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Semiparametric Models

I We observe i.i.d. data {Xi}ni=1 ∼
{
Pθ,η : θ ∈ Θ ⊂ Rk , η ∈ H

}

I θ: Euclidean parameter of interest;
I η: an infinite dimensional nuisance parameter, e.g. some

function.

I Given the above observations, we intend to make inferences
on the Euclidean parameter θ in the presence of an infinite
dimensional nuisance parameter η:

I give a consistent estimate θ̂;
I give a confidence interval/credible set (hypothesis testing) for θ

I Even we are only interested in θ, the estimation of η is usually
unavoidable.
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Model I. Cox Regression Model with Current Status Data

The hazard function of the survival time T of a subject with
covariate Z is modelled as:

λ(t|z) ≡ lim
∆→0

1

∆
Pr(t ≤ T < t + ∆|T ≥ t,Z = z) = λ(t) exp(θ′z),

where λ is an unspecified baseline hazard function.

Consider the current status data in which the event time T is
unobservable but we know whether the event has occurred at the
examination time C or not. Thus, we observe X = (C , δ,Z ), where
δ = I{T ≤ C}.
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Based on the above proportional hazard assumption, we can write
down the log-likelihood as follows

log lik(θ, η)(X )

= δ log
[
1− exp(− exp(θ′Z )η(C ))

]
− (1− δ) exp(θ′Z )η(C ),

where the nuisance (monotone) function η(y) ≡
∫ y

0 λ(t)dt, also
called as cumulative hazard function.
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Example II: Conditionally Normal Model

We assume that Y |(W = w ,Z = z) ∼ N(θ′w , η(z)). The
log-likelihood can be easily written as

log lik(θ, η)(X ) = −1

2
log η(Z )− (Y − θ′W )2

2η(Z )
,

where η(z) is positive.
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Model III. Partly Linear Model

We assume that
Y = θ′W + η(Z ) + ε,

where ε is independent of (W ,Z ) and η is an unknown smooth
function belonging to second order Sobolev space. We assume that
ε is normally distributed (can be relaxed to some tail conditions).
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Model IV. Semiparametric Copula Model

We observe random vector X = (X1, . . . ,Xd) with multivariate
distribution function F (x1, . . . , xd), and want to estimate the
dependence structure in X . To avoid the curse of dimensionality,
we will apply the following Copula approach.

According to Sklar (1959), there exists a unique Copula function
C0(·) such that

F (x1, . . . , xd) = C0(F1(x1), . . . ,Fd(xd)),

where Fj(·) is the marginal distribution for Xj .
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To model the dependence within X , we use the parametric Copula
Cθ(·), i.e., Cθ0 = C0. Thus, the log-likelihood is written as

log lik(θ,F1, . . . ,Fd)(X ) = log cθ(F1(X1), . . . ,Fd(Xd))+
d∑

j=1

log fj(Xj),

where fj is the marginal density function and

cθ(t1, . . . , td) =
∂d

∂t1 · · · ∂td
Cθ(t1, . . . , td).
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Semiparametric Efficiency Bound

I We hope to obtain the semiparametric efficient estimate θ̂,
which achieves the minimal asymptotic variance bound in the
sense that

√
n(θ̂ − θ0)

d−→ N(0,V ∗),

where V ∗ is the minimal one over all the regular
semiparametric estimators.

I IDEA: The minimal V ∗ actually corresponds to the largest
asymptotic variance over all the parametric submodels
{t 7→ log lik(t, ηt) : t ∈ Θ} of the semiparametric model in
consideration. The parametric submodel achieving V ∗ is called
as the least favorable submodel (LFS), see Bickel et al (1996).
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Intuition I

I Now, let us turn our attention to LFS defined as

t 7→ log lik(t, η∗t ),

where η∗t is called as the least favorable curve.

I The LFS needs to pass the true value (θ0, η0), i.e., η∗θ0
= η0,

and has the corresponding information matrix as

Ĩ0 = E ˜̀0 ˜̀′0, where ˜̀0 ≡ ∂

∂t
|t=θ0 log(t, η∗t ).

(This is just the usual way to calculate the information in
parametric models)

I Obviously, V ∗ = Ĩ−1
0 .
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0 .

Guang Cheng Inverse Problems in Semiparametric Statistical Models



Introduction
Theoretical Foundations

Semiparametric Inferences
Future (Theoretical) Directions

Intuition
Rigorous Statement
Semiparametric Efficient Estimation

Intuition II

What is the mysterious η∗t ?

I In fact, Severini and Wong (1992) discovered that

η∗t = arg sup
η∈H

E log lik(t, η) for any fixed t ∈ Θ

after some simple derivations! This is not surprising since η∗t
behaves like the true value for η at each fixed θ.
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Intuition III

I According to our discussions on LFS in the above, we expect
to obtain an efficient estimate of θ if we can estimate the
abstract LFS, i.e., η∗t , accurately.

I Let Sn(θ) ≡
∑n

i=1 log lik(θ, η̂θ)(Xi ).

I In fact, we can easily show that

θ̂ ≡ arg max
θ∈Θ

Sn(θ),

is semiparametric efficient if η̂t is a consistent estimate for η∗t .

I Therefore, we can claim that the efficient estimation of θ boils
down to the estimation of the least favorable curve η∗t .
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Summary

Efficient estimation of θ in presence of an infinite dimensional η
⇓

Least favorable submodel: t 7→ log lik(t, η∗t )
⇓

Consistent estimation of η∗t

I The estimation accuracy of η∗t , i.e., convergence rate,
determines the second order efficiency of θ̂ (Cheng and
Kosorok, 2008);

I How we estimate η∗t depends on the parameter space H, and
different regularizations on η∗t gives different forms of θ̂, see
four examples to be presented.
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Rigorous Statement

I In semiparametric literature,˜̀
0 is called as Efficient Score Function;
Ĩ0 is called as Efficient Information Matrix.

I In fact, the efficient score function can be understood as the
residual of the projection of the score function for θ onto the
tangent space, which is defined as the closed linear span of
the tangent set generated by the score function for η.

I The LFS exists if the tangent set is closed. This is true for all
of our examples in this talk.
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Semiparametric Efficient Estimation

I As discussed above, we need to estimate η∗t consistently in
order to obtain the efficient θ̂. Recall that

η∗t = arg max
η∈H

E log lik(t, η).

I Therefore, a natural estimate for η∗θ is

η̂θ = arg max
η∈H

n∑
i=1

log lik(θ, η)(Xi ) (1)

for any fixed θ ∈ Θ.
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I In the above, η̂θ is the NPMLE, Sn(θ) is just the profile
likelihood log pln(θ), and θ̂ becomes the semiparametric MLE.

I The above maximum likelihood estimation works for our
example I, i.e., Cox model, due to monotone constraints (see
the work by Jon Wellner and his coauthors). However, the
NPMLE is not always well defined. Thus, some form of
regularization is needed especially when η needs to be
estimated smoothly.
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I Kernel estimation: This is particularly useful when η∗θ has an
explicit form. In our example II, i.e., conditionally normal
model, we have

η̂θ,bn(z) =

∑n
i=1(Y − θ′W )2K ((z − Zi )/bn)∑n

i=1 K ((z − Zi )/bn)
> 0, (2)

where K (·) is some kernel function and bn is the related
bandwidth.

Guang Cheng Inverse Problems in Semiparametric Statistical Models



Introduction
Theoretical Foundations

Semiparametric Inferences
Future (Theoretical) Directions

Intuition
Rigorous Statement
Semiparametric Efficient Estimation

I Penalized estimation: In our example III, i.e., partly linear
model, we have

η̂θ,λn = arg max
η∈H

{
n∑

i=1

log lik(θ, η)(Xi )− λn
∫
Z

[η(2)(z)]2dz

}
, (3)

where λn is some smoothing parameter.

I In the penalized estimation, we need to construct the
penalized LFS, see Cheng and Kosorok (2009).

I In this example, θ̂ is just the partial smoothing spline estimate.
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I Sieve estimation: Here, we perform similar maximum
likelihood estimation but replace the infinite dimensional
parameter space H by its sieve approximation Hn, e.g.,
B-spline space.

I In our example IV, i.e., semiparametric copula model, we have

η̂θ,sn = arg max
η∈Hn

n∑
i=1

log lik(θ, η)(Xi ), (4)

where Hn = {η(·) =
∑sn

s=1 γsBs(·)} is the B-spline space.

I An advantage of B-spline estimation is that we can transform
the semiparametric estimation into the parametric estimation
with increasing dimension as sample size.
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Remark

I Under regularity conditions, all the above four estimation
approaches yield the semiparametric efficient θ̂, see Cheng
(2011) for more details.

I Cheng and Kosorok (2008) show that the second order
semiparametric efficiency of θ̂ is determined by the smoothing
parameters, i.e., bn, λn and sn, and the size of H (in terms of
entropy number).

I In some situations, it might be more proper to use other
criterion function than the likelihood function, e.g., use the
least square criterion function in the partly linear model
(replace ε ∼ N(0, σ2) by the sub-exponential tail condition).
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In the end, I describe three (almost) automatic semiparametric
inferential tools for obtaining the semiparametric efficient estimate
and constructing the confidence interval/credible set in the
literature.

I Bootstrap Inferences [Cheng and Huang (2010)]

I Profile Sampler [Lee, Kosorok and Fine (2005)]

I Sieve Estimation [Chen (2007)]
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Bootstrap Inferences

The bootstrap resampling approach has the following well known
advantages:

I Automatic procedure;

I Small sample advantages;

I Replace the tedious theoretical derivations in semiparametric
inferences with routine simulations of bootstrap samples, e.g.,
the bootstrap confidence interval.
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I The bootstrap estimator is defined as

(θ̂∗, η̂∗) = arg sup
θ∈Θ,η∈H

n∑
i=1

log lik(θ, η)(X ∗i ), (5)

where (X ∗1 , . . . ,X
∗
n ) is the bootstrap sample.

I Recently, Cheng and Huang (2010) showed that (i) θ̂∗ has the
same asymptotic distribution as the semiparametric efficient θ̂;
(ii) the bootstrap confidence interval is theoretically valid, for
a general class of exchangeably weighted bootstrap resampling
schemes, e.g., Efron’s bootstrap and Bayesian bootstrap.
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Profile Sampler

I We assign some prior ρ(θ) on the profile likelihood log pln(θ).
MCMC is used for sampling from the posterior of the profile
likelihood. This resulting MCMC chain is called as the profile
sampler.

I The inferences of θ are based on the profile sampler. Lee,
Kosorok and Fine (2005) showed that chain mean (the inverse
of chain variance) approximates the semiparametric efficient θ̂
(Ĩ0), and the credible set for θ has the desired asymptotic
coverage probability.
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Sieve Estimation

I Translate the semiparametric estimation into the parametric
estimation with increasing dimension:

(θ̂, γ̂) = arg max
θ∈Θ,γ∈Γ

n∑
i=1

log lik(θ, γ′B)(Xi ).

I An advantage of B-spline estimation is that we are able to
give an explicit B-spline estimate for the asymptotic variance
V ∗ as a byproduct of the establishment of semiparametric
efficiency of θ̂. Indeed, it is simply the observed information
matrix if we treat the semiparametric model as a parametric
one after the B-spline approximation, i.e., H = Hn.
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Future (Theoretical) Directions

I Limiting distribution of η̂ (expected to be nonstandard, e.g.,
Chernoff’s distribution);

I Bootstrap Inferences for η (parametric bootstrap or m out of
n bootstrap for nonstandard asymptotics);

I Joint inferences for (θ, η) (extremely difficult.....);
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Thanks for your attention....

Assistant Professor Guang Cheng
Department of Statistics, Purdue University

chengg@purdue.edu

Guang Cheng Inverse Problems in Semiparametric Statistical Models


	Introduction
	Semiparametric Models
	Examples

	Theoretical Foundations
	Intuition
	Rigorous Statement
	Semiparametric Efficient Estimation

	Semiparametric Inferences
	Bootstrap Inferences
	Profile Sampler
	Sieve Estimation

	Future (Theoretical) Directions

