Early Stopping for Nonparametric Testing

Motivation

e Gradient Descent + Early Stopping |1, 2| can avoid over-fitting and
achieve optimal estimation.

e We propose a nonparametric testing method under early stopping.

e Characterize computational limits, i.e., the optimal stopping time to
preserve statistical optimality.
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Figure 1:MSE can always be achieved earlier than the maximum power.

Nonparametric Testing under Early Stopping

e Consider the nonparametric model y = f(x) + €, and the hypothesis
testing problem

Hy: f=fovs. Hi: [ # Jo,
where fy is a known function.

e A distance-based test statistic is

Dyi = | ft = follx

o The sequence of iterates { f;}:°, is generated as

fir1= fi — aVL,([),
where VL, (f) = 157 ( fe(z;)
eradient.

— ;) K (x;, -) is the functional

Theorem 1: Testing consistency

As long as n — oo and t — oo, we have under Hy,
Dn — Mn
Tt dy N, 1),
On.t

Here piny = Ep,[Dn| X] and o2, = Varg [D,, | X].

n,t

e Testing rule is

¢n,t — ](‘Dn,t — ,un,t| > Zl—a/ZUn,t)p
Ont = 1 < reject Hy
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Theorem 2: Power analysis

For any € > 0, there exist positive constants C., t. and V. such that

tlgtfg nigjfvg irelg Pt(pnt=1|X)>1—¢, (high power)

Hf_f()”nzcedn,t
where B={f € H : || f|lx < C} for a constant C' and P(-) is the

probability measure under f.

Early Stopping Rule for Testing
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@ Data-dependent early stopping rule
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This rule involves the empirical eigenvalues of kernel matrix.

Minimax Optimal Testing at 7™

At the iteration T™, the distance-based test achieves its optimal rate as
d;; = me* = 1

=
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Theorem 3: Sharpness of 7™ for PDK and EDK

Ift <T"ort> T then there exists a positive constant C; such
that, with probability approaching 1,

Pf(¢n,t — 1‘X) S .

low power
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Compare with Early Stopping in Estimation

[n literature, [1] and [2| proposed the stopping rule to achieve minimax
optimal estimation as
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T :=aremin{te N | — < — min{ 1, m; jt;
g | < ; {1, mfti }

Stopping rules

e Fistimation:
Bias-variance tradeoff

Variance of f;

o |esting:
Bias-standard deviation
tradeoft

0.201
0.157
)
N 0.10
N

0.051

0.001

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size

(@) (b)

0.201 1.001

0.151 0.751
Y
g =—0
S 0.101 -
_+_

0.051

0.00+ 0.001

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Sample Size Sample Size

(¢) (d)

Figure 2:(a), (b) are size and power for PDK: total iteration steps T = (n®°)?. (c),
(d) are size and power for EDK; total iteration steps T' = (n/(logn)1/4)7.
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