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Abstract

We consider the estimation of sparse graphical models that characterize the depen-
dency structure of high-dimensional tensor-valued data. To facilitate the estimation
of the precision matrix corresponding to each way of the tensor, we assume the
data follow a tensor normal distribution whose covariance has a Kronecker product
structure. The penalized maximum likelihood estimation of this model involves
minimizing a non-convex objective function. In spite of the non-convexity of this
estimation problem, we prove that an alternating minimization algorithm, which
iteratively estimates each sparse precision matrix while fixing the others, attains
an estimator with the optimal statistical rate of convergence as well as consistent
graph recovery. Notably, such an estimator achieves estimation consistency with
only one tensor sample, which is unobserved in previous work. Our theoretical
results are backed by thorough numerical studies.

1 Introduction

High-dimensional tensor-valued data are prevalent in many fields such as personalized recommen-
dation systems and brain imaging research [1, 2]. Traditional recommendation systems are mainly
based on the user-item matrix, whose entry denotes each user’s preference for a particular item. To
incorporate additional information into the analysis, such as the temporal behavior of users, we need
to consider a user-item-time tensor. For another example, functional magnetic resonance imaging
(fMRI) data can be viewed as a three way (third-order) tensor since it contains the brain measurements
taken on different locations over time for various experimental conditions. Also, in the example of
microarray study for aging [3], thousands of gene expression measurements are recorded on 16 tissue
types on 40 mice with varying ages, which forms a four way gene-tissue-mouse-age tensor.

In this paper, we study the estimation of conditional independence structure within tensor data. For
example, in the microarray study for aging we are interested in the dependency structure across dif-
ferent genes, tissues, ages and even mice. Assuming data are drawn from a tensor normal distribution,
a straightforward way to estimate this structure is to vectorize the tensor and estimate the underlying
Gaussian graphical model associated with the vector. Such an approach ignores the tensor structure

1



and requires estimating a rather high dimensional precision matrix with insufficient sample size. For
instance, in the aforementioned fMRI application the sample size is one if we aim to estimate the
dependency structure across different locations, time and experimental conditions. To address such a
problem, a popular approach is to assume the covariance matrix of the tensor normal distribution is
separable in the sense that it is the Kronecker product of small covariance matrices, each of which
corresponds to one way of the tensor. Under this assumption, our goal is to estimate the precision
matrix corresponding to each way of the tensor. See §1.1 for a detailed survey of previous work.

Despite the fact that the assumption of the Kronecker product structure of covariance makes the
statistical model much more parsimonious, it poses significant challenges. In particular, the penalized
negative log-likelihood function is non-convex with respect to the unknown sparse precision matrices.
Consequently, there exists a gap between computational and statistical theory. More specifically,
as we will show in §1.1, existing literature mostly focuses on establishing the existence of a local
optimum that has desired statistical guarantees, rather than offering efficient algorithmic procedures
that provably achieve the desired local optima. In contrast, we analyze an alternating minimiza-
tion algorithm which iteratively minimizes the non-convex objective function with respect to each
individual precision matrix while fixing the others. The established theoretical guarantees of the
proposed algorithm are as follows. Suppose that we have n observations from a K-th order tensor
normal distribution. We denote by mk, sk, dk (k = 1, . . . ,K) the dimension, sparsity, and max
number of non-zero entries in each row of the precision matrix corresponding to the k-th way of the
tensor. Besides, we define m =

∏K
k=1mk. The k-th precision matrix estimator from our alternating

minimization algorithm achieves a
√
mk(mk + sk) logmk/(nm) statistical rate of convergence in

Frobenius norm, which is minimax-optimal since this is the best rate one can obtain even when the
rest K − 1 true precision matrices are known [4]. Furthermore, under an extra irrepresentability
condition, we establish a

√
mk logmk/(nm) rate of convergence in max norm, which is also optimal,

and a dk
√
mk logmk/(nm) rate of convergence in spectral norm. These estimation consistency

results and a sufficiently large signal strength condition further imply the model selection consistency
of recovering all the edges. A notable implication of these results is that, when K ≥ 3, our alternating
minimization algorithm can achieve estimation consistency in Frobenius norm even if we only have
access to one tensor sample, which is often the case in practice. This phenomenon is unobserved in
previous work. Finally, we conduct extensive experiments to evaluate the numerical performance of
the proposed alternating minimization method. Under the guidance of theory, we propose a way to
significantly accelerate the algorithm without sacrificing the statistical accuracy.

1.1 Related work and our contribution

A special case of our sparse tensor graphical model when K = 2 is the sparse matrix graphical
model, which is studied by [5–8]. In particular, [5] and [6] only establish the existence of a local
optima with desired statistical guarantees. Meanwhile, [7] considers an algorithm that is similar to
ours. However, the statistical rates of convergence obtained by [6, 7] are much slower than ours
when K = 2. See Remark 3.6 in §3.1 for a detailed comparison. For K = 2, our statistical rate of
convergence in Frobenius norm recovers the result of [5]. In other words, our theory confirms that the
desired local optimum studied by [5] not only exists, but is also attainable by an efficient algorithm. In
addition, for matrix graphical model, [8] establishes the statistical rates of convergence in spectral and
Frobenius norms for the estimator attained by a similar algorithm. Their results achieve estimation
consistency in spectral norm with only one matrix observation. However, their rate is slower than
ours with K = 2. See Remark 3.11 in §3.2 for a detailed discussion. Furthermore, we allow K to
increase and establish estimation consistency even in Frobenius norm for n = 1. Most importantly,
all these results focus on matrix graphical model and can not handle the aforementioned motivating
applications such as the gene-tissue-mouse-age tensor dataset.

In the context of sparse tensor graphical model with a general K, [9] shows the existence of a
local optimum with desired rates, but does not prove whether there exists an efficient algorithm
that provably attains such a local optimum. In contrast, we prove that our alternating minimization
algorithm achieves an estimator with desired statistical rates. To achieve it, we apply a novel theoretical
framework to separately consider the population and sample optimizers, and then establish the one-
step convergence for the population optimizer (Theorem 3.1) and the optimal rate of convergence
for the sample optimizer (Theorem 3.4). A new concentration result (Lemma B.1) is developed for
this purpose, which is also of independent interest. Moreover, we establish additional theoretical
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guarantees including the optimal rate of convergence in max norm, the estimation consistency in
spectral norm, and the graph recovery consistency of the proposed sparse precision matrix estimator.

In addition to the literature on graphical models, our work is also closely related to a recent line of
research on alternating minimization for non-convex optimization problems [10–13]. These existing
results mostly focus on problems such as dictionary learning, phase retrieval and matrix decomposition.
Hence, our statistical model and analysis are completely different from theirs. Also, our paper is
related to a recent line of work on tensor decomposition. See, e.g., [14–17] and the references therein.
Compared with them, our work focuses on the graphical model structure within tensor-valued data.

Notation: For a matrix A = (Ai,j) ∈ Rd×d, we denote ‖A‖∞, ‖A‖2, ‖A‖F as its max, spectral,
and Frobenius norm, respectively. We define ‖A‖1,off :=

∑
i 6=j |Ai,j | as its off-diagonal `1 norm and

|||A|||∞ := maxi
∑
j |Ai,j | as the maximum absolute row sum. Denote vec(A) as the vectorization

of A which stacks the columns of A. Let tr(A) be the trace of A. For an index set S = {(i, j), i, j ∈
{1, . . . , d}}, we define [A]S as the matrix whose entry indexed by (i, j) ∈ S is equal to Ai,j , and
zero otherwise. We denote 1d as the identity matrix with dimension d× d. Throughout this paper, we
use C,C1, C2, . . . to denote generic absolute constants, whose values may vary from line to line.

2 Sparse tensor graphical model

2.1 Preliminary

We employ the tensor notations used by [18]. Throughout this paper, higher order tensors are denoted
by boldface Euler script letters, e.g. T . We consider a K-th order tensor T ∈ Rm1×m2×···×mK .
When K = 1 it reduces to a vector and when K = 2 it reduces to a matrix. The (i1, . . . , iK)-th
element of the tensor T is denoted to be Ti1,...,iK . Meanwhile, we define the vectorization of T
as vec(T ) := (T1,1,...,1, . . . , Tm1,1,...,1, . . . , T1,m2,...,mK

, Tm1,m2,...,mK
)> ∈ Rm with m =

∏
kmk.

In addition, we define the Frobenius norm of a tensor T as ‖T ‖F :=
(∑

i1,...,iK
T 2
i1,...,iK

)1/2
.

For tensors, a fiber refers to the higher order analogue of the row and column of matrices. A fiber is
obtained by fixing all but one of the indices of the tensor, e.g., the mode-k fiber of T(k) is given by
Ti1,...,,ik−1,:,ik+1,...,iK . Matricization, also known as unfolding, is the process to transform a tensor
into a matrix. We denote T(k) as the mode-k matricization of a tensor T , which arranges the mode-k
fibers to be the columns of the resulting matrix. Another useful operation in tensors is the k-mode
product. The k-mode product of a tensor T ∈ Rm1×m2×···×mK with a matrix A ∈ RJ×mk is denoted
as T ×kA and is of the size m1×· · ·×mk−1×J×mk+1×· · ·×mK . Its entry is defined as (T ×k
A)i1,...,ik−1,j,ik+1,...,iK :=

∑mk

ik=1 Ti1,...,iKAj,ik . In addition, for a list of matrices {A1, . . . ,AK}
with Ak ∈ Rmk×mk , k = 1, . . . ,K, we define T × {A1, . . . ,AK} := T ×1 A1 ×2 · · · ×K AK .

2.2 Model

A tensor T ∈ Rm1×m2×···×mK follows the tensor normal distribution with zero mean and covariance
matrices Σ1, . . . ,ΣK , denoted as T ∼ TN(0;Σ1, . . . ,ΣK), if its probability density function is

p(T |Σ1, . . . ,ΣK) = (2π)−m/2
{ K∏
k=1

|Σk|−m/(2mk)

}
exp

(
− ‖T ×Σ−1/2‖2F /2

)
, (2.1)

where m =
∏K
k=1mk and Σ−1/2 := {Σ−1/21 , . . . ,Σ

−1/2
K }. When K = 1, this tensor normal

distribution reduces to the vector normal distribution with zero mean and covariance Σ1. According
to [9, 18], it can be shown that T ∼ TN(0;Σ1, . . . ,ΣK) if and only if vec(T ) ∼ N(vec(0);ΣK ⊗
· · · ⊗Σ1), where vec(0) ∈ Rm and ⊗ is the matrix Kronecker product.

We consider the parameter estimation for the tensor normal model. Assume that we observe in-
dependently and identically distributed tensor samples T1, . . . , Tn from TN(0;Σ∗1, . . . ,Σ

∗
K). We

aim to estimate the true covariance matrices (Σ∗1, . . . ,Σ
∗
K) and their corresponding true precision

matrices (Ω∗1, . . . ,Ω
∗
K) where Ω∗k = Σ∗−1k (k = 1, . . . ,K). To address the identifiability issue in

the parameterization of the tensor normal distribution, we assume that ‖Ω∗k‖F = 1 for k = 1, . . . ,K.
This renormalization assumption does not change the graph structure of the original precision matrix.
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A standard approach to estimate Ω∗k, k = 1, . . . ,K, is to use the maximum likelihood method
via (2.1). Up to a constant, the negative log-likelihood function of the tensor normal distribution
is tr[S(ΩK ⊗ · · · ⊗ Ω1)] −

∑K
k=1(m/mk) log |Ωk|, where S := 1

n

∑n
i=1 vec(Ti)vec(Ti)>. To

encourage the sparsity of each precision matrix in the high-dimensional scenario, we consider a
penalized log-likelihood estimator, which is obtained by minimizing

qn(Ω1, . . . ,ΩK) :=
1

m
tr[S(ΩK ⊗ · · · ⊗Ω1)]−

K∑
k=1

1

mk
log |Ωk|+

K∑
k=1

Pλk
(Ωk), (2.2)

where Pλk
(·) is a penalty function indexed by the tuning parameter λk. In this paper, we focus on

the lasso penalty [19], i.e., Pλk
(Ωk) = λk‖Ωk‖1,off. This estimation procedure applies similarly to a

broad family of other penalty functions.

We name the penalized model from (2.2) as the sparse tensor graphical model. It reduces to the sparse
vector graphical model [20, 21] when K = 1, and the sparse matrix graphical model [5–8] when
K = 2. Our framework generalizes them to fulfill the demand of capturing the graphical structure of
higher order tensor-valued data.

2.3 Estimation

This section introduces the estimation procedure for the sparse tensor graphical model. A com-
putationally efficient algorithm is provided to estimate the precision matrix for each way of the
tensor.

Recall that in (2.2), qn(Ω1, . . . ,ΩK) is jointly non-convex with respect to Ω1, . . . ,ΩK . Nevertheless,
qn(Ω1, . . . ,ΩK) is a bi-convex problem since qn(Ω1, . . . ,ΩK) is convex in Ωk when the restK−1
precision matrices are fixed. The bi-convex property plays a critical role in our algorithm construction
and its theoretical analysis in §3.

According to its bi-convex property, we propose to solve this non-convex problem by alternatively
update one precision matrix with other matrices fixed. Note that, for any k = 1, . . . ,K, minimizing
(2.2) with respect to Ωk while fixing the rest K − 1 precision matrices is equivalent to minimizing

L(Ωk) :=
1

mk
tr(SkΩk)−

1

mk
log |Ωk|+ λk‖Ωk‖1,off. (2.3)

Here Sk := mk

nm

∑n
i=1 Vk

i V
k>
i , where Vk

i :=
[
Ti ×

{
Ω

1/2
1 , . . . ,Ω

1/2
k−1,1mk

,Ω
1/2
k+1, . . . ,Ω

1/2
K

}]
(k)

with× the tensor product operation and [·](k) the mode-k matricization operation defined in §2.1. The

result in (2.3) can be shown by noting that Vk
i = [Ti](k)

(
Ω

1/2
K ⊗· · ·⊗Ω

1/2
k+1⊗Ω

1/2
k−1⊗· · ·⊗Ω

1/2
1

)>
according to the properties of mode-k matricization shown by [18]. Hereafter, we drop the superscript
k of Vk

i if there is no confusion. Note that minimizing (2.3) corresponds to estimating vector-valued
Gaussian graphical model and can be solved efficiently via the glasso algorithm [21].

Algorithm 1 Solve sparse tensor graphical model via Tensor lasso (Tlasso)
1: Input: Tensor samples T1 . . . , Tn, tuning parameters λ1, . . . , λK , max number of iterations T .
2: Initialize Ω

(0)
1 , . . . ,Ω

(0)
K randomly as symmetric and positive definite matrices and set t = 0.

3: Repeat:
4: t = t+ 1.
5: For k = 1, . . . ,K:
6: Given Ω

(t)
1 , . . . ,Ω

(t)
k−1,Ω

(t−1)
k+1 , . . . ,Ω

(t−1)
K , solve (2.3) for Ω

(t)
k via glasso [21].

7: Normalize Ω
(t)
k such that ‖Ω(t)

k ‖F = 1.
8: End For
9: Until t = T .

10: Output: Ω̂k = Ω
(T )
k (k = 1, . . . ,K).

The details of our Tensor lasso (Tlasso) algorithm are shown in Algorithm 1. It starts with a random
initialization and then alternatively updates each precision matrix until it converges. In §3, we will
illustrate that the statistical properties of the obtained estimator are insensitive to the choice of the
initialization (see the discussion following Theorem 3.5).
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3 Theory of statistical optimization

We first prove the estimation errors in Frobenius norm, max norm, and spectral norm, and then provide
the model selection consistency of our Tlasso estimator. We defer all the proofs to the appendix.

3.1 Estimation error in Frobenius norm

Based on the penalized log-likelihood in (2.2), we define the population log-likelihood function as

q(Ω1, . . . ,ΩK) :=
1

m
E
{

tr
[
vec(T )vec(T )>(ΩK ⊗ · · · ⊗Ω1)

]}
−

K∑
k=1

1

mk
log |Ωk|. (3.1)

By minimizing q(Ω1, . . . ,ΩK) with respect to Ωk, k = 1, . . . ,K, we obtain the population mini-
mization function with the parameter Ω[K]−k := {Ω1, . . . ,Ωk−1,Ωk+1, . . . ,ΩK}, i.e.,

Mk(Ω[K]−k) := argmin
Ωk

q(Ω1, . . . ,ΩK). (3.2)

Theorem 3.1. For any k = 1, . . . ,K, if Ωj (j 6= k) satisfies tr(Σ∗jΩj) 6= 0, then the population

minimization function in (3.2) satisfies Mk(Ω[K]−k) = m
[
mk

∏
j 6=k tr(Σ∗jΩj)

]−1
Ω∗k.

Theorem 3.1 shows a surprising phenomenon that the population minimization function recovers the
true precision matrix up to a constant in only one iteration. If Ωj = Ω∗j , j 6= k, then Mk(Ω[K]−k) =
Ω∗k. Otherwise, after a normalization such that ‖Mk(Ω[K]−k)‖F = 1, the normalized population
minimization function still fully recovers Ω∗k. This observation suggests that setting T = 1 in
Algorithm 1 is sufficient. Such a suggestion will be further supported by our numeric results.

In practice, when (3.1) is unknown, we can approximate it via its sample version qn(Ω1, . . . ,ΩK)
defined in (2.2), which gives rise to the statistical error in the estimation procedure. Analogously to
(3.2), we define the sample-based minimization function with parameter Ω[K]−k as

M̂k(Ω[K]−k) := argmin
Ωk

qn(Ω1, . . . ,ΩK). (3.3)

In order to prove the estimation error, it remains to quantify the statistical error induced from finite
samples. The following two regularity conditions are assumed for this purpose.
Condition 3.2 (Bounded Eigenvalues). For any k = 1, . . . ,K, there is a constant C1 > 0 such that,

0 < C1 ≤ λmin(Σ
∗
k) ≤ λmax(Σ

∗
k) ≤ 1/C1 <∞,

where λmin(Σ
∗
k) and λmax(Σ

∗
k) refer to the minimal and maximal eigenvalue of Σ∗k, respectively.

Condition 3.2 requires the uniform boundedness of the eigenvalues of true covariance matrices Σ∗k. It
has been commonly assumed in the graphical model literature [22].
Condition 3.3 (Tuning). For any k = 1, . . . ,K and some constant C2 > 0, the tuning parameter λk
satisfies 1/C2

√
logmk/(nmmk) ≤ λk ≤ C2

√
logmk/(nmmk).

Condition 3.3 specifies the choice of the tuning parameters. In practice, a data-driven tuning procedure
[23] can be performed to approximate the optimal choice of the tuning parameters.

Before characterizing the statistical error, we define a sparsity parameter for Ω∗k, k = 1, . . . ,K. Let
Sk := {(i, j) : [Ω∗k]i,j 6= 0}. Denote the sparsity parameter sk := |Sk| −mk, which is the number
of nonzero entries in the off-diagonal component of Ω∗k. For each k = 1, . . . ,K, we define B(Ω∗k) as
the set containing Ω∗k and its neighborhood for some sufficiently large constant radius α > 0, i.e.,

B(Ω∗k) := {Ω ∈ Rmk×mk : Ω = Ω>;Ω � 0; ‖Ω−Ω∗k‖F ≤ α}. (3.4)
Theorem 3.4. Assume Conditions 3.2 and 3.3 hold. For any k = 1, . . . ,K, the statistical error of the
sample-based minimization function defined in (3.3) satisfies that, for any fixed Ωj ∈ B(Ω∗j ) (j 6= k),

∥∥M̂k(Ω[K]−k)−Mk(Ω[K]−k)
∥∥
F
= OP

(√
mk(mk + sk) logmk

nm

)
, (3.5)

where Mk(Ω[K]−k) and M̂k(Ω[K]−k) are defined in (3.2) and (3.3), and m =
∏K
k=1mk.
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Theorem 3.4 establishes the statistical error associated with M̂k(Ω[K]−k) for arbitrary Ωj ∈ B(Ω∗j )
with j 6= k. In comparison, previous work on the existence of a local solution with desired statistical
property only establishes theorems similar to Theorem 3.4 for Ωj = Ω∗j with j 6= k. The extension
to an arbitrary Ωj ∈ B(Ω∗j ) involves non-trivial technical barriers. Particularly, we first establish the
rate of convergence of the difference between a sample-based quadratic form with its expectation
(Lemma B.1) via Talagrand’s concentration inequality [24]. This result is also of independent interest.
We then carefully characterize the rate of convergence of Sk defined in (2.3) (Lemma B.2). Finally,
we develop (3.5) using the results for vector-valued graphical models developed by [25].

According to Theorem 3.1 and Theorem 3.4, we obtain the rate of convergence of the Tlasso estimator
in terms of Frobenius norm, which is our main result.
Theorem 3.5. Assume that Conditions 3.2 and 3.3 hold. For any k = 1, . . . ,K, if the initialization
satisfies Ω

(0)
j ∈ B(Ω∗j ) for any j 6= k, then the estimator Ω̂k from Algorithm 1 with T = 1 satisfies,∥∥Ω̂k −Ω∗k

∥∥
F
= OP

(√
mk(mk + sk) logmk

nm

)
, (3.6)

where m =
∏K
k=1mk and B(Ω∗j ) is defined in (3.4).

Theorem 3.5 suggests that as long as the initialization is within a constant distance to the truth, our
Tlasso algorithm attains a consistent estimator after only one iteration. This initialization condition
Ω

(0)
j ∈ B(Ω∗j ) trivially holds since for any Ω

(0)
j that is positive definite and has unit Frobenius norm,

we have ‖Ω(0)
j −Ω∗k‖F ≤ 2 by noting that ‖Ω∗k‖F = 1 (k = 1, . . . ,K) for the identifiability of the

tensor normal distribution. In literature, [9] shows that there exists a local minimizer of (2.2) whose
convergence rate can achieve (3.6). However, it is unknown if their algorithm can find such minimizer
since there could be many other local minimizers.

A notable implication of Theorem 3.5 is that, when K ≥ 3, the estimator from our Tlasso algorithm
can achieve estimation consistency even if we only have access to one observation, i.e., n = 1, which
is often the case in practice. To see it, suppose that K = 3 and n = 1. When the dimensions m1,m2,
and m3 are of the same order of magnitude and sk = O(mk) for k = 1, 2, 3, all the three error rates
corresponding to k = 1, 2, 3 in (3.6) converge to zero.

This result indicates that the estimation of the k-th precision matrix takes advantage of the information
from the j-th way (j 6= k) of the tensor data. Consider a simple case that K = 2 and one precision
matrix Ω∗1 = 1m1 is known. In this scenario the rows of the matrix data are independent and hence
the effective sample size for estimating Ω∗2 is in fact nm1. The optimality result for the vector-valued
graphical model [4] implies that the optimal rate for estimating Ω∗2 is

√
(m2 + s2) logm2/(nm1),

which matches our result in (3.6). Therefore, the rate in (3.6) obtained by our Tlasso estimator is
minimax-optimal since it is the best rate one can obtain even when Ω∗j (j 6= k) are known. As far as
we know, this phenomenon has not been discovered by any previous work in tensor graphical model.
Remark 3.6. For K = 2, our tensor graphical model reduces to matrix graphical model with Kro-
necker product covariance structure [5–8]. In this case, the rate of convergence of Ω̂1 in (3.6) reduces
to
√
(m1 + s1) logm1/(nm2), which is much faster than

√
m2(m1 + s1)(logm1 + logm2)/n es-

tablished by [6] and
√
(m1 +m2) log[max(m1,m2, n)]/(nm2) established by [7]. In literature, [5]

shows that there exists a local minimizer of the objective function whose estimation errors match ours.
However, it is unknown if their estimator can achieve such convergence rate. On the other hand, our
theorem confirms that our algorithm is able to find such estimator with optimal rate of convergence.

3.2 Estimation error in max norm and spectral norm

We next show the estimation error in max norm and spectral norm. Trivially, these estimation errors are
bounded by that in Frobenius norm shown in Theorem 3.5. To develop improved rates of convergence
in max and spectral norms, we need to impose stronger conditions on true parameters.

We first introduce some important notations. Denote dk as the maximum number of non-zeros in any
row of the true precision matrices Ω∗k, that is,

dk := max
i∈{1,...,mk}

∣∣{j ∈ {1, . . . ,mk} : [Ω∗k]i,j 6= 0}
∣∣, (3.7)
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with | · | the cardinality of the inside set. For each covariance matrix Σ∗k, we define κΣ∗k
:= |||Σ∗k|||∞.

Denote the Hessian matrix Γ∗k := Ω∗−1k ⊗Ω∗−1k ∈ Rm2
k×m

2
k , whose entry [Γ∗k](i,j),(s,t) corresponds

to the second order partial derivative of the objective function with respect to [Ωk]i,j and [Ωk]s,t. We
define its sub-matrix indexed by the index set Sk as [Γ∗k]Sk,Sk = [Ω∗−1k ⊗Ω∗−1k ]Sk,Sk , which is the
|Sk| × |Sk| matrix with rows and columns of Γ∗k indexed by Sk and Sk, respectively. Moreover, we
define κΓ∗k

:=
∣∣∣∣∣∣([Γ∗k]Sk,Sk)−1∣∣∣∣∣∣∞. In order to establish the rate of convergence in max norm, we

need to impose an irrepresentability condition on the Hessian matrix.

Condition 3.7 (Irrepresentability). For each k = 1, . . . ,K, there exists some αk ∈ (0, 1] such that

max
e∈Sck

∥∥[Γ∗k]e,Sk([Γ∗k]Sk,Sk)−1∥∥1 ≤ 1− αk.

Condition 3.7 controls the influence of the non-connected terms in Sck on the connected edges in Sk.
This condition has been widely applied in lasso penalized models [26, 27].

Condition 3.8 (Bounded Complexity). For each k = 1, . . . ,K, the parameters κΣ∗k
, κΓ∗k

are bounded
and the parameter dk in (3.7) satisfies dk = o

(√
nm/(mk logmk)

)
.

Theorem 3.9. Suppose Conditions 3.2, 3.3, 3.7 and 3.8 hold. Assume sk = O(mk) for k = 1, . . . ,K
and assume m′ks are in the same order, i.e., m1 � m2 � · · · � mK . For each k, if the initialization
satisfies Ω

(0)
j ∈ B(Ω∗j ) for any j 6= k, then the estimator Ω̂k from Algorithm 1 with T = 2 satisfies,

∥∥Ω̂k −Ω∗k
∥∥
∞ = OP

(√
mk logmk

nm

)
. (3.8)

In addition, the edge set of Ω̂k is a subset of the true edge set of Ω∗k, that is, supp(Ω̂k) ⊆ supp(Ω∗k).

Theorem 3.9 shows that our Tlasso estimator achieves the optimal rate of convergence in max norm
[4]. Here we consider the estimator obtained after two iterations since we require a new concentration
inequality (Lemma B.3) for the sample covariance matrix, which is built upon the estimator in
Theorem 3.5. A direct consequence from Theorem 3.9 is the estimation error in spectral norm.

Corollary 3.10. Suppose the conditions of Theorem 3.9 hold, for any k = 1, . . . ,K, we have

∥∥Ω̂k −Ω∗k
∥∥
2
= OP

(
dk

√
mk logmk

nm

)
. (3.9)

Remark 3.11. Now we compare our obtained rate of convergence in spectral norm for K = 2 with
that established in the sparse matrix graphical model literature. In particular, [8] establishes the rate
of OP

(√
mk(sk ∨ 1) log(m1 ∨m2)/(nmk)

)
for k = 1, 2. Therefore, when d2k ≤ (sk ∨ 1), which

holds for example in the bounded degree graphs, our obtained rate is faster. However, our faster rate
comes at the price of assuming the irrepresentability condition. Using recent advance in nonconvex
regularization [28], we can eliminate the irrepresentability condition. We leave this to future work.

3.3 Model selection consistency

Theorem 3.9 ensures that the estimated precision matrix correctly excludes all non-informative edges
and includes all the true edges (i, j) with |[Ω∗k]i,j | > C

√
mk logmk/(nm) for some constantC > 0.

Therefore, in order to achieve the model selection consistency, a sufficient condition is to assume that,
for each k = 1, . . . ,K, the minimal signal θk := min(i,j)∈supp(Ω∗k)

[Ω∗k]i,j is not too small.

Theorem 3.12. Under the conditions of Theorem 3.9, if θk ≥ C
√
mk logmk/(nm) for some

constant C > 0, then for any k = 1, . . . ,K, sign
(
Ω̂k

)
= sign(Ω∗k), with high probability.

Theorem 3.12 indicates that our Tlasso estimator is able to correctly recover the graphical structure of
each way of the high-dimensional tensor data. To the best of our knowledge, these is the first model
selection consistency result in high dimensional tensor graphical model.
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4 Simulations

We compare the proposed Tlasso estimator with two alternatives. The first one is the direct graph-
ical lasso (Glasso) approach [21] which applies the glasso to the vectorized tensor data to es-
timate Ω∗1 ⊗ · · · ⊗ Ω∗K directly. The second alternative method is the iterative penalized max-
imum likelihood method (P-MLE) proposed by [9], whose termination condition is set to be∑K
k=1

∥∥Ω̂(t)
k − Ω̂

(t−1)
k

∥∥
F

/
K ≤ 0.001.

For simplicity, in our Tlasso algorithm we set the initialization of k-th precision matrix as 1mk
for each

k = 1, . . . ,K and the total iteration T = 1. The tuning parameter λk is set as 20
√
logmk/(nmmk).

For a fair comparison, the same tuning parameter is applied in the P-MLE method. In the direct
Glasso approach, its tuning parameter is chosen by cross-validation via huge package [29].

We consider two simulations with a third order tensor, i.e., K = 3. In Simulation 1, we construct a
triangle graph, while in Simulation 2, we construct a four nearest neighbor graph for each precision
matrix. An illustration of the generated graphs are shown in Figure 1. In each simulation, we consider
three scenarios, i.e., s1: n = 10 and (m1,m2,m3) = (10, 10, 10); s2: n = 50 and (m1,m2,m3) =
(10, 10, 10); s3: n = 10 and (m1,m2,m3) = (100, 5, 5). We repeat each example 100 times
and compute the averaged computational time, the averaged estimation error of the Kronecker
product of precision matrices (m1m2m3)

−1
∥∥Ω̂1⊗ · · · ⊗ Ω̂K −Ω∗1 ⊗ · · · ⊗Ω∗K

∥∥
F

, the true positive
rate (TPR), and the true negative rate (TNR). More specifically, we denote a∗i,j be the (i, j)-th
entry of Ω∗1 ⊗ · · · ⊗ Ω∗K , and define TPR :=

∑
i,j 1(âi,j 6= 0, a∗i,j 6= 0)/

∑
i,j 1(a

∗
i,j 6= 0) and

TNR :=
∑
i,j 1(âi,j = 0, a∗i,j = 0)/

∑
i 1(a

∗
i,j = 0).

As shown in Figure 1, our Tlasso is dramatically faster than both alternative methods. In Scenario
s3, Tlasso takes about five seconds for each replicate, the P-MLE takes about 500 seconds while
the direct Glasso method takes more than one hour and is omitted in the plot. Tlasso algorithm is
not only computationally efficient but also enjoys superior estimation accuracy. In all examples, the
direct Glasso method has significantly larger errors than Tlasso due to ignoring the tensor graphical
structure. Tlasso outperforms P-MLE in Scenarios s1 and s2 and is comparable to it in Scenario s3.
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Figure 1: Left two plots: illustrations of the generated graphs; Middle two plots: computational time;
Right two plots: estimation errors. In each group of two plots, the left (right) is for Simulation 1 (2).

Table 1 shows the variable selection performance. Our Tlasso identifies almost all edges in these six
examples, while the Glasso and P-MLE method miss several true edges. On the other hand, Tlasso
tends to include more non-connected edges than other methods.

Table 1: A comparison of variable selection performance. Here TPR and TNR denote the true positive
rate and true negative rate.

Scenarios Glasso P-MLE Tlasso
TPR TNR TPR TNR TPR TNR

s1 0.27 (0.002) 0.96 (0.000) 1 (0) 0.89 (0.002) 1(0) 0.76 (0.004)
Sim 1 s2 0.34 (0.000) 0.93 (0.000) 1 (0) 0.89 (0.002) 1(0) 0.76 (0.004)

s3 / / 1 (0) 0.93 (0.001) 1(0) 0.70 (0.004)
s1 0.08 (0.000) 0.96 (0.000) 0.93 (0.004) 0.88 (0.002) 1(0) 0.65 (0.005)

Sim 2 s2 0.15 (0.000) 0.92 (0.000) 1 (0) 0.85 (0.002) 1(0) 0.63 (0.005)
s3 / / 0.82 (0.001) 0.93 (0.001) 0.99(0.001) 0.38 (0.002)
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Non-convex Statistical Optimization for Sparse Tensor
Graphical Model (Supplementary Material)

In this supplementary note, we provide the proofs of our main theorems in §A, prove the key lemmas
in §B, list the auxiliary lemmas in §C, and illustrate additional simulation results in §D.

A Proof of main theorems

Proof of Theorem 3.1: To ease the presentation, we show that Theorem 3.1 holds when K = 3. The
proof can be easily generalized to the case with K > 3.

We first simplify the population log-likelihood function. Note that when T ∼ TN(0;Σ∗1,Σ
∗
2,Σ

∗
3),

Lemma 1 of [9] implies that vec(T ) ∼ N(vec(0);Σ∗3 ⊗Σ∗2 ⊗Σ∗1). Therefore,

E
{

tr
[
vec(T )vec(T )>(Ω3 ⊗Ω2 ⊗Ω1)

]}
= tr

[
(Σ∗3 ⊗Σ∗2 ⊗Σ∗1)(Ω3 ⊗Ω2 ⊗Ω1)

]
= tr(Σ∗3Ω3)tr(Σ∗2Ω2)tr(Σ∗1Ω1),

where the second equality is due to the properties of kronecker product that (A ⊗B)(C ⊗D) =
(AC)⊗ (BD) and tr(A⊗B) = tr(A)tr(B). Therefore, the population log-likelihood function can
be rewritten as

q(Ω1,Ω2,Ω3) =
tr(Σ∗3Ω3)tr(Σ∗2Ω2)tr(Σ∗1Ω1)

m1m2m3
− 1

m1
log |Ω1| −

1

m2
log |Ω2| −

1

m3
log |Ω3|.

Taking derivative of q(Ω1,Ω2,Ω3) with respect to Ω1 while fixing Ω2 and Ω3, we have

∇1q(Ω1,Ω2,Ω3) =
tr(Σ∗3Ω3)tr(Σ∗2Ω2)

m1m2m3
Σ∗1 −

1

m1
Ω−11 .

Setting it as zero leads to Ω1 = m2m3[tr(Σ∗3Ω3)tr(Σ∗2Ω2)]
−1Ω∗1. This is indeed a minimizer of

q(Ω1,Ω2,Ω3) when fixing Ω2 and Ω3, since the second derivative∇2
1q(Ω1,Ω2,Ω3) = m−11 Ω−11 ⊗

Ω−11 is positive definite. Therefore, we have

M1(Ω2,Ω3) =
m2m3

tr(Σ∗3Ω3)tr(Σ∗2Ω2)
Ω∗1. (A.1)

Therefore, M1(Ω2,Ω3) equals to the true parameter Ω∗1 up to a constant. The computations of
M2(Ω1,Ω3) andM3(Ω1,Ω2) follow from the same argument. This ends the proof of Theorem 3.1. �

Proof of Theorem 3.4: To ease the presentation, we show that (3.5) holds when K = 3. The proof
of the case when K > 3 is similar. We focus on the proof of the statistical error for the sample
minimization function M̂1(Ω2,Ω3).

By definition, M̂1(Ω2,Ω3) = argminΩ1
qn(Ω1,Ω2,Ω3) = argminΩ1

L(Ω1), where

L(Ω1) =
1

m1
tr(S1Ω1)−

1

m1
log |Ω1|+ λ1‖Ω1‖1,off,

with the sample covariance matrix

S1 =
1

m2m3n

n∑
i=1

ViV
>
i with Vi =

[
Ti ×

{
1m1 ,Ω

1/2
2 ,Ω

1/2
3

}]
(1)
.

For some constant H > 0, we define the set of convergence

A :=

{
∆ ∈ Rm1×m1 : ∆ = ∆>, ‖∆‖F = H

√
(m1 + s1) logm1

nm2m3

}
.

The key idea is to show that

inf
∆∈A

{
L
(
M1(Ω2,Ω3) + ∆

)
− L

(
M1(Ω2,Ω3)

)}
> 0, (A.2)

1



with high probability. To understand it, note that the functionL
(
M1(Ω2,Ω3)+∆

)
−L
(
M1(Ω2,Ω3)

)
is convex in ∆. In addition, since M̂1(Ω2,Ω3) minimizes L(Ω1), we have

L
(
M̂1(Ω2,Ω3)

)
− L

(
M1(Ω2,Ω3)

)
≤ L

(
M1(Ω2,Ω3)

)
− L

(
M1(Ω2,Ω3)

)
= 0.

If we can show (A.2), then the minimizer ∆̂ = M̂1(Ω2,Ω3) −M1(Ω2,Ω3) must be within the
interior of the ball defined by A, and hence ‖∆̂‖F ≤ H

√
(m1 + s1) logm1/(nm2m3). Similar

technique is applied in vector-valued graphical model literature [25].

To show (A.2), we first decompose L
(
M1(Ω2,Ω3)+∆

)
−L

(
M1(Ω2,Ω3)

)
= I1 + I2 + I3, where

I1 :=
1

m1
tr(∆S1)−

1

m1

{
log |M1(Ω2,Ω3) + ∆| − log |M1(Ω2,Ω3)|

}
,

I2 := λ1
{
‖[M1(Ω2,Ω3) + ∆]S1‖1 − ‖[M1(Ω2,Ω3)]S1‖1

}
,

I3 := λ1
{
‖[M1(Ω2,Ω3) + ∆]Sc1‖1 − ‖[M1(Ω2,Ω3)]Sc1‖1

}
.

It is sufficient to show I1 + I2 + I3 > 0 with high probability. To simplify the term I1, we employ
the Taylor expansion of f(t) = log |M1(Ω2,Ω3) + t∆| at t = 0 to obtain

log |M1(Ω2,Ω3) + ∆| − log |M1(Ω2,Ω3)|

= tr
{
[M1(Ω2,Ω3)]

−1∆
}
− [vec(∆)]>

[∫ 1

0

(1− ν)M−1
ν ⊗M−1

ν dν

]
vec(∆),

where Mν :=M1(Ω2,Ω3) + ν∆ ∈ Rm1×m1 . This leads to

I1 =
1

m1
tr
(
{S1 − [M1(Ω2,Ω3)]

−1}∆
)

︸ ︷︷ ︸
I11

+
1

m1
[vec(∆)]>

[∫ 1

0

(1− ν)M−1
ν ⊗M−1

ν dν

]
vec(∆)︸ ︷︷ ︸

I12

.

For two symmetric matrices A,B, it is easy to see that |tr(AB)| = |
∑
i,j Ai,jBi,j |. Based on this

observation, we decompose I11 into two parts: those in the set S1 = {(i, j) : [Ω∗1]i,j 6= 0} and those
not in S1. That is, |I11| ≤ I111 + I112, where

I111 :=
1

m1

∣∣∣ ∑
(i,j)∈S1

{
S1 − [M1(Ω2,Ω3)]

−1}
i,j

∆i,j

∣∣∣,
I112 :=

1

m1

∣∣∣ ∑
(i,j)/∈S1

{
S1 − [M1(Ω2,Ω3)]

−1}
i,j

∆i,j

∣∣∣.
Bound I111: For two matrices A,B and a set S, we have∣∣∣ ∑

(i,j)∈S

Ai,jBi,j

∣∣∣ ≤ max
i,j
|Ai,j |

∣∣∣ ∑
(i,j)∈S

Bi,j

∣∣∣ ≤√|S|max
i,j
|Ai,j |‖B‖F ,

where the second inequality is due to the Cauchy-Schwarz inequality and the fact that
∑

(i,j)∈S B2
i,j ≤

‖B‖2F . Therefore, we have

I111 ≤
√
s1 +m1

m1
·max
i,j

∣∣∣{S1 − [M1(Ω2,Ω3)]
−1}

ij

∣∣∣ ‖∆‖F
≤ C

√
(m1 + s1) logm1

nm2
1m2m3

‖∆‖F =
CH · (m1 + s1) logm1

nm1m2m3
, (A.3)

where (A.3) is from Lemma B.2, the definition of M1(Ω2,Ω3) in (A.1), and the fact that ∆ ∈ A.

Bound I12: For any vector v ∈ Rp and any matrix A ∈ Rp×p, the variational form of Rayleigh
quotients implies λmin(A) = min‖x‖=1 x>Ax and hence λmin(A)‖v‖2 ≤ v>Av. Setting v =

vec(∆) and A =
∫ 1

0
(1− ν)M−1

ν ⊗M−1
ν dν leads to

I12 ≥
1

m1
‖vec(∆)‖22

∫ 1

0

(1− ν)λmin

(
M−1

ν ⊗M−1
ν

)
dν.

2



Moreover, by the property of kronecker product, we have

λmin

(
M−1

ν ⊗M−1
ν

)
= [λmin(M

−1
ν )]2 = [λmax(Mν)]

−2.

In addition, by definition, Mν =M1(Ω2,Ω3) + ν∆, and hence we have

λmax[M1(Ω2,Ω3) + ν∆] ≤ λmax[M1(Ω2,Ω3)] + λmax(ν∆).

Therefore, we can bound I12 from below, that is,

I12 ≥ ‖vec(∆)‖22
2m1

min
0≤ν≤1

[
λmax[M1(Ω2,Ω3)] + λmax(ν∆)

]−2
≥ ‖vec(∆)‖22

2m1

[
‖M1(Ω2,Ω3)‖2 + ‖∆‖2

]−2
.

On the boundary of A, it holds that ‖∆‖2 ≤ ‖∆‖F = o(1). Moreover, according to (A.1), we have

‖M1(Ω2,Ω3)‖2 =

∣∣∣∣ m2m3

tr(Σ∗3Ω3)tr(Σ∗2Ω2)

∣∣∣∣ ‖Ω∗1‖2 ≤ 100

81
‖Σ∗1‖2 ≤

1.5

C1
, (A.4)

where the first inequality is due to

tr(Σ∗3Ω3) = tr[Σ∗3(Ω3 −Ω∗3) + 1m3 ] ≥ m3 − |tr[Σ∗3(Ω3 −Ω∗3)]|
≥ m3 − ‖Σ∗3‖F ‖Ω3 −Ω∗3‖F ≥ m3(1− α‖Σ∗3‖2/

√
m3) ≥ 0.9m3,

for sufficiently large m3. Similarly, it holds that tr(Σ∗2Ω2) ≥ 0.9m2. The second inequality in (A.4)
is due to Condition 3.2. This together with the fact that ‖vec(∆)‖2 = ‖∆‖F = o(1) ≤ 0.5/C1 for
sufficiently large n imply that

I12 ≥
‖vec(∆)‖22

2m1

(
C1

2

)2

=
C2

1H
2

8
· (m1 + s1) logm1

nm1m2m3
, (A.5)

which dominates the term I111 for sufficiently large H .

Bound I2: To bound I2, we apply the triangle inequality and then connect the `1 matrix norm with
its Frobenius norm to obtain the final bound. Specifically, we have

|I2| ≤ λ1 ‖[∆]S1‖1 = λ1
∑

(i,j)∈S1

|∆i,j | ≤ λ1
√
(s1 +m1)

∑
(i,j)∈S1

∆2
i,j ≤ λ1

√
s1 +m1‖∆‖F ,

where the first inequality is from triangle inequality, the second inequality is due to the Cauchy-
Schwarz inequality by noting that s1 = |S1| −m1, and the last inequality is due to the definition of
Frobenius norm. By Condition 3.3, λ1 ≤ C2

√
logm1/(nm2

1m2m3). Therefore,

|I2| ≤ C2H ·
(m1 + s1) logm1

nm1m2m3
,

which is dominated by I12 for sufficiently large H according to (A.5).

Bound I3 − |I112|: We show I3 − |I112| > 0. According to (A.1), we have that M1(Ω2,Ω3) equals
Ω∗1 up to a non-zero coefficient. Therefore, for any entry (i, j) ∈ Sc1, we have [M1(Ω2,Ω3)]i,j = 0.
This implies that

I3 = λ1
∑

(i,j)∈Sc1

{
|[M1(Ω2,Ω3)]i,j + ∆i,j | − |[M1(Ω2,Ω3)]i,j |

}
= λ1

∑
(i,j)∈Sc1

|∆i,j |.

This together with the expression of I112 and the bound in Lemma B.2 leads to

I3 − I112 =
∑

(i,j)∈Sc1

{
λ1 −m−11

{
S1 − [M1(Ω2,Ω3)]

−1}
i,j

}
|∆i,j |

≥

(
λ1 − C

√
logm1

nm2
1m2m3

) ∑
(i,j)∈Sc1

|∆i,j | > 0,

3



as long as 1/C2 > C for some constant C, which is valid for sufficient small C2 in Condition 3.3.

Combining all these bounds together, we have, for any ∆ ∈ A, with high probability,

L
(
M1(Ω2,Ω3) + ∆

)
− L

(
M1(Ω2,Ω3)

)
≥ I12 − I111 − |I2|+ I3 − I112 > 0,

which ends the proof Theorem 3.4. �

Proof of Theorem 3.5: We show it by connecting the one-step convergence result in Theorem 3.1
and the statistical error result in Theorem 3.4. We show the case when K = 3. The proof of the
K > 3 case is similar. We focus on the proof of the estimation error

∥∥Ω̂1 −Ω∗1
∥∥
F

.

To ease the presentation, in the following derivation we remove the superscript in the initializations
Ω

(0)
2 and Ω

(0)
3 and use Ω2 and Ω3 instead. According to the procedure in Algorithm 1, we have

∥∥Ω̂1 − Ω∗1
∥∥
F

=

∥∥∥∥∥ M̂1(Ω2,Ω3)∥∥M̂1(Ω2,Ω3)
∥∥
F

− M̂1(Ω2,Ω3)∥∥M̂1(Ω2,Ω3)
∥∥
F

∥∥∥∥∥
F

≤

∥∥∥∥∥ M̂1(Ω2,Ω3)∥∥M̂1(Ω2,Ω3)
∥∥
F

− M1(Ω2,Ω3)∥∥M̂1(Ω2,Ω3)
∥∥
F

∥∥∥∥∥
F

+

∥∥∥∥∥ M1(Ω2,Ω3)∥∥M̂1(Ω2,Ω3)
∥∥
F

− M1(Ω2,Ω3)∥∥M1(Ω2,Ω3)
∥∥
F

∥∥∥∥∥
F

≤ 2∥∥M̂1(Ω2,Ω3)
∥∥
F

∥∥M̂1(Ω2,Ω3)−M1(Ω2,Ω3)
∥∥
F
,

where the last inequality is due to the triangle inequality ||a| − |b|| ≤ |a− b| and the summation of
two parts. We next bound

∥∥M̂1(Ω2,Ω3)
∥∥
F

. By triangle inequality,∥∥M̂1(Ω2,Ω3)
∥∥
F
≥ ‖M1(Ω2,Ω3)‖F −

∥∥M1(Ω2,Ω3)− M̂1(Ω2,Ω3)
∥∥
F
≥ 2−1‖M1(Ω2,Ω3)‖F ,

since
∥∥M1(Ω2,Ω3)−M̂1(Ω2,Ω3)

∥∥
F
= oP (1) as shown in Theorem 3.4. Moreover, by the Cauchy-

Schwarz inequality, we have

tr(Σ∗2Ω2) ≤ ‖Σ∗2‖F ‖Ω2‖F ≤ m2‖Σ∗2‖2‖Ω2‖2 ≤ 2m2/C1,

due to Condition 3.2 and the fact that Ω2 ∈ B(Ω∗2). Similarly, we have tr(Σ∗3Ω3) ≤ 2m3/C1. This
together with the expression ofM1(Ω2,Ω3) in (A.1) imply that

∥∥M̂1(Ω2,Ω3)
∥∥
F
≥ C2

1/4 and hence

‖Ω̂1 −Ω∗1‖F ≤
8

C2
1

∥∥M̂1(Ω2,Ω3)−M1(Ω2,Ω3)
∥∥
F
= OP

(√
m1(m1 + s1) logm1

nm1m2m3

)
,

according to Theorem 3.4. This ends the proof Theorem 3.5. �

Proof of Theorem 3.9: We prove it by transferring the optimization problem to an equivalent
primal-dual problem and then applying the convergence results of [27] to obtain the desirable rate of
convergence.

Given the sample covariance matrix Ŝk defined in Lemma B.3, according to (2.3), for each k =

1, . . . ,K, the optimization problem has a unique solution Ω̂k which satisfies the following Karush-
Kuhn-Tucker (KKT) conditions

Ŝk − Ω̂k +mkλkẐk = 0, (A.6)

where Ẑk ∈ Rmk×mk belongs to the sub-differential of ‖Ωk‖1,off evaluated at Ω̂k, that is,

[Ẑk]i,j :=


0, if i = j

sign([Ω̂k]i,j) if i 6= j and [Ω̂k]i,j 6= 0

∈ [−1,+1] if i 6= j and [Ω̂k]i,j = 0.

Following [27], we construct the primary-dual witness solution (Ω̃k, Z̃k) such that

Ω̃k := argmin
Ωk�0,Ωk=Ω>k ,[Ωk]Sc

k
=0

{
tr
(
ŜkΩk

)
− log |Ωk|+mkλk‖Ωk‖1,off

}
,
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where the set Sk refers to the set of true non-zero edges of Ω∗k. Therefore, by construction, the
support of the dual estimator Ω̃k is a subset of the true support, i.e., supp(Ω̃k) ⊆ supp(Ω∗k). We
then construct Z̃k as the sub-differential Ẑk and then for each (i, j) ∈ Sck, we replace [Z̃k]i,j with
([Ω̃−1k ]i,j − [Ŝk]i,j)/(mkλk) to ensure that (Ω̃k, Z̃k) satisfies the optimality condition (A.6).

Denote ∆ := Ω̃k −Ω∗k and R(∆) := Ω̃−1k −Ω∗−1k +Ω∗−1k ∆Ω̃−1k . According to Lemma 4 of [27],
in order to show the strict dual feasibility Ω̃k = Ω̂k, it is sufficient to prove

max
{∥∥Ŝk −Σ∗k

∥∥
∞, ‖R(∆)‖∞

}
≤ αkmkλk

8
,

with αk defined in Condition 3.7. As assumed in Condition 3.3, the tuning parameter satisfies
1/C2

√
logmk/(nmmk) ≤ λk ≤ C2

√
logmk/(nmmk) for some constant C2 > 0 and hence

αkmkλk/8 ≥ C3

√
mk logmk/(nm) for some constant C3 > 0.

In addition, according to Lemma B.3, we have∥∥Ŝk −Σ∗k
∥∥
∞ = OP

(
max

j=1,...,K

√
(mj + sj) logmj

nm

)
.

Under the assumption that sj = O(mj) for j = 1, . . . ,K and m1 � m2 � · · · � mK , we have

∥∥Ŝk −Σ∗k
∥∥
∞ = OP

(√
mk logmk

nm

)
.

Therefore, there exists a sufficiently small constant C2 such that
∥∥Ŝk −Σ∗k

∥∥
∞ ≤ αkmkλk/8.

Moreover, according to Lemma 5 of [27], ‖R(∆)‖∞ ≤ 1.5dk‖∆‖2∞κ3Σ∗k as long as ‖∆‖∞ ≤
(3κΣ∗k

dk)
−1. According to Lemma 6 of [27], if we can show

r := 2κΓ∗k

(∥∥Ŝk −Σ∗k
∥∥
∞ +mkλk

)
≤ min

{
1

3κΣ∗k
dk
,

1

κ3Σ∗k
κΓ∗k

dk

}
,

then we have ‖∆‖∞ ≤ r. By Condition 3.8, κΓ∗k
and κΣ∗k

are bounded. Therefore,
∥∥Ŝk −Σ∗k

∥∥
∞ +

mkλk is in the same order of
√
mk logmk/(nm), which is in a smaller order of d−1k by the assump-

tion of dk in Condition 3.8. Therefore, we have shown that ‖R(∆)‖∞ ≤ mkλk for a sufficiently
small constant C2.

Combining above two bounds, we achieve the strict dual feasibility Ω̃k = Ω̂k. Therefore, we have
supp

(
Ω̂k

)
⊆ supp(Ω∗k) and moreover,

∥∥Ω̂k −Ω∗k
∥∥
∞ = ‖∆‖∞ = OP

(√
mk logmk

nm

)
.

This ends the proof of Theorem 3.9. �

B Proof of key lemmas

The first key lemma establishes the rate of convergence of the difference between a sample-based
quadratic form and its expectation. This new concentration result is also of independent interest.
Lemma B.1. Assume i.i.d. data X,X1, . . . ,Xn ∈ Rp×q follows the matrix-variate normal distribu-
tion such that vec(Xi) ∼ N(0;Ψ∗ ⊗Σ∗) with Ψ∗ ∈ Rq×q and Σ∗ ∈ Rp×p. Assume that 0 < C1 ≤
λmin(Σ

∗) ≤ λmax(Σ
∗) ≤ 1/C1 < ∞ and 0 < C2 ≤ λmin(Ψ

∗) ≤ λmax(Ψ
∗) ≤ 1/C2 < ∞ for

some positive constants C1, C2. For any symmetric and positive definite matrix Ω ∈ Rp×p, we have

max
i,j

{
1

np

n∑
i=1

X>i ΩXi −
1

p
E(X>ΩX)

}
i,j

= OP

(√
log q

np

)
.
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Proof of Lemma B.1: Consider a random matrix X following the matrix normal distribution such
that vec(X) ∼ N(0;Ψ∗ ⊗ Σ∗). Let Λ∗ = Ψ∗−1 and Ω∗ = Σ∗−1. Let Y := (Ω∗)1/2X(Λ∗)1/2.
According to the properties of matrix normal distribution [30], Y follows a matrix normal distribution
such that vec(Y) ∼ N(0;1q ⊗1p), that is, all the entries of Y are i.i.d. standard Gaussian random
variables. Next we rewrite the term X>ΩX by Y and then simplify it. Simple algebra implies that

X>ΩX = (Λ∗)−1/2Y>(Ω∗)−1/2Ω(Ω∗)−1/2Y(Λ∗)−1/2.

When Ω is symmetric and positive definite, the matrix M := (Ω∗)−1/2Ω(Ω∗)−1/2 ∈ Rp×p is also
symmetric and positive definite with Cholesky decomposition U>U, where U ∈ Rp×p. Therefore,

X>ΩX = (Λ∗)−1/2Y>U>UY(Λ∗)−1/2.

Moreover, denote the column of the matrix (Λ∗)−1/2 as (Λ∗)−1/2(j) and denote its row as (Λ∗)−1/2i

for i, j = 1, . . . , q. Define the standard basis ei ∈ Rq as the vector with 1 in its i-th entry and 0 in all
the rest entries. The (s, t)-th entry of matrix X>ΩX can be written as{

X>ΩX
}
s,t

= e>s X>ΩXet = (Λ∗)−1/2s Y>U>UY(Λ∗)
−1/2
(t) .

For the sample matrices X1, . . . ,Xn, we apply similar transformation that Yi = (Ω∗)1/2Xi(Λ
∗)1/2.

We apply the above derivation to the sample-based quadratic term X>i ΩXi. Let A = (a1, . . . ,an) ∈
Rp×n with ai = UYi(Λ

∗)
−1/2
s ∈ Rp and B = (b1, . . . ,bn) ∈ Rp×n with bi = UYi(Λ

∗)
−1/2
t ∈

Rp. Then we have{ 1

np

n∑
i=1

X>i ΩXi

}
s,t

=
1

np

n∑
i=1

a>i bi =
1

np

n∑
i=1

p∑
j=1

Ai,jBi,j

=
1

4np

n∑
i=1

p∑
j=1

{
(Ai,j + Bi,j)

2 − (Ai,j −Bi,j)
2
}

=
1

4np

{
‖vec(A) + vec(B)‖22 + ‖vec(A)− vec(B)‖22

}
. (B.1)

Next we derive the explicit form of vec(A) and vec(B) in (B.1). Remind that (Λ∗)−1/2s is a vector
of length q. By the property of matrix products, we can rewrite ai = [(Λ∗)

−1/2
s ⊗U]vec(Yi), where

⊗ is the Kronecker product. Therefore, we have

vec(A) =
[
1n⊗(Λ∗)−1/2s ⊗U

]
t := Q1t,

vec(B) =
[
1n⊗(Λ∗)−1/2t ⊗U

]
t := Q2t,

where t =
{
[vec(Y1)]

>, . . . , [vec(Yn)]
>}> ∈ Rnpq is a vector with npq i.i.d. standard normal

entries. Here Q1 := 1n⊗(Λ∗)−1/2s ⊗U and Q2 := 1n⊗(Λ∗)−1/2t ⊗U with Q1,Q2 ∈ Rnp×npq.
By the property of multivariate normal distribution, we have

vec(A) + vec(B) ∼ N
(
0; (Q1 + Q2)(Q1 + Q2)

>) := N(0;H1),

vec(A)− vec(B) ∼ N
(
0; (Q1 −Q2)(Q1 −Q2)

>) := N(0;H2).

Next, we bound the spectral norm of two matrices H1 and H2. By the property of matrix norm and
the fact that one matrix and its transpose matrix have the same spectral norm, we have

‖H1‖2 ≤ ‖Q1Q
>
1 ‖2 + 2‖Q1Q

>
2 ‖2 + ‖Q2Q

>
2 ‖2,

then we bound each of these three terms individually. According to the definition of Q1 and the
property of matrix Kronecker products, we have

Q1Q
>
1 =

[
1n⊗(Λ∗)−1/2s ⊗U

][
1n⊗(Λ∗)−1/2s ⊗U

]>
= 1n⊗(Λ∗)−1/2s [(Λ∗)−1/2s ]> ⊗M,

where the last equality is due to the fact that (C1⊗C2)
> = C>1 ⊗C>2 and (C1⊗C2)(C3⊗C4) =

(C1C3) ⊗ (C2C4) for any matrices C1, . . . ,C4 such that the matrix multiplications C1C3 and
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C2C4 are valid. Moreover, we also use the Cholesky decomposition of M, i.e., M = U>U. Remind
that (Λ∗)−1/2s [(Λ∗)

−1/2
s ]> ∈ R, therefore, the spectral norm Q1Q

>
1 can be written as

‖Q1Q
>
1 ‖2 =

∣∣(Λ∗)−1/2s [(Λ∗)−1/2s ]>
∣∣ · ‖1n ‖2‖M‖2

≤ ‖Ψ∗‖2‖M‖2 ≤ (1 + α/C1) /C2.

Here the first inequality is because ‖1n ‖2 = 1 and∣∣(Λ∗)−1/2s [(Λ∗)−1/2s ]>
∣∣ =

∥∥[(Λ∗)−1/2s ]>(Λ∗)−1/2s

∥∥
2
≤ max

j

∥∥[(Ψ∗)1/2j ]>(Ψ∗)
1/2
j

∥∥
2

≤
∥∥∥ q∑
j=1

[(Ψ∗)
1/2
j ]>(Ψ∗)

1/2
j

∥∥∥
2
= ‖Ψ∗‖2,

and the second inequality is because ‖Ψ∗‖2 ≤ 1/C2 and

‖M‖2 =
∥∥∥(Ω∗)−1/2Ω(Ω∗)−1/2

∥∥∥
2
= ‖(Ω∗)−1/2(Ω−Ω∗)(Ω∗)−1/2 + 1p ‖2

≤ ‖(Ω∗)−1/2‖22‖Ω−Ω∗‖2 + 1 ≤ ‖Σ∗‖2‖Ω−Ω∗‖F + 1 ≤ 1 + α/C1.

Similarly, we have ‖Q2Q
>
2 ‖2 ≤ (1 + α/C1) /C2. For ‖Q1Q

>
2 ‖2, similar arguments imply that

Q1Q
>
2 = 1n⊗(Λ∗)−1/2s [(Λ∗)

−1/2
t ]> ⊗M,

and hence its spectral norm is bounded as

‖Q1Q
>
2 ‖2 = |(Λ∗)−1/2s [(Λ∗)

−1/2
t ]>| · ‖1n ‖2‖M‖2

≤ ‖Ψ∗‖2‖M‖2 ≤ (1 + α/C1) /C2,

where the first inequality is because the above derivation and the Cauchy-Schwarz inequality. Specifi-
cally, let Ψ∗ = (Ψ∗i,j), we have

|(Λ∗)−1/2s [(Λ∗)
−1/2
t ]>| =

√
(Ψ∗)s[(Ψ∗)t]> =

[ q∑
j=1

Ψ∗s,jΨ
∗
t,j

]1/2
≤

{
(

q∑
j=1

Ψ∗2s,j)(

q∑
j=1

Ψ∗2t,j)
}1/4

≤
√
‖Ψ∗‖2‖Ψ∗‖2 ≤ C−12 .

Applying the same techniques to ‖H2‖2, we have
‖H1‖2 ≤ 4 (1 + α/C1) /C2, (B.2)
‖H2‖2 ≤ 4 (1 + α/C1) /C2. (B.3)

Next, we apply Lemma C.3 to bound the (s, t)-th entry of the differential matrix between the sample-
based term and its expectation. Denote ρs,t := [p−1E(X>ΩX)]s,t. According to the derivation in
(B.1), we have{

1

np

n∑
i=1

X>i ΩXi −
1

p
E(X>ΩX)

}
s,t

=

[
1

4np

∑
i,j

(aij + bij)
2 − ∆s,t + ρs,t

2

]
−
[

1

4np

∑
i,j

(aij − bij)2 −
∆s,t − ρs,t

2

]
, (B.4)

where ∆s,t is defined as

∆s,t := E
{
(4np)−1

∑
i,j

[(aij + bij)
2 + (aij − bij)2]

}
.

Moreover, according to the definition of ρs,t and the fact in (B.1), we have
E{(4np)−1

∑n
i=1

∑p
j=1[(aij + bij)

2 − (aij − bij)2]} = ρs,t. Therefore, we have

E
{
(4np)−1

∑
i,j

(aij + bij)
2
}

=
∆s,t + ρs,t

2
, (B.5)

E
{
(4np)−1

∑
i,j

(aij − bij)2
}

=
∆s,t − ρs,t

2
. (B.6)
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Therefore, (B.4) implies that, for any δ > 0,

P
[∣∣∣{ 1

np

n∑
i=1

X>i ΩXi −
1

p
E(X>ΩX)

}
s,t

∣∣∣ ≥ δ
]
≤

P
[∣∣∣ 1
np

∑
i,j

(aij + bij)
2 − 2(∆s,t + ρs,t)

∣∣∣ > 2δ
]

︸ ︷︷ ︸
I1

+P
[∣∣∣ 1
np

∑
i,j

(aij − bij)
2 − 2(∆s,t − ρs,t)

∣∣∣ > 2δ
]

︸ ︷︷ ︸
I2

.

Remind that
∑n
i=1

∑p
j=1(aij + bij)

2 = vec(A) + vec(B) ∼ N(0;H1) and
∑n
i=1

∑p
j=1(aij −

bij)
2 = vec(A)−vec(B) ∼ N(0;H2). According to (B.5) and (B.6), we apply Lemma C.3 to obtain

I1 ≤ 2 exp

{
− np

2

(
δ

2‖H1‖2
− 2
√
np

)2}
+ 2 exp(−np/2),

I2 ≤ 2 exp

{
− np

2

(
δ

2‖H2‖2
− 2
√
np

)2}
+ 2 exp(−np/2).

Finally, in order to derive the convergence rate of the maximal difference over all index (s, t), we
employ the max sum inequality. That is, for random variables x1, . . . , xn, we have P(maxi xi ≥
t) ≤

∑n
i=1 P(xi ≥ t) ≤ nmaxi P(xi ≥ t). This together with (B.2) and (B.3) imply that

P
[
max
(s,t)

{
1

np

n∑
i=1

X>i ΩXi −
1

p
E(X>ΩX)

}
s,t

≥ δ
]

≤ 4q2 exp

{
− np

2

[
δC1C2

8(C1 + α)
− 2
√
np

]2}
+ 4q2 exp(−np/2). (B.7)

Let δ = 8(C1 + α)(C1C2)
−1[4

√
log q/(np) + 3(np)−1/2] in (B.7) which satisfies the condition in

Lemma C.3 since δ > 2(np)−1/2 when q is sufficiently large. Therefore, we obtain the desirable
conclusion that, with high probability,

max
(s,t)

{
1

np

n∑
i=1

X>i ΩXi −
1

p
E(X>ΩX)

}
s,t

= OP

(√
log q

np

)
.

This ends the proof of Lemma B.1. �

Lemma B.2. Assume i.i.d. tensor data T , T1, . . . , Tn ∈ Rm1×m2×···×mK follows the tensor normal
distribution TN(0;Σ∗1, . . . ,Σ

∗
K). Assume Condition 3.2 holds. For any symmetric and positive

definite matrices Ωj ∈ Rmj×mj , j 6= k, we have

E[Sk] =
mk[

∏
j 6=k tr(Σ∗jΩj)]

m
Σ∗k,

for Sk = mk

nm

∑n
i=1 ViV

>
i with Vi =

[
Ti × {Ω1/2

1 , . . . ,Ω
1/2
k−1,1mk

,Ω
1/2
k+1, . . . ,Ω

1/2
K }

]
(k)

and

m =
∏K
k=1mk. Moreover, we have

max
s,t

{
Sk −

mk[
∏
j 6=k tr(Σ∗jΩj)]

m
Σ∗k

}
s,t

= OP

(√
mk logmk

nm

)
. (B.8)

Proof of Lemma B.2: The proof follows by carefully examining the distribution of Vi and then
applying Lemma B.1. We only show the case with K = 3 and k = 1. The extension to a general K
follows similarly.

According to the property of mode-k tensor multiplication, we have Vi = [Ti](1) (Ω
1/2
3 ⊗Ω

1/2
2 ),

and hence

S1 =
1

nm2m3

n∑
i=1

[Ti](1) (Ω
1/2
3 ⊗Ω

1/2
2 )(Ω

1/2
3 ⊗Ω

1/2
2 ) [Ti]>(1)

=
1

nm2m3

n∑
i=1

[Ti](1) (Ω3 ⊗Ω2) [Ti]>(1) .
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When tensor Ti ∼ TN(0;Σ∗1,Σ
∗
2,Σ

∗
3), the property of mode-k tensor multiplication shown in

Proposition 2.1 in [31] implies that

[Ti](1) ∈ Rm1×(m2m3) ∼ MN(0;Σ∗1,Σ
∗
3 ⊗Σ∗2),

where MN(0;Σ∗1,Σ
∗
3 ⊗Σ∗2) is the matrix-variate normal [32] such that the row covariance matrix of

[Ti](1) is Σ∗1 and the column covariance matrix of [Ti](1) is Σ∗3 ⊗Σ∗2. Therefore, in order to show
(B.8), according to Lemma B.1, it is sufficient to show

E[S1] =
tr(Σ∗3Ω3)tr(Σ∗2Ω2)

m2m3
Σ∗1. (B.9)

According to the distribution of [Ti](1), we have

Vi ∼ MN
(
0;Σ∗1, (Ω

1/2
3 ⊗Ω

1/2
2 )(Σ∗3 ⊗Σ∗2)(Ω

1/2
3 ⊗Ω

1/2
2 )

)
,

and hence
V>i ∼ MN

(
0; (Ω

1/2
3 ⊗Ω

1/2
2 )(Σ∗3 ⊗Σ∗2)(Ω

1/2
3 ⊗Ω

1/2
2 ),Σ∗1

)
.

Therefore, according to Lemma C.1, we have

E[ViV
>
i ] = Σ∗1tr [(Ω3 ⊗Ω2)(Σ

∗
3 ⊗Σ∗2)] = Σ∗1tr(Σ∗3Ω3)tr(Σ∗2Ω2),

which implies (B.9) according to the definition of S1. Finally, applying Lemma B.1 to S1 leads to the
desirable result. This ends the proof of Lemma B.2. �

The following lemma establishes the rate of convergence of the sample covariance matrix in max
norm.
Lemma B.3. Assume i.i.d. tensor data T , T1, . . . , Tn ∈ Rm1×m2×···×mK follows the tensor normal
distribution TN(0;Σ∗1, · · · ,Σ∗K), and assume Condition 3.2 holds. Let Ω̂j ∈ Rmj×mj , j 6= k, be the
estimated precision matrix from Algorithm 1 with iteration number T = 1. Denote the k-th sample
covariance matrix as

Ŝk =
mk

nm

n∑
i=1

V̂iV̂
>
i ,

with m =
∏K
k=1mk and V̂i :=

[
Ti ×

{
Ω̂

1/2
1 , . . . , Ω̂

1/2
k−1,1mk

, Ω̂
1/2
k+1, . . . , Ω̂

1/2
K

}]
(k)

. We have

max
s,t

[
Ŝk −Σ∗k

]
s,t

= OP

(
max

j=1,...,K

√
(mj + sj) logmj

nm

)
. (B.10)

Proof of Lemma B.3: The proof follows by decomposing the Ŝk − Σ∗k into two parts and then
applying Lemma B.2 and Theorem 3.5 for each part to bound the final error.

Note that the triangle inequality implies that∥∥Ŝk −Σ∗k
∥∥
∞ ≤

∥∥∥∥Ŝk − mk[
∏
j 6=k tr(Σ∗j Ω̂j)]

m
Σ∗k

∥∥∥∥
∞︸ ︷︷ ︸

I1

+

∥∥∥∥mk[
∏
j 6=k tr(Σ∗j Ω̂j)]

m
Σ∗k −Σ∗k

∥∥∥∥
∞︸ ︷︷ ︸

I2

.

Note that here the covariance matrix Ŝk is constructed based on the estimators Ω̂j , j 6= k. According
to (B.8) in Lemma B.2, we have

I1 = OP

(√
mk logmk

nm

)
.

The remainder part is to bound the error I2. Note that tr(Σ∗jΩ
∗
j ) = tr(1mj

) = mj . Therefore,

I2 =
∣∣∣mk

m

[∏
j 6=k

tr(Σ∗j Ω̂j)−
∏
j 6=k

tr(Σ∗jΩ
∗
j )
]∣∣∣︸ ︷︷ ︸

I3

‖Σ∗k‖∞.
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Given that ‖Σ∗k‖∞ = OP (1), it is sufficient to bound the coefficient I3. We only demonstrate the
proofs with K = 3 and k = 1. The extension to a general K follows similarly. In this case, we have

I3 =
m1

m

∣∣∣tr(Σ∗2Ω̂2)tr(Σ∗3Ω̂3)− tr(Σ∗2Ω
∗
2)tr(Σ

∗
3Ω
∗
3)
∣∣∣

≤
∣∣∣∣ tr(Σ∗2Ω̂2)tr[Σ∗3(Ω̂3 −Ω∗3)]

m2m3

∣∣∣∣+ ∣∣∣∣ tr[Σ∗2(Ω̂2 −Ω∗2)]tr(Σ
∗
3Ω
∗
3)

m2m3

∣∣∣∣.
According to the proof of Theorem 3.5, we have C1 ≤ tr(Σ∗jΩj)/mj ≤ 1/C1 for any j = 1, . . . ,K
and some constant C1 > 0. Moreover, we have tr(Σ∗3Ω

∗
3) = m3. Therefore, we have

I3 ≤
∣∣∣∣ tr[Σ∗3(Ω̂3 −Ω∗3)]

m3

∣∣∣∣+ ∣∣∣∣ tr[Σ∗2(Ω̂2 −Ω∗2)]

m2

∣∣∣∣.
Here tr[Σ∗j (Ω̂j−Ω∗j )] ≤ ‖Σ∗j‖F

∥∥Ω̂j−Ω∗j
∥∥
F
≤ √mj‖Σ∗j‖2

∥∥Ω̂j−Ω∗j
∥∥
F

. According to Condition
3.2, ‖Σ∗j‖2 = OP (1). This together with Theorem 3.5 implies that

I3 = OP

(√
(m3 + s3) logm3

nm
+

√
(m2 + s2) logm2

nm

)
.

By generalizing it to a general K and k, we have that

I3 = OP

(
max
j 6=k

√
(mj + sj) logmj

nm

)
,

and hence ∥∥Ŝk −Σ∗k
∥∥
∞ = OP

(√
mk logmk

nm
+max

j 6=k

√
(mj + sj) logmj

nm

)
,

which leads to the desirable result. This ends the proof of Lemma B.3. �

C Auxiliary lemmas

Lemma C.1. Assume a random matrix X ∈ Rp×q follows the matrix-variate normal distribution
such that vec(X) ∼ N(0;Ψ∗ ⊗Σ∗) with Ψ∗ ∈ Rq×q and Σ∗ ∈ Rp×p. Then for any symmetric and
positive definite matrix Ω ∈ Rp×p, we have E(X>ΩX) = Ψ∗tr(ΩΣ∗).

Proof of Lemma C.1: Since the matrix Ω is symmetric and positive definite, it has the Cholesky
decomposition Ω = V>V, where V is upper triangular with positive diagonal entries. Let Y := VX
and denote the j-th row of matrix Y as yj = (yj,1, . . . , yj,q). We have E(X>ΩX) = E(Y>Y) =∑p
j=1 E(y>j yj). Here yj = vjX with vj the j-th row of V. Denote the i-th column of matrix X as

x(i), we have yj,i = vjx(i). Therefore, the (s, t)-th entry of E(y>j yj) is[
E(y>j yj)

]
(s,t)

= E[vjx(s)vjx(t)] = vjE[x(s)x
>
(t)]v

>
j = vjΨ

∗
s,tΣ

∗v>j ,

where Ψ∗s,t is the (s, t)-th entry of Ψ∗. The last equality is due to vec(X) = (x>(1), . . . ,x
>
(q))
> ∼

N(0;Ψ∗ ⊗Σ∗) Therefore, we have

E(X>ΩX) =

p∑
j=1

E(y>j yj) = Ψ∗
p∑
j=1

vjΣ
∗v>j = Ψ∗tr

( p∑
j=1

v>j vjΣ
∗
)
= Ψ∗tr(ΩΣ∗).

This ends the proof of Lemma C.1. �

The following lemma is stated by [24].
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Lemma C.2. Let random variables x1, . . . , xn ∈ R be i.i.d. drawn from standard normal N(0; 1)
and denote x = (x1, . . . , xn)

> ∈ Rn be a random vector. For a function f : Rn → R with Lipschitz
constant L, that is, for any vectors v1,v2 ∈ Rn, there exists L ≥ 0 such that |f(v1) − f(v2)| ≤
L‖v1 − v2‖2. Then, for any t > 0, we have

P {|f(x)− E[f(x)]| > t} ≤ 2 exp

(
− t2

2L2

)
.

The following lemma is useful for the proof of Lemma B.1. A similar statement was given in Lemma
I.2 of [33].
Lemma C.3. Suppose that a d-dimensional Gaussian random vector y ∼ N(0;Q), Then, for any
t > 2/

√
d, we have

P
[1
d

∣∣‖y‖22 − E(‖y‖22)
∣∣ > 4t‖Q‖2

]
≤ 2 exp

{
−
d
(
t− 2/

√
d
)2

2

}
+ 2 exp(−d/2).

Proof of Lemma C.3: Note that E(‖y‖22) ≤ [E(‖y‖2)]2 and hence

‖y‖22 − E(‖y‖22) ≤ [‖y‖2 − E(‖y‖2)][‖y‖2 + E(‖y‖2)].

The term (‖y‖2 −E(‖y‖2) can be bounded via the concentration inequality in Lemma C.2 by noting
that ‖y‖2 is a Lipschitz function of Gaussian random vector y. The term ‖y‖2 + E(‖y‖2) can also
be bounded by the large deviation bound since y is a Gaussian random vector. This ends the proof of
Lemma C.3. �

D Additional simulation results

In this section, we explain the details in generating the true precision matrices and then show additional
numerical results.

Triangle: For each k = 1, . . . ,K, we construct the covariance matrix Σk ∈ Rmk×mk such that its
(i, j)-th entry is [Σk]i,j = exp(−|hi− hj |/2) with h1 < h2 < · · · < hmk

. The difference hi− hi−1
with i = 2, . . . ,mk is generated independently and identically from Unif(0.5, 1). This generated
covariance matrix mimics the autoregressive process of order one, i.e., AR(1). We set Ω∗k = Σ−1k .

Nearest neighbor: For each k = 1, . . . ,K, we construct the precision matrix Ωk ∈ Rmk×mk

directly from a four nearest-neighbor network. We first randomly pick mk points from a unit square
and compute all pairwise distances among the points. We then search for the four nearest-neighbors
of each point and a pair of symmetric entries in the precision matrix Ωk that has a random chosen
value from [−1,−0.5] ∪ [0.5, 1]. To ensure its positive definite property, we let the final precision
matrix as Ω∗k = Ωk + (|λmin(Ωk) + 0.2| · 1mk

), where λmin(·) refers to the smallest eigenvalue.

The additional error criterions for comparison are the averaged estimation errors in Frobinusm norm
and max norm, i.e.,

1

K

K∑
k=1

∥∥Ω̂k −Ω∗k
∥∥
F
,

1

K

K∑
k=1

∥∥Ω̂k −Ω∗k
∥∥
∞.

Note that these two criterions are only available to the P-MLE method and our Tlasso. The direct
Glasso method estimate the whole Kronecker product and hence could not produce the estimator for
each precision matrix.

Remind that, as we show in Theorem 3.5 and Theorem 3.9, the estimation error for the k-th precision
matrix isOp(

√
mk(mk + sk) logmk/(nm)) in Frobenius norm orOp(

√
mk logmk/(nm)) in max

norm, where m = m1m2m3 in this example. These theoretical findings are supported by the
numerical results in Figure 2. In particular, as sample size n increases from Scenario s1 to s2, the
estimation errors in both Frobenius norm and max norm expectedly decrease. From Scenario s1
to s3, one dimension m1 increases from 10 to 100, and other dimensions m2,m3 decrease from
10 to 5, in which case the averaged estimation error in max norm is decreasing, while the error in
Frobenius norm increases due to its additional

√
mk + sk effect. Moreover, compared to the P-MLE
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Figure 2: Averaged estimation errors of the precision matrices in Frobenius norm and max norm of
each method in Simulations 1&2, respectively. The left two plots are for Simulation 1, and the right
two are for Simulation 2.

method, our Tlasso is better in Scenarios s1 and s2 and is worse in Scenario s3 in Frobenius norm.
However, in terms of the max norm, our Talsso delivers significant better performance in 4 scenarios
and comparable results in the rest 2 scenarios.
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