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I As a general data-resampling based method, the bootstrap
has been applied to the semiparametric models in a wide
variety of contexts, e.g. Biostatistics, Survival Analysis and
Econometrics, for a long time.

I A long existing problem for applying bootstrap to
semiparametric models is that there is no theoretical
justifications !

I Cited from an Annals paper by Kosorok et al (2004)
“Unfortunately, there is no sufficiently general theory, as far as
we are aware, available for the nonparametric bootstrap in the
penalized (semiparametric) maximization likelihood setting.”

I Cited from a JASA paper by Lee et al (2005)
“The bootstrap is a possible solution to these problems, but
theoretical justification is not available for semiparametric
models.”
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Major Contributions

I We establish the theoretical validity of a broad class of
bootstrap methods as an inferential tool for the general
semiparametric models.

I Specifically, we prove that

• the bootstrap distribution asymptotically imitates the
distribution of the M-estimate, i.e., bootstrap distributional
consistency;

• the bootstrap confidence set has the asymptotically correct
coverage probability, i.e., bootstrap confidence set consistency.

for the nonparametric bootstrap, bayesian bootstrap.....

I Most (but not all) details of this talk can be found in a
forthcoming Annals paper.
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Semiparametric Models

I Random Variable X ∼
{

Pθ,η : θ ∈ Θ ⊂ Rk , η ∈ H
}

• θ: Euclidean parameter of interest;
• η: a possibly infinite dimensional nuisance parameter, e.g.

some function.

I Example I: The Cox regression model with survival data

• θ: regression parameter;
• η: cumulative hazard function.

I Example II: The partly linear model: Y = W ′θ + f (T ) + ε

• θ: linear regression parameter;
• f : nonlinear smooth function.

I Example III: Generalized Estimating Equation (GEE)

• β: mean regression parameter;
• α: finite dimensional nuisance correlation parameter.
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I The semiparametric MLE (θ̂, η̂) is defined as

(θ̂, η̂) = arg sup
θ∈Θ,η∈H

n∑
i=1

log lik(θ, η)(Xi ).

I Given regularity conditions, it is proven that MLE θ̂ is
semiparametric efficient (minimal asymptotic variance) in the
sense that

√
n(θ̂ − θ0)

d−→ N(0, Ĩ−1
0 ), (1)

where Ĩ0 is the efficient information matrix.
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The asymptotic inferences for θ based on the above asymptotic
distribution theory face the following practical challenges:

1. The confidence set construction and asymptotic covariance
estimation for θ both involve estimating and inverting a
hard-to-estimate infinite-dimensional operator.

2. Convergence rates for θ and η may be different, i.e., θ has a
parametric rate and η has a nonparametric rate. Thus, we can
not treat (θ, η) as a whole component.

3. See Bickel et al (1998) and Kosorok (2008) for more details.
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Three semiparametric inferential tools are thus motivated:

1. The Profile Likelihood Approach

I Murphy and van der Vaart (2000) proved that the log-profile
likelihood defined as

log pln(θ) = sup
η∈H

n∑
i=1

log lik(θ, η)(Xi )

asymptotically possesses the parabolic form, like a parametric
likelihood, when making inferences for θ.

I For example, we can use the second order numerical derivative
(curvature) of the log pln(θ) at θ̂, called observed information,
to estimate −Ĩ0.
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2. The Profile Sampler

I The inferences of θ are based on the sampling from the
posterior of the profile likelihood.

I MCMC is used for sampling from the above posterior
distribution. For example, we can use the chain mean (the

inverse of chain variance) to approximate MLE θ̂ (Ĩ0).

I The theoretical validity of the profile sampler depends on the
parabolic form of the profile likelihood proven in Murphy and
van der Vaart (2000).
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However,

I The profile likelihood may not approximate well the desired
parabolic form when the sample size is small;

I The profile likelihood based procedures are not automatic:

• we need to specify a prior in the profile sampler;
• we need to choose the step size in computing the observed

information.

I MCMC convergence in the profile sampler is not well studied.

I It takes long time to run Markov chain to get accurate
inferences for θ when η has slow convergence rate (Cheng and
Kosorok, 2008a, b);
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inferences for θ when η has slow convergence rate (Cheng and
Kosorok, 2008a, b);
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3. The last approach is the Bootstrap Sampling
The bootstrap method has already been used before the
above approaches were invented.

Methodological Features:

A. A lot of well studied resampling techniques are available;
B. It is conceptually simple to implement, just resampling;
C . we can make bootstrap inferences for both θ and η based on

the bootstrap sample;
D. It is an automatic procedure, e.g., needless to specify prior;
E . It has small sample advantages.

I However, there is no theoretical justifications available now.
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In this talk, we consider the general class of exchangeably weighted
bootstrap. This general resampling scheme was first proposed by
Rubin (1981), i.e., Bayesian Bootstrap, and then extensively
studied by Newton and Mason (1992), Praestgaard and Wellner
(1993) and Bertail and Barbe (1995) in the parametric and
nonparametric context.
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The class of exchangeably weighted bootstrap includes

I Standard Nonparametric Bootstrap:
Sample with replacement (sampling from the empirical
distribution)

I Multiplier Bootstrap: (Generalization of Bayesian Bootstrap)
A smooth alternative to the nonparametric bootstrap (useful
for bootstrapping censored data).

I Double Bootstrap:
Sampling from the nonparametric bootstrap sample.

I Others: Multivariate Hypergeometric Bootstrap,
Polya-Eggenberger Bootstrap, Bootstrap generated from
deterministic weights......
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I The bootstrap estimator is defined as

(θ̂∗, η̂∗) = arg sup
θ∈Θ,η∈H

n∑
i=1

log lik(θ, η)(X ∗i ), (2)

where (X ∗1 , . . . ,X
∗
n ) is the bootstrap sample.

I In the exchangeably weighted bootstrap sampling, (θ̂∗, η̂∗) can
be reformulated as

(θ̂∗, η̂∗) = arg sup
θ∈Θ,η∈H

n∑
i=1

Wni log lik(θ, η)(Xi ), (3)

where Wn ≡ (Wn1, . . . ,Wnn) is the bootstrap weight.
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Different bootstrap sampling schemes correspond to different
bootstrap weights Wn, e.g.,

I Standard Nonparametric Bootstrap:
Wn ∼ Multinomial (n, (n−1, . . . , n−1)).

I Multiplier Bootstrap:

Wnj = αj/ᾱ, where (α1, . . . , αn)
iid∼ nonnegative continuous

r.v.s. For example, αj ∼ Exp(1) in Bayesian Bootstrap.

I Double Bootstrap:
Wn ∼ Multinomial(n, (Mn1/n, . . . ,Mnn/n))
(Mn1, . . . ,Mnn) ∼ Multinomial(n, (n−1, . . . , n−1)).
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Bootstrap Consistency Assumptions

I Regularity conditions (those in guaranteeing the asymptotic
normality of MLE θ̂).

I Bootstrap weights satisfy:

1. The vector Wn = (Wn1, . . . ,Wnn)′ is exchangeable;
2. Wni ≥ 0 and

∑n
i=1 Wni = n;

3. (1/n)
∑n

i=1(Wni − 1)2 PW−→ c2 > 0 ;

4. Some lower moment conditions for Wni .

I Some measurability conditions (so that the Fubini’s Theorem
can be used freely), envelop conditions and empirical
processes conditions (the entropy number of some function
class is manageable).
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Bootstrap Consistency Theorem (Theorem I):

Assuming the above conditions, we have

1.
√

n consistency of θ̂∗:

‖θ̂∗ − θ0‖ = OPW
(n−1/2) in PX − probability.

2. Asymptotic Normality for θ̂∗:

(
√

n/c)(θ̂∗ − θ̂) =⇒ N(0, Ĩ−1
0 ) in PX − probability,

where =⇒ denotes conditional weak convergence.

3. Bootstrap distribution consistency for θ

sup
x∈Rd

∣∣∣PW |Xn
((
√

n/c)(θ̂∗ − θ̂) ≤ x)− PX (
√

n(θ̂ − θ0) ≤ x)
∣∣∣ PX−→ 0.
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0 ) in PX − probability,

where =⇒ denotes conditional weak convergence.

3. Bootstrap distribution consistency for θ

sup
x∈Rd

∣∣∣PW |Xn
((
√

n/c)(θ̂∗ − θ̂) ≤ x)− PX (
√

n(θ̂ − θ0) ≤ x)
∣∣∣ PX−→ 0.

Guang Cheng Bootstrap Consistency for General Semiparametric M-Estimation



Introduction
Bootstrapping Semiparametric MLE

More General Conclusions
Examples

Exchangeably Weighted Bootstrap
Bootstrap Distributional Consistency
Bootstrap Confidence Set

Bootstrap Consistency Theorem (Theorem I):

Assuming the above conditions, we have

1.
√

n consistency of θ̂∗:

‖θ̂∗ − θ0‖ = OPW
(n−1/2) in PX − probability.

2. Asymptotic Normality for θ̂∗:

(
√

n/c)(θ̂∗ − θ̂) =⇒ N(0, Ĩ−1
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Remark 1:

I c = 1 for the nonparametric bootstrap in which
Wn ∼ Multinomial (n, (n−1, . . . , n−1)).

I c = σ(α1)/E (α1) for the multiplier bootstrap in which
Wnj = αj/ᾱ. [c = 1 for the bayesian bootstrap]

I c =
√

2 for the double bootstrap in which
Wn ∼ Multinomial(n, (Mn1/n, . . . ,Mnn/n))
(Mn1, . . . ,Mnn) ∼ Multinomial(n, (n−1, . . . , n−1))
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Wnj = αj/ᾱ. [c = 1 for the bayesian bootstrap]

I c =
√

2 for the double bootstrap in which
Wn ∼ Multinomial(n, (Mn1/n, . . . ,Mnn/n))
(Mn1, . . . ,Mnn) ∼ Multinomial(n, (n−1, . . . , n−1))

Guang Cheng Bootstrap Consistency for General Semiparametric M-Estimation



Introduction
Bootstrapping Semiparametric MLE

More General Conclusions
Examples

Exchangeably Weighted Bootstrap
Bootstrap Distributional Consistency
Bootstrap Confidence Set

Remark 1:

I c = 1 for the nonparametric bootstrap in which
Wn ∼ Multinomial (n, (n−1, . . . , n−1)).

I c = σ(α1)/E (α1) for the multiplier bootstrap in which
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Remark 2:

The bootstrap consistency assumptions are only slightly stronger
than those (regularity conditions) needed in showing the
asymptotic normality of θ̂. Therefore, we can conclude that the
bootstrap consistency for θ̂∗ is almost automatically guaranteed.
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Definition for conditional weak convergence =⇒ is as follows

X̂ ∗n =⇒ X conditional on data Xn

if sup
h∈BL1(B)

|E·|Xn
h(X̂ ∗n )− Eh(X )| = oPX

(1),

where BL1(B) is a collection of all Lipschitz continuous functions
h : B 7→ R bounded by 1 and having Lipschitz constant 1
(Hoffmann-Jorgensen, 1984).

Technical tools used in proving Bootstrap Consistency Theorem
include

I Bootstrapped Empirical Processes (Gine and Zinn, 1990);

I Multiplier Inequality (Wellner and Zhan, 1996);

I Hoffmann-Jorgensen Inequality (van der Vaart and Wellner,
1996).
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Bootstrap Confidence Set

I Advantages: Replace the tedious theoretical derivations in
semiparametric inferences with routine simulations of
bootstrap samples.

I The bootstrap distributional consistency Theorem implies the
consistency of bootstrap confidence sets of the following
types:

• percentile type
• hybrid type
• t type
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I Let PW |Xn
denote the conditional distribution given

observations Xn. We define τ∗nα satisfying

PW |Xn

(
θ̂∗ ≤ τ∗nα

)
= α.

I Based on the bootstrap distributional consistency Theorem,
we can approximate the α-th quantile of the distribution of
(θ̂ − θ0) by (τ∗nα − θ̂)/c . Thus we construct the (1− α)
percentile-type bootstrap confidence set as

BCp(α) =

[
θ̂ +

τ∗n(α/2) − θ̂
c

, θ̂ +
τ∗n(1−α/2) − θ̂

c

]
.
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I We define κ∗nα satisfying

PW |Xn

(
(
√

n/c)(θ̂∗ − θ̂) ≤ κ∗nα
)

= α.

I Similarly, we can approximate the α-th quantile of
√

n(θ̂ − θ0)
by κ∗nα. Thus we construct the (1− α) hybrid-type bootstrap
confidence set as

BCh(α) =

[
θ̂ −

κ∗n(1−α/2)√
n

, θ̂ −
κ∗n(α/2)√

n

]
.
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Remark 3:

I Both the percentile bootstrap confidence set BCp(α) and
hybrid bootstrap confidence set BCh(α) can be computed
easily through routine bootstrap sampling.

I We can avoid estimating the asymptotic variance of θ̂, i.e.,
Ĩ−1
0 , in both BCp(α) and BCh(α).
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The distributional consistency Theorem together with the quantile
convergence Theorem implies the consistency of percentile-type
and hybrid-type bootstrap confidence sets.

Bootstrap Confidence Set Corollary (Corollary I): Under the
conditions in Theorem 1, we have

PXW (θ0 ∈ BCp(α)) −→ 1− α,
PXW (θ0 ∈ BCh(α)) −→ 1− α,

as n→∞.

Remark 4:
Provided the consistent estimator for the asymptotic covariance is
available, we can show that the t-type bootstrap confidence set is
also consistent by considering the Slutsky’s Theorem.
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Before presenting more general results, let us summarize our
contributions in the likelihood framework so far:

I We first show that the bootstrap distribution of
(
√

n/c)(θ̂∗ − θ̂), conditional on the observed data,
asymptotically imitates the unconditional distribution of√

n(θ̂n − θ0) in Theorem 1.

I We next establish in Corollary 1 that the coverage probabilities
of the percentile and hybrid bootstrap confidence sets for θ
converge to the nominal level as a consequence of Theorem 1.

I Note that the above conclusions hold no matter η has
√

n
convergence rate or slower than

√
n convergence rate.

Guang Cheng Bootstrap Consistency for General Semiparametric M-Estimation



Introduction
Bootstrapping Semiparametric MLE

More General Conclusions
Examples

Exchangeably Weighted Bootstrap
Bootstrap Distributional Consistency
Bootstrap Confidence Set

Before presenting more general results, let us summarize our
contributions in the likelihood framework so far:

I We first show that the bootstrap distribution of
(
√

n/c)(θ̂∗ − θ̂), conditional on the observed data,
asymptotically imitates the unconditional distribution of√

n(θ̂n − θ0) in Theorem 1.

I We next establish in Corollary 1 that the coverage probabilities
of the percentile and hybrid bootstrap confidence sets for θ
converge to the nominal level as a consequence of Theorem 1.

I Note that the above conclusions hold no matter η has
√

n
convergence rate or slower than

√
n convergence rate.

Guang Cheng Bootstrap Consistency for General Semiparametric M-Estimation



Introduction
Bootstrapping Semiparametric MLE

More General Conclusions
Examples

Exchangeably Weighted Bootstrap
Bootstrap Distributional Consistency
Bootstrap Confidence Set

Before presenting more general results, let us summarize our
contributions in the likelihood framework so far:

I We first show that the bootstrap distribution of
(
√

n/c)(θ̂∗ − θ̂), conditional on the observed data,
asymptotically imitates the unconditional distribution of√

n(θ̂n − θ0) in Theorem 1.

I We next establish in Corollary 1 that the coverage probabilities
of the percentile and hybrid bootstrap confidence sets for θ
converge to the nominal level as a consequence of Theorem 1.

I Note that the above conclusions hold no matter η has
√

n
convergence rate or slower than

√
n convergence rate.

Guang Cheng Bootstrap Consistency for General Semiparametric M-Estimation



Introduction
Bootstrapping Semiparametric MLE

More General Conclusions
Examples

Exchangeably Weighted Bootstrap
Bootstrap Distributional Consistency
Bootstrap Confidence Set

Before presenting more general results, let us summarize our
contributions in the likelihood framework so far:

I We first show that the bootstrap distribution of
(
√

n/c)(θ̂∗ − θ̂), conditional on the observed data,
asymptotically imitates the unconditional distribution of√

n(θ̂n − θ0) in Theorem 1.

I We next establish in Corollary 1 that the coverage probabilities
of the percentile and hybrid bootstrap confidence sets for θ
converge to the nominal level as a consequence of Theorem 1.

I Note that the above conclusions hold no matter η has
√

n
convergence rate or slower than

√
n convergence rate.

Guang Cheng Bootstrap Consistency for General Semiparametric M-Estimation



Introduction
Bootstrapping Semiparametric MLE

More General Conclusions
Examples

Our bootstrap consistency conclusions in the likelihood setup can
be extended to the more general scenario as follows.

G 1. (Penalized) M-estimation:

(θ̂λn , η̂λn) = arg max
θ∈Θ,η∈H

n∑
i=1

mλn(θ, η)(Xi ).

Example II. Y = W ′θ + f (T ) + ε.

If f is smooth, we can estimate (θ, f ) by penalizing its
roughness J(f ) [partial smoothing spline]:

(θ̂λn , η̂λn) = arg min
θ∈Θ,η∈H

{
n∑

i=1

(Yi −W ′
i θ − f (Ti ))2 + λnJ(f )

}
.
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G 2. Estimation Equation:

θ̂ solves
n∑

i=1

z(θ, η̂(θ))(Xi ) = 0,

where η̂(θ) is an estimate for η given any fixed θ (satisfying
some convergence rate condition).

G 3. The nuisance parameter η can be finite dimensional
(conditions can be relaxed in this special case).

Example III (GEE). This is a natural example of G2 & G3 in
which θ is the mean regression parameter of interest and η is
the finite dimensional nuisance correlation parameter.
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I In the first Cox regression model,
(θ̂, η̂) = arg maxθ∈Θ,η∈H

∑n
i=1 log lik(θ, η)(Xi ).

I In the second partial smoothing spline model,
(θ̂λn , η̂λn) = arg maxθ∈Θ,η∈H

∑n
i=1 mλn(θ, η)(Xi ).

I In the last GEE model, θ̂ solves
∑n

i=1 z(θ, η̂(θ))(Xi ) = 0.
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Model I. Cox Regression Model with Current Status Data

The hazard function of the survival time T of a subject with
covariate Z is modelled as:

λ(t|z) ≡ lim
∆→0

1

∆
Pr(t ≤ T < t + ∆|T ≥ t,Z = z) = λ(t) exp(θ′z),

where λ is an unspecified baseline hazard function.

I In this model, we are usually interested in the regression
parameter θ while treating the cumulative hazard function
η(y) =

∫ y
0 λ(t)dt as the nuisance parameter.

I The nonparametric bootstrap is applied to this model, e.g.,
Efron and Tibshirani (1986), but without any theoretical
justifications.

Guang Cheng Bootstrap Consistency for General Semiparametric M-Estimation



Introduction
Bootstrapping Semiparametric MLE

More General Conclusions
Examples

Cox Regression Model with Current Status Data
Partly Linear Model
Generalized Estimating Equation for the Longitudinal Data

Model I. Cox Regression Model with Current Status Data

The hazard function of the survival time T of a subject with
covariate Z is modelled as:

λ(t|z) ≡ lim
∆→0

1

∆
Pr(t ≤ T < t + ∆|T ≥ t,Z = z) = λ(t) exp(θ′z),

where λ is an unspecified baseline hazard function.

I In this model, we are usually interested in the regression
parameter θ while treating the cumulative hazard function
η(y) =

∫ y
0 λ(t)dt as the nuisance parameter.

I The nonparametric bootstrap is applied to this model, e.g.,
Efron and Tibshirani (1986), but without any theoretical
justifications.

Guang Cheng Bootstrap Consistency for General Semiparametric M-Estimation



Introduction
Bootstrapping Semiparametric MLE

More General Conclusions
Examples

Cox Regression Model with Current Status Data
Partly Linear Model
Generalized Estimating Equation for the Longitudinal Data

Model I. Cox Regression Model with Current Status Data

The hazard function of the survival time T of a subject with
covariate Z is modelled as:

λ(t|z) ≡ lim
∆→0

1

∆
Pr(t ≤ T < t + ∆|T ≥ t,Z = z) = λ(t) exp(θ′z),

where λ is an unspecified baseline hazard function.

I In this model, we are usually interested in the regression
parameter θ while treating the cumulative hazard function
η(y) =

∫ y
0 λ(t)dt as the nuisance parameter.

I The nonparametric bootstrap is applied to this model, e.g.,
Efron and Tibshirani (1986), but without any theoretical
justifications.

Guang Cheng Bootstrap Consistency for General Semiparametric M-Estimation



Introduction
Bootstrapping Semiparametric MLE

More General Conclusions
Examples

Cox Regression Model with Current Status Data
Partly Linear Model
Generalized Estimating Equation for the Longitudinal Data

I Consider the current status data in which the event time T is
unobservable but we know whether the event has occurred at
the examination time C or not. Thus, we observe
X = (C , δ,Z ), where δ = I{T ≤ C}.

I Note that, in the case of current status data, the
nonparametric MLE η̂ is n1/3 convergent.

I Our theory implies that
Bootstrapping the regression parameter θ in the Cox
regression model with current status data based on the
exchangeable weights, e.g., nonparametric bootstrap &
bayesian bootstrap, is consistent.
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Model II. Partly Linear Model

We assume that
Y = θ′W + f (Z ) + ε,

where ε is independent of (W ,Z ) and f is an unknown smooth
function belonging to second order Sobolev space. The distribution
of ε is assumed to satisfy some orthogonality condition.

I Estimate (θ, f ) using the penalized least square criterion:

n∑
i=1

(yi − θ′wi − f (zi ))2 + λn

∫ 1

0
[f (2)(s)]2ds. (4)

I Our theory implies that
Bootstrapping the partial smoothing spline estimator θ̂λn is
consistent.
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Model III. Generalized Estimating Equation for Longitudinal Data

In longitudinal data sets, we observe mi repeated measurements
for the i-th subject, i.e.

Outcome Yi =

Yi1
...

Yimi

 and mi × p Covariate Xi =

 X ′i1
...

X ′imi
,


for i = 1, . . . , n. Each subject/cluster is assumed to be
independent. However, the repeated measurements within each
subject/cluster are assumed to be correlated.
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I Model assumptions for the longitudinal data:

M1. E (Yi |Xi ) = µi (β0);
M2. Var(Yi |Xi ) = Σi (β0).

I Due to the difficulty in specifying Σi (β0), Liang and Zeger
(1986) introduced an additional correlation parameter α to
form the so called “working covariance matrix” Vi (α, β) in
order to approximate Σi (β), and thus estimate β by solving

n∑
i=1

D ′i (β)V−1
i (α̂(β), β)Si (β) = 0, (5)

where Di (β) = ∂µi (β)/∂β, Si (β) = Yi − µi (β).

I α̂(β) may be obtained by GEE2 (Zhao and Prentice, 1990).
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I In Liang and Zeger (1986), the solution of GEE β̂ is shown to
be asymptotically normal even when Vi (α, β) 6= Σi (β) for all
α (allowing covariance matrix misspecifications).

I In this scenario, it is natural to view the correlation parameter
α as the nuisance parameter. Note that, in this particular
example, α can be estimated at the parametric rate.

I Our general theory implies that
In the framework of GEE, cluster bootstrap estimate of the
mean regression parameter β [Sherman and le Cessie (1997)]
based on the exchangeable weights is consistent.
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I Our general theory implies that
In the framework of GEE, cluster bootstrap estimate of the
mean regression parameter β [Sherman and le Cessie (1997)]
based on the exchangeable weights is consistent.
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Thank you for your attention....

Assistant Professor Guang Cheng
Department of Statistics, Purdue University

chengg@purdue.edu
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