# Finite Time Analysis of Vector Autoregressive Models under Linear Restrictions

Yao Zheng

#### collaboration with Guang Cheng

Department of Statistics, Purdue University

Talk at Math, IUPUI

October 23, 2018

# Introduction

## The vector autoregressive (VAR) model

#### Vector autoregressive (VAR) model of order one:

$$X_{t+1} = AX_t + \eta_t, \quad t = 1, \dots, T,$$
 (1)

where

- $X_t \in \mathbb{R}^d$  is the observed *d*-dimensional time series
- A ∈ ℝ<sup>d×d</sup> is the unknown transition matrix (possible over-parametrization when d is even moderately large!)
- $\eta_t \in \mathbb{R}^d$  are *i.i.d.* innovations with mean zero
- T is the sample size/time horizon (asymptotic analysis:  $T \to \infty$ )
- Applications: e.g., economics and finance, energy forecasting, psychopathology, neuroscience, reinforcement learning, ...

## The problem of over-parameterization

... is more severe for general VAR(p) models:

$$X_{t+1} = A_1 X_t + A_2 X_{t-1} + \dots + A_p X_{t+1-p} + \eta_t,$$

Number of parameters =  $O(pd^2)$ 

 $\Rightarrow$  cannot provide reliable estimates and forecasts without further restrictions (Stock and Watson, 2001).

Literature: Taming the dimensionality of large VAR models

(D). Direct dimensionality reduction:

- Regularized estimation: Davis et al. (2015, JCGS), (Han et al., 2015, JMLR), (Basu and Michailidis, 2015, AoS), etc.
- Banded model: Guo et al. (2016, Biometrika)
- Network model: Zhu et al. (2017, AoS)
- Other parameter restrictions motivated by specific applications

(I). Indirect dimensionality reduction: low-rank structure, PCA, factor modelling,  $\dots$ 

We focus on direct dimensionality reduction in this paper.

What most existing work on (D) has in common:

(i) A particular sparsity or structural assumption is often imposed on the transition matrix  ${\cal A}$ 

e.g., exact sparsity, banded structure, certain network structure

(ii) There is an almost exclusive focus on stable processes

technically, this is to impose that the spectral radius  $\rho(A) < 1$ , or often even more stringently, the spectral norm  $||A||_2 < 1$ 

\*Denote the spectral radius of A by  $\rho(A) := \max\{|\lambda_1|, \ldots, |\lambda_d|\}$ , where  $\lambda_i$  are the eigenvalues of  $A \in \mathbb{R}^{d \times d}$ . Note that even when  $\rho(A) < 1$ ,  $||A||_2$  can be arbitrarily large for an asymmetric matrix A.

## Our objective

- to study large VAR models from a more general viewpoint, without being confined to any particular sparsity structure or to the stable regime

We provide a novel non-asymptotic (finite-time) analysis of the ordinary least squares (OLS) estimator for

- possibly unstable VAR models (applicable region:  $\rho(A) \leq 1 + c/T$ )
- under linear restrictions in the form of



often, we may simply use  $\mu = 0$ .

 $\Rightarrow$  note that (2) encompasses zero and equality restrictions

## Example 1: Banded VAR model of Guo et al. (2016, Biometrika)

Location plot and estimated transition matrix  $\hat{A}$ 



- Motivation: in practice, it is often sufficient to collect information from "neighbors"
- Note that the same reasoning can be applied to general graphical structures: the zero-nonzero pattern of A can be determined according to any practically motivated graph with d nodes

Example 2: Network VAR model of Zhu et al. (2017, AoS)

An example of both zero and equality restrictions



• To analyze users' time series data from large social networks, the network VAR model of Zhu et al. (2017, AoS) imposes that

(i) all diagonal entries of A are equal,

(ii) all nonzero off-diagonal entries of A are equal, and

(iii) the zero-nonzero pattern of A is known

(e.g.,  $a_{ij}$  is nonzero only if individual j follows individual i on the social network)

• But this model is essentially low-dimensional, as the number of unknown parameters is a fixed small number.

# Problem formulation

## General framework: Multivariate stochastic regression

- This includes VAR models as a special case

The unrestricted model:

$$\underbrace{Y_t}_{n\times 1} = \underbrace{A_*}_{n\times d} \underbrace{X_t}_{d\times 1} + \underbrace{\eta_t}_{n\times 1}.$$
(3)

- This becomes the VAR(1) model when  $Y_t = X_{t+1}$  and n = d.
- Note that  $(X_t, Y_t)$  are time-dependent.

### Imposing linear restrictions

• Let 
$$\beta_* = \operatorname{vec}(A'_*) \in \mathbb{R}^N$$
, where  $N = nd$ .

• Then the parameter space of a linearly restricted model can be defined as

$$\mathcal{L} = \{\beta \in \mathbb{R}^N : \underbrace{\mathcal{C}}_{(N-m) \times N} \beta = \underbrace{\mu}_{(N-m) \times 1} \},\$$

where C and  $\mu$  are known, rank(C) = N - m (representing N - m independent restrictions)

• To ease the notation, we restrict our attention to  $\mu = 0$  in this talk.

#### An equivalent form

Note that

$$\mathcal{L} = \{\beta \in \mathbb{R}^N : \underbrace{\mathcal{C}}_{(N-m) \times N} \beta = \underbrace{0}_{(N-m) \times 1} \}$$

has an equivalent, unrestricted parameterization:

$$\mathcal{L} = \{\underbrace{R}_{N \times m} \theta : \theta \in \mathbb{R}^m\}.$$

Specifically:

- Let  $\widetilde{\mathcal{C}}$  be an  $m \times N$  complement of  $\mathcal{C}$  such that  $\mathcal{C}_{\mathsf{full}} = (\widetilde{\mathcal{C}}', \mathcal{C}')'$  is invertible, and let  $\mathcal{C}_{\mathsf{full}}^{-1} = (R, \widetilde{R})$ , where R is an  $N \times m$  matrix.
- Note that if  $C\beta = 0$ , then  $\beta = C_{\text{full}}^{-1}C_{\text{full}}\beta = R\widetilde{C}\beta + \widetilde{R}C\beta = R\theta$ , where  $\theta = \widetilde{C}\beta$ . Conversely, if  $\beta = R\theta$ , then  $C\beta = CR\theta = 0$ . Thus, we have the above equivalence.

## Implications

- There exists a unique unrestricted  $\theta_* \in \mathbb{R}^m$  such that  $\beta_* = R\theta_*$ .
- Therefore, the original restricted model can be converted into a reparameterized unrestricted model.
- Special case: when  $R=I_N,$  there is no restriction at all, and  $\beta_*=\theta_*.$

How to encode restrictions via R or C?

#### Example 1 (Zero restriction):

- Suppose that the *i*-th element of  $\beta$  is restricted to zero: i.e.,  $\beta_i = 0$ .
- Then this can be encoded in R by setting the i-th row of R to zero.
- Alternatively, it can be built into  ${\mathcal C}$  by setting a row of  ${\mathcal C}$  to

$$(0,\ldots,0,1,0,\ldots,0)\in\mathbb{R}^N,$$

where the *i*-th entry is one.

How to encode restrictions via R or C?

Example 2 (Equality restriction):

- Consider the restriction that the *i*-th and *j*-th elements of  $\beta$  are equal: i.e.,  $\beta_i \beta_j = 0$ .
- Suppose that the value of β<sub>i</sub> = β<sub>j</sub> is θ<sub>k</sub>, the k-th element of θ. Then this restriction can be encoded in R by setting both the *i*-th and *j*-th rows of R to

$$(0,\ldots,0,1,0,\ldots,0)\in\mathbb{R}^m,$$

where the k-th entry is one.

• We may set a row of  $\mathcal C$  to the  $1 \times N$  vector c(i,j) whose  $\ell$ -th entry is

$$[c(i,j)]_{\ell} = 1(\ell = i) - 1(\ell = j),$$

where  $1(\cdot)$  is the indicator function.

The ordinary least squares (OLS) estimator

• Define  $T \times n$  matrices

$$Y = (Y_1, \dots, Y_T)', \quad E = (\eta_1, \dots, \eta_T)'$$

and  $T \times d$  matrix

$$X = (X_1, \ldots, X_T)'.$$

Then (3) has the matrix form

$$Y = XA'_* + E.$$

The ordinary least squares (OLS) estimator

• Moreover, let

$$y = \operatorname{vec}(Y), \quad \eta = \operatorname{vec}(E) \quad \text{and} \quad Z = (I_n \otimes X)R.$$

• By vectorization and reparameterization, we can write the linearly restricted model in vector form as

$$y = (I_n \otimes X)\beta_* + \eta = Z\theta_* + \eta.$$

- As a result, the OLS estimator of  $\beta_*$  for the restricted model can be defined as

$$\widehat{eta} = R\widehat{ heta}, \quad \text{where} \quad \widehat{m{ heta}} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^m} \|y - Z\theta\|^2.$$
 (4)

The ordinary least squares (OLS) estimator

To ensure the feasibility of (4), we assume that nT ≥ m.
 (note that Z ∈ ℝ<sup>nT×m</sup>; however, Z need not have full rank).

• Let 
$$R = (R'_1, \dots, R'_n)'$$
, where  $R_i$  are  $d imes m$  matrices. Then,

$$A_* = (I_n \otimes \theta'_*)\widetilde{R},$$

where  $\widetilde{R}$  is an  $mn \times d$  matrix:

$$\widetilde{R} = (R_1, \dots, R_n)'.$$

Hence, we can obtain the OLS estimator of A by

$$\widehat{A} = (I_n \otimes \widehat{\theta'})\widetilde{R}.$$

# General upper bound analysis – will be applied to VAR models later...

Key technical tool for upper bound analysis

Mendelson's small-ball method for time-dependent data (Simchowitz et al., 2018, COLT)

#### Why using this method?

- Asymptotic tools require substantially different approach to deal with stable and unstable processes  $\{X_t\}$ .
- Nonasymptotic tools usually rely on mixing conditions, which suffer from error bound degradation for unstable processes.
- The small-ball method helps us establish lower bounds of the Gram matrix X'X (or Z'Z) under very mild conditions, while dropping the stability assumption and avoiding reliance on mixing properties.

#### How to use the small-ball method?

- Formulate a small-ball condition
- Use this condition to control the lower tail behavior of the Gram matrix
- Derive estimation error bounds
- Verify the small-ball condition

Main idea of the small-ball method to lower-bound  $\lambda_{\min}(\sum_{t=1}^{T} X_t X_t^{\mathsf{T}})$ 

- a. Divide the data into size-k blocks, with the  $\ell\text{-th}$  block being  $\{X_{(\ell-1)k+1},\ldots,X_{\ell k}\}.$
- b. Lower-bound each  $\sum_{i=1}^{k} \langle X_{(\ell-1)k+i}, w \rangle^2 w.h.p.$  by (establishing) a block martingale small ball condition.
- c. Aggregate to get with probability at least  $1-\exp(-cT/k),$

$$\sum_{t=1}^{T} \langle X_t, w \rangle^2 \gtrsim T w^{\mathsf{T}} \Gamma_k w.$$

d. Strengthen the pointwise bound into a lower bound on  $\inf_{w \in S^{d-1}} \sum_{t=1}^{T} \langle X_t, w \rangle^2$  by the covering method.

#### Small-ball condition for dependent data

The block martingale small ball (BMSB) condition is defined as follows:

(i) Univariate case: For  $\{X_t\}_{t\geq 1}$  taking values in  $\mathbb{R}$  adapted to the filtration  $\{\mathcal{F}_t\}$ , we say that  $\{X_t\}$  satisfies the  $(k, \nu, \alpha)$ -BMSB condition if:

there exist an integer  $k \ge 1$  and universal constants  $\nu > 0$  and  $\alpha \in (0,1)$  such that for every integer  $s \ge 0$ ,

$$k^{-1}\sum_{t=1}^{k} \mathbb{P}(|X_{s+t}| \ge \nu \mid \mathcal{F}_s) \ge \alpha$$

with probability one.

Here, k is the block size.

## Small-ball condition for dependent data

(ii) Multivariate case: For  $\{X_t\}_{t\geq 1}$  taking values in  $\mathbb{R}^d$ , we say that  $\{X_t\}$  satisfies the  $(k, \Gamma_{\rm sb}, \alpha)$ -BMSB condition if:

there exists

$$0 \prec \Gamma_{\rm sb} \in \mathbb{R}^{d \times d}$$

such that, for every  $\omega \in \mathcal{S}^{d-1}$ , the univariate time series

$$\{\omega' X_t, t=1,2,\dots\}$$

satisfies the  $(k, \sqrt{w'\Gamma_{\rm sb}w}, \alpha)$ -BMSB condition.

Regularity conditions for upper-bound analysis

A1.  $\{X_t\}_{t=1}^T$  satisfies the  $(k, \Gamma_{sb}, \alpha)$ -BMSB condition.

- A2. For any  $\delta \in (0,1)$ , there exists  $\overline{\Gamma}_R = R'(I_n \otimes \overline{\Gamma})R$  dependent on  $\delta$  such that  $\mathbb{P}(Z'Z \not\preceq T\overline{\Gamma}_R) \leq \delta$ .
- A3. For every integer  $t \ge 1$ ,  $\eta_t \mid \mathcal{F}_t$  is mean-zero and  $\sigma^2$ -sub-Gaussian, where

$$\mathcal{F}_t = \sigma\{\eta_1, \ldots, \eta_{t-1}, X_1, \ldots, X_t\}.$$

Note that  $X_t \in \mathcal{F}_t$ .

General upper bound for  $\|\widehat{\beta} - \beta_*\| (= \|\widehat{A} - A_*\|_F)$ 

Theorem 1: Let  $\{(X_t, Y_t)\}_{t=1}^T$  be generated by the linearly restricted stochastic regression model. Fix  $\delta \in (0, 1)$ . Suppose that Assumptions A1–A3 hold,  $0 \prec \Gamma_{\rm sb} \preceq \overline{\Gamma}$ , and

$$T \ge \frac{9k}{\alpha^2} \left\{ m \log \frac{27}{\alpha} + \frac{1}{2} \log \det(\overline{\Gamma}_R \underline{\Gamma}_R^{-1}) + \log n + \log \frac{1}{\delta} \right\}. \quad (\star)$$

Then, with probability at least  $1 - 3\delta$ , we have

$$\begin{split} \|\widehat{\beta} - \beta_*\| \\ &\leq \frac{9\sigma}{\alpha} \left[ \frac{\lambda_{\max}(R\underline{\Gamma}_R^{-1}R')}{T} \left\{ 12m\log\frac{14}{\alpha} + 9\log\det(\overline{\Gamma}_R\underline{\Gamma}_R^{-1}) + 6\log\frac{1}{\delta} \right\} \right]^{1/2} \end{split}$$

General upper bound for  $\|\widehat{A}-A_*\|_2$ 

Proposition 1: Under the conditions of Theorem 1, with probability at least  $1 - 3\delta$ , we have

$$\begin{aligned} \|\widehat{A} - A_*\|_2 \\ &\leq \frac{9\sigma}{\alpha} \left[ \frac{\lambda_{\max}\left(\sum_{i=1}^n R_i \underline{\Gamma}_R^{-1} R_i'\right)}{T} \left\{ 12m \log \frac{14}{\alpha} + 9\log \det(\overline{\Gamma}_R \underline{\Gamma}_R^{-1}) + 6\log \frac{1}{\delta} \right\} \right]^{1/2}. \end{aligned}$$

# Linearly restricted VAR models

## Notations for the VAR(1) representation

• We consider the model with  $Y_t = X_{t+1} \in \mathbb{R}^d$ , i.e.,  $\{X_t\}_{t=1}^{T+1}$  generated by

$$X_{t+1} = A_* X_t + \eta_t, (5)$$

subject to

$$\beta_* = R\theta_*,$$

where  $\beta_* = \operatorname{vec}(A'_*) \in \mathbb{R}^{d^2}$ ,  $\theta_* \in \mathbb{R}^m$ ,  $R = (R'_1, \dots, R'_d)' \in \mathbb{R}^{d^2 \times m}$ , and  $R_i$  are  $d \times m$  matrices.  $\{X_t\}$  is adapted to the filtration

$$\mathcal{F}_t = \sigma\{\eta_1, \ldots, \eta_{t-1}\}.$$

#### Representative examples

#### Example 1 (VAR(p) model)

• Interestingly, VAR models of order  $p < \infty$  can be viewed as linearly restricted VAR(1) models. Consider the VAR(p) model

$$Z_{t+1} = A_{*1}Z_t + A_{*2}Z_{t-1} + \dots + A_{*p}Z_{t-p+1} + \varepsilon_t,$$
(6)

where  $Z_t, \varepsilon_t \in \mathbb{R}^{d_0}$ , and  $A_{*i} \in \mathbb{R}^{d_0 \times d_0}$  for  $i = 1, \dots, p$ .

• Let  $X_t = (Z'_t, Z'_{t-1}, \dots, Z'_{t-p+1})' \in \mathbb{R}^d$ ,  $\eta_t = (\varepsilon'_t, 0, \dots, 0)' \in \mathbb{R}^d$ , and

$$A_{*} = \begin{pmatrix} A_{*1} & \cdots & A_{*p-1} & A_{*p} \\ I_{d_{0}} & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & I_{d_{0}} & 0 \end{pmatrix} \in \mathbb{R}^{d \times d},$$
(7)

where  $d = d_0 p$ . As a result, (6) can be written exactly as the VAR(1) model in the previous slide.

#### Representative examples

#### Example 2 (Banded VAR model)

• Zero restrictions:

$$a_{*ij} = 0, \quad |i - j| > k_0,$$
 (8)

where the integer  $1 \leq k_0 \leq \lfloor (d-1)/2 \rfloor$  is called the bandwidth parameter.

• In this case, R is a block diagonal matrix:

$$R = \begin{pmatrix} R_{(1)} & 0 \\ & \ddots & \\ 0 & R_{(d)} \end{pmatrix} \in \mathbb{R}^{d^2 \times m},$$
(9)

Example 3 (Network VAR model)

#### Representative examples

Example 4 (Pure unit-root process)

- Consider  $A_* = \rho I$ , where  $\rho \in \mathbb{R}$  is the only unknown parameter.
- This can be imposed by setting  $R = (e'_1, \ldots, e'_d)' \in \mathbb{R}^{d^2}$ , where  $e_i$  is the  $d \times 1$  unit vector with the *i*-th being one.
- When ρ = 1, it becomes the pure unit-root process, a classic example of unstable VAR processes; e.g., the problem of testing A<sub>\*</sub> = I has been studied extensively in the asymptotic literature.
- Our non-asymptotic approach can precisely characterize the behavior of the estimator  $\hat{\rho}$  over a continuous range of  $|\rho| \in [0, 1 + c/T]$ .

Verification of regularity conditions in Theorem 1

We will replace Assumptions A1-A3 with the following:

A4. (i) The process  $\{X_t\}$  starts at t = 0, with  $X_0 = 0$ .

(ii) The innovations  $\{\eta_t\}$  are independent and  $N(0, \sigma^2 I_d)$ .

Assumption A4 paves the way to the unified analysis of stable and unstable processes via the finite-time controllability Gramian

$$\Gamma_t = \sum_{s=0}^{t-1} A_*^s (A_*')^s, \tag{10}$$

a key quantity closely related to  $var(X_t)$ .

Why do we need to fix  $X_0 = 0$ ?

Under this assumption, it holds

$$X_t = \eta_{t-1} + A_* \eta_{t-2} + \dots + A_*^{t-1} \eta_0 + A_*^t X_0 = \sum_{s=0}^{t-1} A_*^s \eta_{t-s-1}, \quad t \ge 1,$$

which yields

$$\operatorname{var}(X_t) = E(X_t X_t') = \sigma^2 \Gamma_t.$$
(11)

 This highlights a subtle but critical difference from the typical set-up in the asymptotic theory where X<sub>t</sub> starts at t = −∞, so that

$$X_t = \sum_{s=0}^{\infty} A^s_* \eta_{t-s-1}, \quad t \in \mathbb{Z},$$

which implies that  $\operatorname{var}(X_t) < \infty$  if and only if the spectral radius  $\rho(A_*) = \max\{|\lambda_1|, \ldots, |\lambda_d|\} < 1$  (when the process is stable), and if  $\rho(A_*) < 1$ , then  $\operatorname{var}(X_t) = \sigma^2 \sum_{s=0}^{\infty} A_*^s (A'_*)^s = \sigma^2 \lim_{t \to \infty} \Gamma_t$ .

- Lemma 1: Let  $\{X_t\}_{t=1}^{T+1}$  be generated by the linearly restricted VAR model. Under Assumption A4, we have the following results:
  - (i) for any  $1 \le k \le \lfloor T/2 \rfloor$ ,  $\{X_t\}_{t=1}^T$  satisfies the  $(2k, \Gamma_{sb}, 3/20)$ -BMSB condition, where  $\Gamma_{sb} = \sigma^2 \Gamma_k$ ; and
- (ii) for any  $\delta \in (0,1)$ , it holds that  $\mathbb{P}(Z'Z \not\preceq T\overline{\Gamma}_R) \leq \delta$ , where  $\overline{\Gamma}_R$  is defined as before with n = d and  $\overline{\Gamma} = \sigma^2 m \Gamma_T / \delta$ .

#### Applying the general result in Theorem 1

Theorem 1 revisited: Let  $\{(X_t, Y_t)\}_{t=1}^T$  be generated by the linearly restricted stochastic regression model. Fix  $\delta \in (0, 1)$ . Suppose that Assumptions A1–A3 hold,  $0 \prec \Gamma_{sb} \preceq \overline{\Gamma}$ , and

$$T \ge \frac{9k}{\alpha^2} \left\{ m \log \frac{27}{\alpha} + \frac{1}{2} \log \det(\overline{\Gamma}_R \underline{\Gamma}_R^{-1}) + \log n + \log \frac{1}{\delta} \right\}. \quad (\star)$$

Then, with probability at least  $1 - 3\delta$ , we have

$$\begin{split} \|\widehat{\beta} - \beta_*\| \\ &\leq \frac{9\sigma}{\alpha} \left[ \frac{\lambda_{\max}(R\underline{\Gamma}_R^{-1}R')}{T} \left\{ 12m \log \frac{14}{\alpha} + 9\log \det(\overline{\Gamma}_R\underline{\Gamma}_R^{-1}) + 6\log \frac{1}{\delta} \right\} \right]^{1/2}. \end{split}$$

By Lemma 1, the matrices  $\overline{\Gamma}_R$  and  $\underline{\Gamma}_R$  in Theorem 1 become

 $\overline{\Gamma}_R = \sigma^2 m R' (I_d \otimes \Gamma_T) R / \delta \quad \text{and} \quad \underline{\Gamma}_R = \sigma^2 R' (I_d \otimes \Gamma_k) R,$ where  $1 \leq k \leq \lfloor T/2 \rfloor$ . We need to verify the existence of k satisfying (\*).

#### Verifying the existence of k

$$\log \det(\overline{\Gamma}_R \underline{\Gamma}_R^{-1}) = m \log(m/\delta) + \underbrace{\log \det \left[ R'(I_d \otimes \Gamma_T) R\{R'(I_d \otimes \Gamma_k)R\}^{-1} \right]}_{\kappa_R(T,k)}.$$

We need to derive an explicit upper bound for  $\kappa_R(T,k)$ . Recall that

$$\Gamma_t = \sum_{s=0}^{t-1} A_*^s (A_*')^s.$$

Main idea:

- Since  $0 \prec I_d \preceq \Gamma_k \preceq \Gamma_T$ , we have  $\kappa_R(T,k) \leq \kappa_R(T,1)$ .
- Note that  $\Gamma_T$  behaves differently in stable and unstable regimes: if  $\rho(A_*) < 1$ , then  $\Gamma_T \preceq \Gamma_{\infty} = \lim_{T \to \infty} \Gamma_T < \infty$ , and therefore  $\kappa_B(T, 1) < \kappa_B(\infty, 1)$ .

However, if  $\rho(A_*) \ge 1$ , then  $\Gamma_{\infty}$  no longer exists, so, we need to carefully control the growth rate of  $\Gamma_T$  as T increases.

#### Verifying the existence of k

• ... to do so, we consider the Jordan decomposition:

$$A_* = SJS^{-1},\tag{12}$$

where J has L blocks with sizes

$$1\leq b_1,\ldots,b_L\leq d,$$

and both J and S are  $d \times d$  complex matrices. Let

$$b_{\max} = \max_{1 \le \ell \le L} b_\ell,$$

and denote the condition number of S by

$$\operatorname{cond}(S) = \left\{ \lambda_{\max}(S^*S) / \lambda_{\min}(S^*S) \right\}^{1/2},$$

where  $S^*$  is the conjugate transpose of S.

## Upper bound on $\kappa_R(\infty, 1) (\geq \kappa_R(\infty, k))$

Proposition 1: For any  $A_* \in \mathbb{R}^{d \times d}$ , we have the following results: (i) If  $\rho(A_*) \leq 1 + c/T$  for a fixed c > 0, then  $\kappa_R(T, 1) \lesssim m \{\log \operatorname{cond}(S) + \log d + b_{\max} \log T\}$ . (ii) In particular, if  $\rho(A_*) < 1$  and  $\sigma_{\max}(A_*) \leq C$  for a fixed C > 0, then  $\kappa_R(T, 1) \lesssim m$ .

Implication: Provided that  $\sigma_{\max}(A_*) \leq C$ , the results from Theorem 1 will be different for the stable regime ( $\rho(A_*) < 1$ ) and the unstable regime ( $1 \leq \rho(A_*) \leq 1 + c/T$ ) in both

- the feasible region for k (becomes larger)
- and the upper bound of  $\|\widehat{\beta} \beta_*\|$  (becomes smaller)

(as the upper bound of  $\kappa_R(T,k)$  becomes smaller)

By Proposition 1, we obtain the following sufficient conditions for  $(\star)$ :

$$k \lesssim \begin{cases} \frac{T}{m \left[\log\{md \operatorname{cond}(S)/\delta\} + b_{\max} \log T\right]}, & \text{if } \rho(A_*) \leq 1 + c/T, \\ \frac{T}{m \log(m/\delta) + \log d}, & \text{if } \rho(A_*) < 1 \text{ and } \sigma_{\max}(A_*) \leq C. \end{cases}$$

We refer to this condition as  $(\bigstar)$  in the following slides.

### Analysis of upper bounds in VAR model

Denote

$$\Gamma_{R,k} = R \left\{ R'(I_d \otimes \Gamma_k) R \right\}^{-1} R'.$$

Theorem 2: Let  $\{X_t\}_{t=1}^{T+1}$  be generated by the linearly restricted VAR model. Fix  $\delta \in (0, 1)$ . For any  $1 \le k \le \lfloor T/2 \rfloor$  satisfying ( $\bigstar$ ), under Assumption A4, we have the following results:

(i) If  $\rho(A_*) \leq 1 + c/T$  for a fixed c > 0, then, with probability at least  $1 - 3\delta$ , we have

$$\|\widehat{\beta} - \beta_*\| \lesssim \left(\lambda_{\max}(\Gamma_{R,k}) \frac{m \left[\log \left\{md \operatorname{cond}(S)/\delta\right\} + b_{\max} \log T\right]}{T}\right)^{1/2}$$

(ii) In particular, if  $\rho(A_*) < 1$  and  $\sigma_{\max}(A_*) \leq C$  for a fixed C > 0, then, with probability at least  $1 - 3\delta$ , we have

$$\|\widehat{\beta} - \beta_*\| \lesssim \left\{ \lambda_{\max}(\Gamma_{R,k}) \frac{m \log(m/\delta)}{T} \right\}^{1/2}$$

٠

Understanding the scale factor  $\lambda_{\max}(\Gamma_{R,k})$ 

This scale factor may be viewed as a low-dimensional property:

• The limiting distribution of  $\hat{\beta}$  under the assumptions that d is fixed (and so are m and  $A_*$ ) and  $\rho(A_*) < 1$  is

$$T^{1/2}(\widehat{\beta} - \beta_*) \to N(0, \underbrace{R\{R'(I_d \otimes \Gamma_\infty)R\}^{-1}R'}_{\lim_{k \to \infty} \lambda_{\max}(\Gamma_{R,k})}$$
(13)

in distribution as  $T \to \infty$ , where  $\Gamma_{\infty} = \lim_{k \to \infty} \Gamma_k$ .

• The strength of our non-asymptotic approach is signified by the preservation of this scale factor in the error bounds.

The key is to simultaneously bound Z'Z and  $Z'\eta$  through the Moore-Penrose pseudoinverse  $Z^{\dagger}$ . (Recall that  $Z^{\dagger} = (Z'Z)^{-1}Z'$  if  $Z'Z \succ 0$ )

## Insight from Theorem 2

Adding more restrictions will reduce the error bounds through not only the reduced model size m, but also the reduced scale factor  $\lambda_{\max}(\Gamma_{R,k})$ .

- To illustrate this, suppose that  $\beta_* = R\theta_* = R^{(1)}R^{(2)}\theta_*$ , where  $R^{(1)} \in \mathbb{R}^{d^2 \times \widetilde{m}}$  has rank  $\widetilde{m}$ , and  $R^{(2)} \in \mathbb{R}^{\widetilde{m} \times m}$  has rank m, with  $\widetilde{m} \ge m + 1$ .
- Then  $\mathcal{L}^{(1)} = \{ R^{(1)}\theta : \theta \in \mathbb{R}^{\tilde{m}} \} \supseteq \mathcal{L} = \{ R\theta : \theta \in \mathbb{R}^{m} \}.$
- If the estimation is conducted on the larger parameter space  $\mathcal{L}^{(1)}$ , then the scale factor in the error bound will become  $\lambda_{\max}(\Gamma_{R^{(1)},k})$ , and the (effective) model size will increase to  $\widetilde{m}$ .
- it can be shown that

$$\lambda_{\max}(\Gamma_{R,k}) \leq \lambda_{\max}(\Gamma_{R^{(1)},k}).$$

#### Asymptotic rates implied by Theorem 2

Note that

$$\lambda_{\max}(\Gamma_{R,k}) \le \lambda_{\max}\{R(R'R)^{-1}R'\} = \lambda_{\max}\{(R'R)^{-1}R'R\} = 1.$$

Corollary 1: Under the conditions of Theorem 2, the following results hold:

(i) If 
$$\rho(A_*) \leq 1 + c/T$$
 for a fixed  $c > 0$ , then  
$$\|\widehat{\beta} - \beta_*\| = O_p \left\{ \left( \frac{m \left[ \log \left\{ md \operatorname{cond}(S) \right\} + b_{\max} \log T \right]}{T} \right)^{1/2} \right\}.$$

(ii) In particular, if  $\rho(A_*) < 1$  and  $\sigma_{\max}(A_*) \leq C$  for a fixed C > 0, then

$$\|\widehat{\beta} - \beta_*\| = O_p \left\{ \left(\frac{m \log m}{T}\right)^{1/2} \right\}$$

٠

Strengthening Theorem 2: leveraging k

- Note that  $\lambda_{\max}(\Gamma_{R,k})$  is monotonic decreasing in k.
- By choosing the largest possible k, we can obtain the sharpest possible result from Theorem 2.
- We will capture the magnitude of  $\lambda_{\max}(\Gamma_{R,k})$  via  $\sigma_{\min}(A_*)$ , a measure of the least excitable mode of the underlying dynamics.
- This allows us to uncover a split between the slow and fast error rate regimes in terms of  $\sigma_{\min}(A_*).$

## Theorem 3

Fix  $\delta \in (0,1)$ , and suppose that the conditions of Theorem 2 hold.

(i) If  $\rho(A_*) \le 1 + c/T$  for a fixed c > 0, then we have the following results:

When

$$\sigma_{\min}(A_*) \leq 1 - \frac{c_1 m \left[\log \left\{ md \operatorname{cond}(S)/\delta \right\} + b_{\max} \log T \right]}{T}, \quad \text{(A1)}$$
where  $c_1 > 0$  is fixed, with probability at least  $1 - 3\delta$ , we have
$$\|\widehat{\beta} - \beta_*\| \lesssim \left( \frac{\{1 - \sigma_{\min}^2(A_*)\}m \left[\log \left\{ md \operatorname{cond}(S)/\delta \right\} + b_{\max} \log T \right]}{T} \right)^{1/2}$$
(S1)

and when the inequality in (A1) holds in the reverse direction, with probability at least  $1 - 3\delta$ , we have

$$\|\widehat{\beta} - \beta_*\| \lesssim \frac{m \left[\log \left\{md \operatorname{cond}(S)/\delta\right\} + b_{\max} \log T\right]}{T}.$$
 (F1)

#### Theorem 3 cont'd

 (ii) In particular, if ρ(A<sub>\*</sub>) < 1 and σ<sub>max</sub>(A<sub>\*</sub>) ≤ C for a fixed C > 0, then we have the following results: When

$$\sigma_{\min}(A_*) \le 1 - \frac{c_2 \{m \log(m/\delta) + \log d\}}{T},$$
 (A2)

where  $c_2 > 0$  is fixed, with probability at least  $1 - 3\delta$ , we have

$$\|\widehat{\beta} - \beta_*\| \lesssim \left[\frac{\{1 - \sigma_{\min}^2(A_*)\}m\log(m/\delta)}{T}\right]^{1/2}; \qquad (S2)$$

and when the inequality in (A2) holds in the reverse direction, with probability at least  $1 - 3\delta$ , we have

$$\|\widehat{\beta} - \beta_*\| \lesssim \frac{m \log(m/\delta)}{T}.$$
 (F2)

A simple example:  $A_* = \rho I_d$ 

Note that the smallest true model has size one, and hence we may fit any larger model with  $m \ge 1$ . Moreover, we have

$$\rho(A_*)=\sigma_{\min}(A_*)=|\rho|,\quad \mathrm{cond}(S)=1\quad \text{and}\quad b_{\max}=1.$$

Then, by Theorem 3:

# Analysis of lower bounds

#### Notations

For a fixed  $\bar{\rho} > 0$ , we consider the subspace of  $\theta$  such that the spectral radius of  $A(\theta)$  is bounded above by  $\bar{\rho}$ , i.e.,

$$\Theta(\bar{\rho}) = \{\theta \in \mathbb{R}^m : \rho\{A(\theta)\} \le \bar{\rho}\}.$$

Then, the corresponding linearly restricted subspace of  $\beta$  is

$$\mathcal{L}(\bar{\rho}) = \{ R\theta : \theta \in \Theta(\bar{\rho}) \}.$$

Denote by  $\mathbb{P}_{\theta}^{(T)}$  the distribution of the sample  $(X_1, \ldots, X_{T+1})$  on the space  $(\mathcal{X}^{T+1}, \mathcal{F}_{T+1})$ .

#### Analysis of lower bounds

Theorem 4: Suppose that  $\{X_t\}_{t=1}^{T+1}$  follow the VAR model  $X_{t+1} = AX_t + \eta_t$ , with linear restrictions defined previously, and Assumption A4 holds. Fix  $\delta \in (0, 1/4)$  and  $\bar{\rho} > 0$ . Let

$$\gamma_T(\bar{\rho}) = \sum_{s=0}^{T-1} \bar{\rho}^{2s}$$

Then, for any  $\epsilon \in (0, \bar{\rho}/4]$ , we have

$$\inf_{\widehat{\beta}} \sup_{\theta \in \Theta(\overline{\rho})} \mathbb{P}_{\theta}^{(T)} \left\{ \|\widehat{\beta} - \beta\| \ge \epsilon \right\} \ge \delta,$$

where the infimum is taken over all estimators of  $\beta$  subject to  $\beta \in \{R\theta : \theta \in \mathbb{R}^m\}$ , for any T such that

$$T\gamma_T(\bar{\rho}) \lesssim \frac{m + \log(1/\delta)}{\epsilon^2}.$$

Corollary 2: The minimax rates of estimation over  $\beta \in \mathcal{L}(\bar{\rho})$  in different stability regimes are as follows:

(i) 
$$\sqrt{(1-\bar{\rho}^2)m/T}$$
, if  $\bar{\rho} \in (0, \sqrt{1-1/T})$ ;  
(ii)  $T^{-1}\sqrt{m}$ , if  $\bar{\rho} \in [\sqrt{1-1/T}, 1+c/T]$  for a fixed  $c > 0$ ; and  
(iii)  $\bar{\rho}^{-T}\sqrt{(\bar{\rho}^2-1)m/T}$ , if  $\bar{\rho} \in (1+c/T,\infty)$ .

## Discussion

...

The following directions are worth exploring in the future:

- The small-ball method is known for its capability to accommodate heavy tailed data. It may be possible to drop the normality assumption of the innovations.
- In addition, one may consider the recovery of unknown restriction patterns by methods such as information criteria or regularization, e.g., the fussed lasso (Ke et al., 2015).
- Similar non-asymptotic theory for possibly unstable, low rank (Ahn and Reinsel, 1988; Negahban and Wainwright, 2011) or cointegrated (Onatski and Wang, 2018) VAR models, which would be useful for high dimensional inference.

#### References I

- Ahn, S. K. and Reinsel, G. C. (1988). Nested reduced-rank autogressive models for multiple time series. Journal of the American Statistical Association, 83:849–856.
- Basu, S. and Michailidis, G. (2015). Regularized estimation in sparse high-dimensional time series models. *The Annals of Statistics*, 43:1535–1567.
- Davis, R. A., Zang, P., and Zheng, T. (2015). Sparse vector autoregressive modeling. Journal of Computational and Graphical Statistics, 25:1077–1096.
- Guo, S., Wang, Y., and Yao, Q. (2016). High-dimensional and banded vector autoregressions. *Biometrika*, 103:889–903.
- Han, F., Lu, H., and Liu, H. (2015). A direct estimation of high dimensional stationary vector autoregressions. *Journal of Machine Learning Research*, 16:3115–3150.
- Ke, Z. T., Fan, J., and Wu, Y. (2015). Homogeneity pursuit. Journal of the American Statistical Association, 110:175–194.
- Negahban, S. and Wainwright, M. J. (2011). Estimation of (near) low-rank matrices with noise and high-dimensional scaling. *The Annals of Statistics*, 39:1069–1097.
- Onatski, A. and Wang, C. (2018). Alternative asymptotics for cointegration tests in large VARs. *Econometrica*, 86:1465–1478.
- Simchowitz, M., Mania, H., Tu, S., Jordan, M., and Recht, B. (2018). Learning without mixing: Towards a sharp analysis of linear system identification. In *Proceedings of Machine Learning Research*, volume 75, pages 439–473. 31st Annual Conference on Learning Theory.
- Stock, J. H. and Watson, M. W. (2001). Vector autoregressions. Journal of Economic Perspectives, 15:101–115.
- Zhu, X., Pan, R., Li, G., Liu, Y., and Wang, H. (2017). Network vector autoregression. The Annals of Statistics, 45:1096–1123.

# Thank you!