

Motivation

- Gradient Descent + Early Stopping [1, 2] can avoid over-fitting and achieve optimal **estimation**.
- We propose a nonparametric **testing** method under early stopping.
- Characterize computational limits, i.e., the optimal stopping time to preserve statistical optimality.

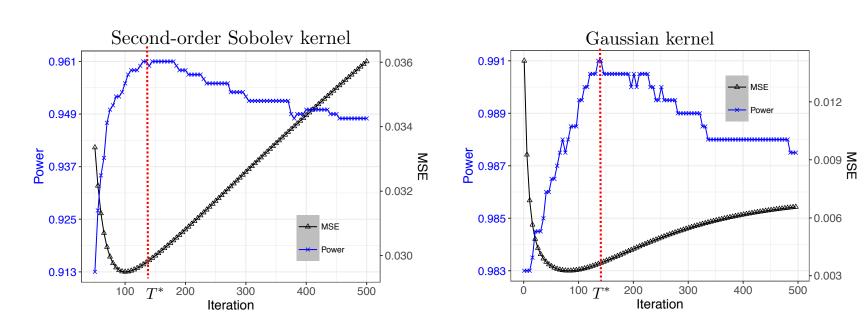


Figure 1:MSE can always be achieved earlier than the maximum power.

Nonparametric Testing under Early Stopping

• Consider the nonparametric model $y = f(x) + \epsilon$, and the hypothesis testing problem

$$H_0: f = f_0 \text{ vs. } H_1: f \neq f_0,$$

where f_0 is a known function.

• A distance-based test statistic is

$$D_{n,t} = \|f_t - f_0\|_n^2$$

• The sequence of iterates $\{f_t\}_{t=1}^{\infty}$ is generated as

$$f_{t+1} = f_t - \alpha_t \nabla \mathcal{L}_n(f),$$

where $\nabla \mathcal{L}_n(f) = \frac{1}{n} \sum_{i=1}^n (f_t(x_i) - y_i) K(x_i, \cdot)$ is the functional gradient.

Theorem 1: Testing consistency

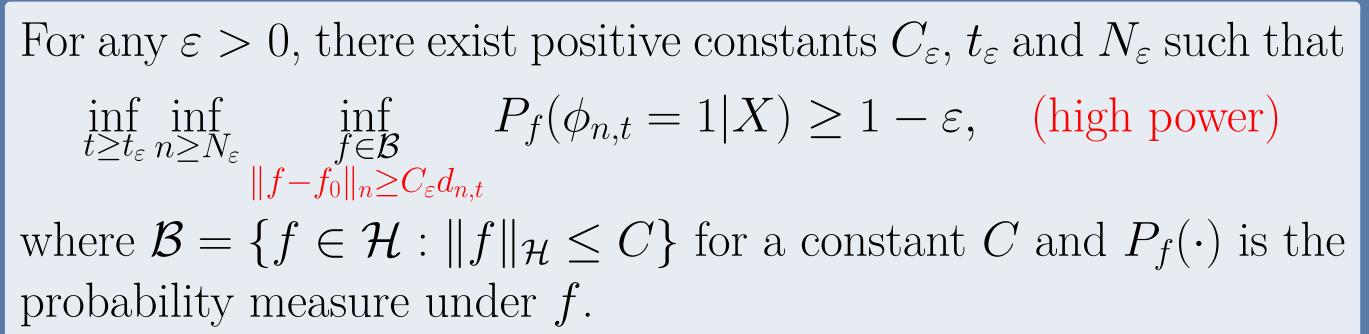
As long as
$$n \to \infty$$
 and $t \to \infty$, we have under H_0 ,

$$\frac{D_{n,t} - \mu_{n,t}}{\sigma_{n,t}} \xrightarrow{d} N(0, 1).$$
Here $\mu_{n,t} = \mathsf{E}_{H_0}[D_{n,t}|X]$ and $\sigma_{n,t}^2 = \mathsf{Var}_{H_0}[D_{n,t}|X].$
• Testing rule is
 $\phi_{n,t} = I(|D_{n,t} - \mu_{n,t}| \ge z_{1-\alpha/2}\sigma_{n,t}),$
 $\phi_{n,t} = 1 \iff \mathrm{reject} \ H_0$

Early Stopping for Nonparametric Testing

Meimei Liu¹ Guang Cheng²

Department of Statistical Science, Duke University¹, Department of Statistics, Purdue University²



Early Stopping Rule for Testing

$$d_{n,t}^{2} = \frac{1}{\eta_{t}} + \frac{\sigma_{n,t}}{\uparrow}$$
$$\uparrow$$
Bias² SD

 $\frac{1}{\eta_t} = \sum_{i=0}^t \alpha_i$ is the total step size, $\sigma_{n,t} \simeq \frac{1}{n} \sqrt{\sum_{i=1}^n \min\{1, \eta_t \widehat{\mu}_i\}}$ • Data-dependent early stopping rule

$$T^* := \arg\min\left\{t \in \mathbb{N} \mid \frac{1}{\eta_t} < \frac{1}{n} \sqrt{\sum_{i=1}^n \min\{1, \eta_t \widehat{\mu}_i\}}\right\}.$$

This rule involves the empirical eigenvalues of kernel matrix.

Minimax Optimal Testing at T^*

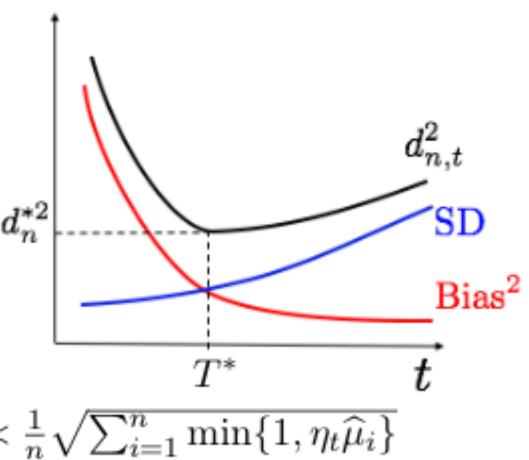
At the iteration T^* , the distance-based test achieves its optimal rate as $d_n^* := d_{n,T^*} \asymp \frac{1}{\sqrt{\eta_{T^*}}}.$

	Р	olynomial k	kernel (P	DK) Exp
	η_{T^*}	$n^{\overline{4}}$	$\frac{4m}{m+1}$	
	d_n^*	n^{-1}	$\frac{2m}{4m+1}$	\mathcal{N}
Theore	m 3:	Sharp	ness	of T^*

If $t \ll T^*$ or $t \gg T^*$, then there exists a positive constant C_1 such that, with probability approaching 1,

$$\limsup_{n \to \infty} \inf_{\substack{f \in \mathcal{B} \\ \|f - f_0\|_n \ge C_1 d_n^*}} P_f(\phi_{n,t} = 1|X) \le \alpha. \quad \text{low power}$$

Theorem 2: Power analysis



(EDK) (EDK)

$$rac{n(\log n)^{-rac{1}{2p}}}{n^{-1/2}(\log n)^{rac{1}{4p}}}$$

for PDK and EDK

Compare with Early Stopping in Estimation

In literature, [1] and [2] proposed the stopping rule to achieve minimax optimal estimation as

- Estimation: Bias-variance tradeoff
- Testing: Bias-standard deviation tradeoff

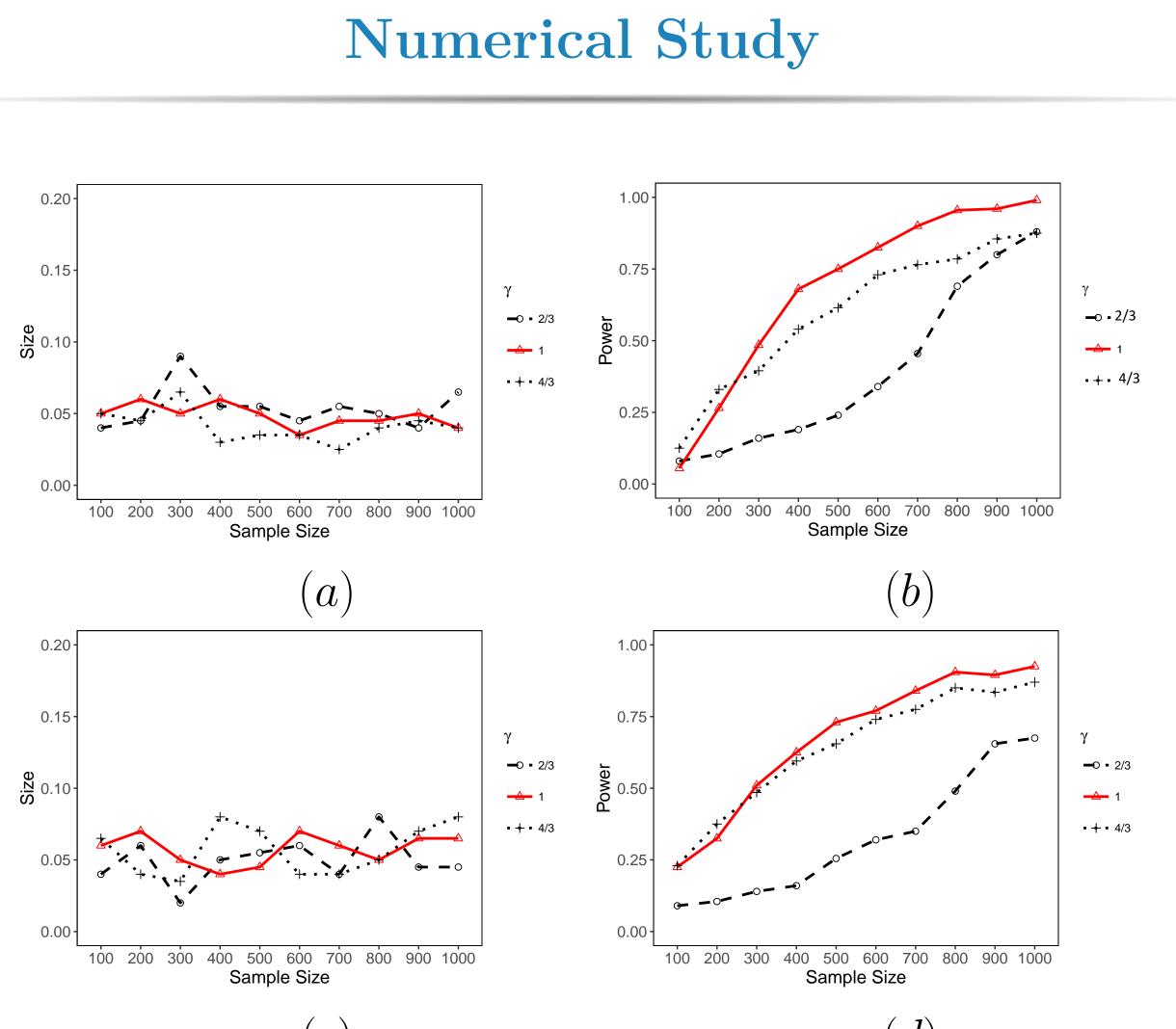
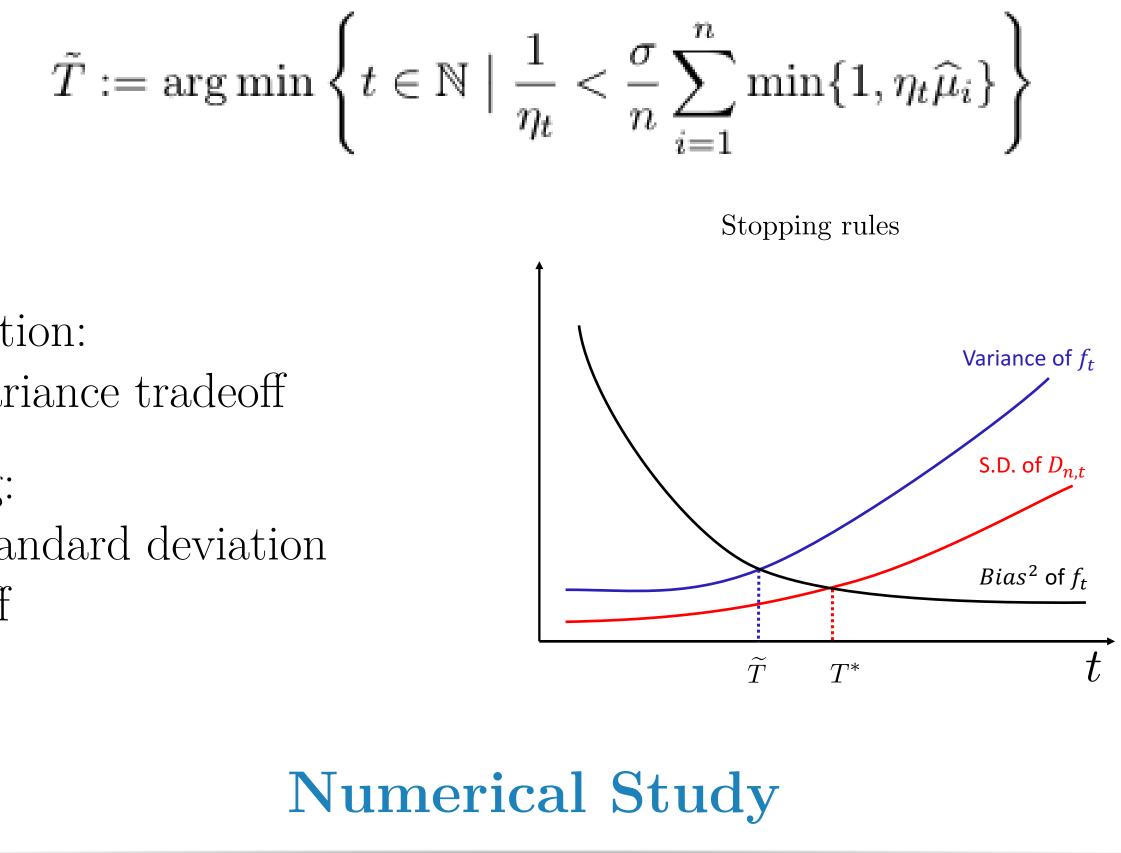


Figure 2:(a), (b) are size and power for PDK; total iteration steps $T = (n^{8/9})^{\gamma}$. (c), (d) are size and power for EDK; total iteration steps $T = (n/(logn)1/4)^{\gamma}$.

[1] Raskutti, Garvesh and Wainwright, Martin J and Yu, Bin. Early stopping and non-parametric regression: an optimal data-dependent stopping rule. Journal of Machine Learning Research, 15(1): 335-366, 2014. [2] Wei, Yuting and Yang, Fanny and Wainwright, Martin J. Early stopping for kernel boosting algorithms: A general analysis with localized complexities. NIPS, 6067-6077, 2017.



References