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◮ There are two types of bootstrap sampling: (I) Nonparametric
Bootstrap; (II) Parametric Bootstrap (also known as model
based bootstrap).

◮ By taking the model structure into account, the model-based
bootstrap usually has better small sample performances than
those resampling based bootstrap such as the nonparametric
bootstrap. Comparing with the inconsistency of nonparametric
bootstrap, we expect that the model based bootstrap is valid
in drawing inferences for non-root-n convergent nonparametric
components in semiparametric models.
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conclusions apply to a broad class of bootstrap methods with
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◮ Cheng and Huang (2010) and Cheng (2012) established the
bootstrap distribution and moment consistency for the
semiparametric M-estimation (Euclidean part). Their
conclusions apply to a broad class of bootstrap methods with
exchangeable bootstrap weights including the nonparametric
bootstrap.

◮ As far as we are aware, no rigorous theoretical justifications on
the model-based bootstrap are existent for the semiparametric
models despite its superior empirical performance.

◮ Some empirical processes tool of independent interest, i.e.,
uniform Ls maximal inequality, has been developed for proving
the theoretical validity of the model based bootstrap.
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◮ In this talk, we assume that the observed data
Xn ≡ (X1, . . . ,Xn) are i.i.d. from the probability space
(X ,A,PX ). Define PX f =

∫
fdPX and Pnf = 1

n

∑n
i=1 f (Xi )

for any measurable function f .

◮ Denote ℓ(θ, η) as the semiparametric log-likelihood and
(θ, η) ∈ Θ×H as the parameter space.



Intuition II

In the real world, we have (under identifiability conditions)

True value: (θ0, η0) = arg sup
θ∈Θ,η∈H

PX ℓ(θ, η),

MLE: (θ̂, η̂) = arg sup
θ∈Θ,η∈H

Pnℓ(θ, η),

where (X1, . . . ,Xn)
i .i .d.∼ PX . Note that Pθ0,η0 = PX .



Intuition III

◮ The bootstrap method mimics the real data-generating
process by drawing the bootstrap data

X ∗
n ≡ (X ∗

1 , . . . ,X
∗
n )

i .i .d.∼ P̂n, where P̂n is some distribution
estimate for PX based on the original data Xn.
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n )

i .i .d.∼ P̂n, where P̂n is some distribution
estimate for PX based on the original data Xn.

◮ In the parallel bootstrap world, we have

Bootstrap “true” value: (θ∗0, η
∗
0) = arg sup

θ∈Θ,η∈H
P̂nℓ(θ, η),

Bootstrap MLE: (θ̂∗, η̂∗) = arg sup
θ∈Θ,η∈H

P̂
∗
nℓ(θ, η),

where P̂
∗
nf = 1

n

∑n
i=1 f (X

∗
i ).



Intuition IV

◮ In the nonparametric bootstrap, we draw bootstrap samples
from the c.d.f. Pn. In this case, P̂n = Pn and (θ∗0, η

∗
0) = (θ̂, η̂).

However, the discrete Pn may fail to capture some properties
of the underlying distribution PX , e.g., its smoothness, that
may be crucial for the problem under consideration.
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◮ In the nonparametric bootstrap, we draw bootstrap samples
from the c.d.f. Pn. In this case, P̂n = Pn and (θ∗0, η

∗
0) = (θ̂, η̂).

However, the discrete Pn may fail to capture some properties
of the underlying distribution PX , e.g., its smoothness, that
may be crucial for the problem under consideration.

◮ Hence, in this talk, we consider sampling from some smooth
estimated distribution P̂ ≡ P

θ̃,η̃
, where Pθ,η is the distribution

of semiparametric models, and the initial estimate (θ̃, η̃)
(unnecessarily MLE) is computed based on Xn. This is the
so-called semiparametric model based bootstrap in which the
model information is naturally incorporated into the
resampling process. In this case, P̂n = P̂ and (θ∗0, η

∗
0) = (θ̃, η̃).



Intuition V

◮ In view of the above analysis, we refer the distribution
consistency as “the distribution of

√
n(θ̂∗ − θ̃) asymptotically

imitates that of
√
n(θ̂ − θ0) conditional on Xn”, and refer the

variance consistency as “nEX ∗|Xn
(θ̂∗ − θ̃)⊗2 consistently

estimates the asymptotic variance of
√
n(θ̂ − θ0)”.
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◮ In view of the above analysis, we refer the distribution
consistency as “the distribution of

√
n(θ̂∗ − θ̃) asymptotically

imitates that of
√
n(θ̂ − θ0) conditional on Xn”, and refer the

variance consistency as “nEX ∗|Xn
(θ̂∗ − θ̃)⊗2 consistently

estimates the asymptotic variance of
√
n(θ̂ − θ0)”.

◮ The above consistency results trivially hold if (θ̃, η̃) = (θ0, η0).
Therefore, we expect the model based bootstrap to be valid if
(i) Pθ,η satisfies some smoothness conditions w.r.t. (θ, η); (ii)

(θ̃, η̃) converges to (θ0, η0) in some sense such that the
estimated empirical processes Ĝ∗

n ≡ √
n(P̂∗

n − P̂) (built upon
P̂) perturbs around Gn ≡ √

n(Pn − PX ) (built upon PX ) and
has proper asymptotic continuity modulus.
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Semiparametric Models

◮ Random Variable X ∼
{
Pθ,η : θ ∈ Θ ⊂ R

k , η ∈ H
}

• θ: Euclidean parameter of interest;
• η: a possibly infinite dimensional nuisance parameter, e.g.

some function.

◮ Recall that ℓ(θ, η) represents the log-likelihood. Define the
efficient score function as ℓ̃(θ, η).

◮ Example I: The Cox regression model with survival data

• θ: regression parameter;
• η: cumulative hazard function.

◮ Example II: The partly linear model: Y = W ′θ + f (T ) + ǫ

• θ: linear regression parameter;
• f : nonlinear smooth function.



Estimation Consistency Theorem (Theorem I)

Suppose that (θ0, η0) is well-separated and (θ̃, η̃) is consistent.
Define

Bδ = {(θ, η) : d((θ, η), (θ0, η0)) ≤ δ},
Pδ = {Pθ,η : (θ, η) ∈ Bδ}.

If the class L ≡ {ℓ(X ; θ, η) : (θ, η) ∈ Θ×H} is Pδ-Uniform
Glivenko-Cantelli for some δ > 0 and

lim
δ↓0

sup
(θ,η)∈Bδ

‖(dPθ,η/dPX )− 1‖2 = 0, (1)

then (θ̂∗, η̂∗) is conditionally consistency given Xn, i.e.,

PX∗|Xn
(d((θ̂∗, η̂∗), (θ0, η0)) > ǫ)

PX−→ 0 for every ǫ > 0.
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Distribution Consistency Conditions

Define Rδ =
{
ℓ̃(θ, η)− ℓ̃(θ0, η0) : (θ, η) ∈ Bδ

}
.

◮ Regularity conditions (those in guaranteeing the asymptotic
normality of MLE θ̂);

◮ Assume that Tδ ≡ {ℓ̃(θ, η) : (θ, η) ∈ Bδ} is Pδ′ -Uniform

Donsker and supf ∈Tδ |(P̂ − PX )(f
2)| PX→ 0 for some δ, δ′ > 0;

◮ supr∈Rδn
‖r‖2 = O(δn) for any sequence δn → 0;

◮ Uniform L1 maximal inequality over Pδ′ :

sup
P∈P

δ′

‖‖Gn(P)‖R
δ′n
‖P,1 = O(δ′n).



Distribution/Variance Consistency Theorem

(Theorem II):

Suppose the above conditions hold. If

d((θ̃, η̃), (θ0, η0)) = oPX
(n−1/4),

‖dP̂/dPX − 1‖2 = OPX
(n−1/2), (2)

and some proper convergence rate on η̂∗, then we have

‖θ̂∗ − θ0‖ = OPX∗
(n−1/2)

sup
x∈Rd

∣∣∣PX∗|Xn
(
√
n(θ̂∗ − θ̃) ≤ x)− PX (

√
n(θ̂ − θ0) ≤ x)

∣∣∣ PX−→ 0.

If we further strengthen the above uniform L1 maximal inequality
condition to the uniform L2 maximal inequality condition, we also
have the bootstrap variance consistency.
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Remark 1:

Basically, we need to verify the following three types of conditions:

◮ Uniform Donsker and Uniform Glivenko-Cantelli Conditions:
check some envelop conditions and uniform (bracketing)
entropy conditions;

◮ Uniform Ls maximal inequality Conditions: some new
empirical process results have been developed for this purpose;

◮ Condition ‖dP
θ̃,η̃

/dPX − 1‖2 = OPX
(n−1/2): it is not easy to

verify it when η̃ converges at slower than root-n rate.
However, we can remove this condition if θ̂∗ is known to be
root-n consistent.



Bootstrap Confidence Set

In the model-based bootstrap, we show that the bootstrap
estimate θ̂∗ centers around θ̃ rather than θ̂ as in the case of
nonparametric bootstrap. This is consistent with our intuitive
analysis in the introduction, but will lead to somewhat different
percentile bootstrap confidence set.
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(
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= α.

◮ Based on the bootstrap distributional consistency Theorem,
we can approximate the α-th quantile of the distribution of
(θ̂ − θ0) by (τ∗nα − θ̃). Thus, we construct the (1− α)
percentile-type bootstrap confidence set as

BCp(α) =
[
(θ̂ − θ̃) + τ∗n(α/2), (θ̂ − θ̃) + τ∗n(1−α/2)

]
.
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PX |Xn

(
(θ̂∗ − θ̃) ≤ κ∗nα

)
= α.

◮ Similarly, we can approximate the α-th quantile of (θ̂ − θ0) by
κ∗nα. Thus we construct the (1− α) hybrid-type bootstrap
confidence set as

BCh(α) =
[
θ̂ − κ∗n(1−α/2), θ̂ − κ∗n(α/2)

]
.
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◮ Both the percentile bootstrap confidence set BCp(α) and
hybrid bootstrap confidence set BCh(α) can be computed
easily through routine bootstrap sampling.



Remark 2:

◮ Both the percentile bootstrap confidence set BCp(α) and
hybrid bootstrap confidence set BCh(α) can be computed
easily through routine bootstrap sampling.

◮ We can avoid estimating the asymptotic variance of θ̂ when
using BCp(α) and BCh(α).



The distributional consistency Theorem together with the quantile
convergence Theorem implies the consistency of percentile-type
and hybrid-type bootstrap confidence sets.

Bootstrap Confidence Set Corollary (Corollary I): Under the
conditions in Theorem II, we have

Pr(θ0 ∈ BCp(α)) −→ 1− α,

Pr(θ0 ∈ BCh(α)) −→ 1− α,

as n → ∞.
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p(α) = [τ∗

n(α/2), τ
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also consistent if θ̃ and θ̂ shares the same limit distribution,
i.e., θ̃ − θ̂ = oPX
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Remark 3:

◮ We want to point out that BC ′
p(α) = [τ∗

n(α/2), τ
∗
n(1−α/2)] is

also consistent if θ̃ and θ̂ shares the same limit distribution,
i.e., θ̃ − θ̂ = oPX

(n−1/2).

◮ Provided the consistent estimator for the asymptotic
covariance, e.g., bootstrap variance estimate, is available, we
can show that the t-type bootstrap confidence set is also
consistent by considering the Slutsky’s Theorem.



Thank you for your attention....

Assistant Professor Guang Cheng
Department of Statistics, Purdue University

chengg@purdue.edu
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