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Motivation

•Gradient Descent + Early Stopping [1, 2] can avoid over-fitting and
achieve optimal estimation.
•We propose a nonparametric testing method under early stopping.
•Characterize computational limits, i.e., the optimal stopping time to
preserve statistical optimality.
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Figure 1:MSE can always be achieved earlier than the maximum power.

Nonparametric Testing under Early Stopping

•Consider the nonparametric model y = f (x) + ε, and the hypothesis
testing problem

H0 : f = f0 vs. H1 : f 6= f0,

where f0 is a known function.
•A distance-based test statistic is

Dn,t = ‖ft − f0‖2
n

•The sequence of iterates {ft}∞t=1 is generated as
ft+1 = ft − αt∇Ln(f ),

where ∇Ln(f ) = 1
nΣn

i=1(ft(xi)− yi)K(xi, ·) is the functional
gradient.

Theorem 1: Testing consistency

As long as n→∞ and t→∞, we have under H0,
Dn,t − µn,t

σn,t

d−→ N(0, 1).

Here µn,t = EH0[Dn,t|X ] and σ2
n,t = VarH0[Dn,t|X ].

•Testing rule is
φn,t = I(|Dn,t − µn,t| ≥ z1−α/2σn,t),

φn,t = 1⇐⇒ reject H0

Theorem 2: Power analysis

For any ε > 0, there exist positive constants Cε, tε and Nε such that
inf
t≥tε

inf
n≥Nε

inf
f∈B

‖f−f0‖n≥Cεdn,t

Pf(φn,t = 1|X) ≥ 1− ε, (high power)

where B = {f ∈ H : ‖f‖H ≤ C} for a constant C and Pf(·) is the
probability measure under f .

Early Stopping Rule for Testing

Minimax Optimal Testing at T ∗

At the iteration T ∗, the distance-based test achieves its optimal rate as
d∗n := dn,T ∗ � 1√

ηT∗
.

Polynomial kernel (PDK) Exponential kernel (EDK)

ηT ∗ n
4m

4m+1 n(log n)−
1
2p

d∗n n−
2m

4m+1 n−1/2(log n)
1
4p

Theorem 3: Sharpness of T ∗ for PDK and EDK

If t � T ∗ or t � T ∗, then there exists a positive constant C1 such
that, with probability approaching 1,

lim sup
n→∞

inf
f∈B

‖f−f0‖n≥C1d
∗
n

Pf(φn,t = 1|X) ≤ α. low power

Compare with Early Stopping in Estimation

In literature, [1] and [2] proposed the stopping rule to achieve minimax
optimal estimation as

•Estimation:
Bias-variance tradeoff

•Testing:
Bias-standard deviation
tradeoff
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Figure 2:(a), (b) are size and power for PDK; total iteration steps T = (n8/9)γ. (c),
(d) are size and power for EDK; total iteration steps T = (n/(logn)1/4)γ.
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