ0) +

1

n
Ŝ(2)
n (θ0)(θ̃n − θ0) +

1

2
(θ̃n − θ0)⊗

Ŝ
(3)
n (θ∗1)

n
⊗ (θ̃n − θ0)

=
1

n
Ŝ(1)
n (θ0) +A+B,

where θ∗1 lies between θ̃n and θ0. In view of (6) and (23), we have A = −Ĩ0(θ̃n− θ0)+OP (n
−g‖θ̃n−

θ0‖). Condition (24) implies that B = OP (‖θ̃n − θ0‖2). This completes the proof of (A.6). We next

consider (A.7). Similarly, we have

[Ŝ(1)
n (θ̃n + Un)− Ŝ(1)

n (θ̃n)]/n =
1

n
Ŝ(2)
n (θ̃n)Un +OP (‖Un‖2)

=
1

n
S(2)
n (θ̃n)Un +OP (n

−g‖Un‖ ∨ ‖Un‖2),

=
1

n
S(2)
n (θ0)Un +OP (‖θ̃n − θ0‖‖Un‖ ∨ n−g‖Un‖ ∨ ‖Un‖2),

= −Ĩ0Un +OP (n
−1/2‖Un‖ ∨ ‖θ̃n − θ0‖‖Un‖ ∨ n−g‖Un‖ ∨ ‖Un‖2),

where the second equation follows from (23), the third equality follows from (24) and the last

equation follows from CLT and (6). Considering that 1/4 < g ≤ 1/2 and s ≥ ψ, we have proved

(A.7).

S.4. Proof of Lemma A.4

The proof of Lemma 2 in [32] directly implies (A.8) and (A.9). As for (A.10), by Taylor expansion,

we first rewrite

rn(θ) =
1

2

n∑

i=1

∫ 1

0

∂2 log lik(Xi; θ, ηt(Zi; θ))

∂λ2
dt{η̂(Zi; θ)− η∗(Zi; θ)}2

≡ 1

2

n∑

i=1

Qθ(Xi){η̂(Zi; θ)− η∗(Zi; θ)}2,
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where ηt(Zi; θ) = η∗(Zi; θ) + t(η̂(Zxi; θ)− η∗(Zi; θ)). To prove (A.10), it suffices to show that

sup
z∈Z

∣∣∣∣∣
1

n

n∑

i=1

∂j

∂θj
|θ=θ0Qθ(Xi)

∣∣∣∣∣ = OP (1) for j = 0, 1 (S.4)

in view of (34). For j = 0, we have

|Qθ0(x)| ≤ sup
λ∈H

∣∣∣∣
∂2 log lik(x; θ0, λ)

∂λ2

∣∣∣∣ = OP (1) for all z ∈ Z

based on the smoothness Condition K2. The case j = 1 can be established similarly.

S.5. Proof of Lemma A.5

We first state the Lemmas 4.1 and 4.3 in [12]:

n−1
n∑

l=1

[(I −A(λn))η0(z)]2l ≤ λ2nJ
2(η0), (S.5)

tr(A(λn)) = O(λ−1/kn ), (S.6)

tr(A2(λn)) = O(λ−1/kn ). (S.7)

Since V ar[(w′A(λn)ǫ)i] = σ2Σiitr(A
2(λn)), we can show that [w′A(λn)ǫ]i = OP (λ

−1/2k
n ) based on

(S.7), thus proved (A.11). We next consider (A.12) by establishing that V ar[w′{I−A(λn)}η0(z)]i =
Σiiη

′
0(z)[I −A(λn)]2η0(z). Then, we can prove (A.12) by (S.5). As for (A.13), we first write (A.13)

as the sum of

Σ + (w′w/n −Σ)−w
′A(λn)w/n,

where the second term is OP (n
−1/2) based on the central limit theorem. For the last term, we have

E{[w′A(λn)w]ij}2 =

(Σij)
2(tr(A(λn)))

2 + (ΣiiΣjj + (Σij)
2)tr(A2(λn))

+(E(X1iX1j)
2 − 2(Σij)

2 − ΣiiΣjj)
∑

r

A2
rr(λn)

for i 6= j. When i = j, we have E|(w′A(λn)w)ii| = Σiitr(A(λn)). By considering (S.6)-(S.7), we

have proved (A.13).
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S.6. Proof of Lemma 1

By (A.3) in Lemma A.1 and (A.5) in Lemma A.2, we obtain that (θ̂
(k)
n − θ̂n)

= OP



gr

(
|t(k−1)n | ∨ ‖θ̂(k−1)n − θ̂n‖

)
∨ nt(k−1)n ‖θ̂(k−1)n − θ̂n‖ ∨ n1/2−2r

n{t(k−1)n }2
×

‖θ̂(k−1)n − θ̂n‖ ∨|s(k−1)n | ∨
gr

(
|s(k−1)n | ∨ ‖θ̂(k−1)n − θ̂n‖

)
∨ n1/2−2r

n|s(k−1)n |




= OP

((
|t(k−1)n | ∨ n

−2r ∨ n−rk−1

|t(k−1)n |
∨ n

−3rk−1 ∨ n−2r−rk−1 ∨ n−1/2−2r

{t(k−1)n }2

)

×n−rk−1 ∨ n
−3rk−1 ∨ n−2r−rk−1 ∨ n−1/2−2r

|s(k−1)n |
∨ |s(k−1)n | ∨ n−2r

)

= OP

(
fk−1(|t(k−1)n |) ∨ hk−1(|s(k−1)n |) ∨ n−2r

)
.

To analyze the above order, we have to consider three different stages: (i) rk−1 < r; (ii) r ≤ rk−1 <

1/2; (iii) rk−1 ≥ 1/2. For the stage (i), the smallest order of fk−1, i.e., n
−3rk−1/2, is achieved by

taking |t(k−1)n | ≍ n−rk−1/2, and the smallest order of hk−1, i.e., n
−3rk−1/2, is achieved by taking

|sn| ≍ n−3rk−1/2. For the stage (ii), the smallest order of fk−1, i.e., n−3rk−1/2, is achieved by

taking |t(k−1)n | ≍ n−rk−1/2, and the smallest order of hk−1, i.e., n
−(2r+rk−1)/2, is achieved by taking

|s(k−1)n | ≍ n−(2r+rk−1)/2. For the last stage (iii), the smallest order of fk−1, i.e., n
−3rk−1/2, is achieved

by taking |t(k−1)n | ≍ n−rk−1/2, and the smallest order of hk−1, i.e., n
−r−1/4, is achieved by taking

|s(k−1)n | ≍ n−r−1/4. This completes the whole proof.

S.7. Proof of Lemma 2

Let

m̂θ(z) =

∑n
i=1 ψθ(Yi,Wi)K((z − Zi)/bn)∑n

i=1K((z − Zi)/bn)
.

Note that η̂(z; θ) = ρ(m̂θ(z)) by (38). Correspondingly, we have η∗(z; θ) = ρ(mθ(z)) based on

Lemma 7 of [32]. Following the proof of Lemma 8 in [32], we can derive that

sup
θ∈Θ

∥∥∥∥
∂k+j

∂zk∂θj
m̂θ(z)−

∂k+j

∂zk∂θj
mθ(z)

∥∥∥∥
∞

= OP

(
n−

q

2q+4 b
−k− q+4

q+2
n nǫ ∨ b2n

)
(S.8)

for any ǫ > 0, k = 0, 1 and j = 0, 1, 2, 3. Considering (38), (S.8) and Condition (f), we can show

that

sup
θ∈N (θ0)

‖η̂(s)(θ)− η(s)∗ (θ)‖∞ = OP

(
n
− q

2q+4 b
− q+4

q+2
n nǫ ∨ b2n

)
(S.9)
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for s = 0, 1, 2, 3 after some algebra. Following similarly logic, we show that

∥∥∥∥
∂

∂z
η̂0(z)−

∂

∂z
η∗0(z)

∥∥∥∥
∞

= OP

(
n−

q

2q+4 b
− 2q+6

q+2
n nǫ ∨ b2n

)
(S.10)

∥∥∥∥
∂

∂z
η̂
(1)
0 (z)− ∂

∂z
η
(1)
∗0 (z)

∥∥∥∥
∞

= OP

(
n
− q

2q+4 b
− 2q+6

q+2
n nǫ ∨ b2n

)
(S.11)

Considering (S.9)-(S.11), we complete the whole proof.
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