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The vector autoregressive (VAR) model

Vector autoregressive (VAR) model of order one:
Xpp = AX, +m,, t=1,...,T, (1)
where

e X, c R? is the observed d-dimensional time series

® A € R s the unknown transition matrix (possible

over-parametrization when d is even moderately large!)
e 7, € R? are i.i.d. innovations with mean zero

e T is the sample size/time horizon (asymptotic analysis: 7' — o)

Applications: e.g., economics and finance, energy forecasting,

psychopathology, neuroscience, reinforcement learning, ...
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The problem of over-parameterization

. is more severe for general VAR(p) models:
Xy =AXe + X+ +FAX e, + 1,

Number of parameters = O(pd?)

=> cannot provide reliable estimates and forecasts without
further restrictions (Stock and Watson, 2001).

4/56



Literature: Taming the dimensionality of large VAR models

(D). Direct dimensionality reduction:

® Regularized estimation: Davis et al. (2015, JCGS), (Han et al.,
2015, JMLR), (Basu and Michailidis, 2015, AoS), etc.

Banded model: Guo et al. (2016, Biometrika)
e Network model: Zhu et al. (2017, AoS)

e Other parameter restrictions motivated by specific applications

(1). Indirect dimensionality reduction: low-rank structure, PCA, factor

modelling, ...
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What most existing work on (D) has in common:

(i) A particular sparsity or structural assumption is often imposed on

the transition matrix A

e.g., exact sparsity, banded structure, certain network structure

(i) There is an almost exclusive focus on stable processes

technically, this is to impose that the spectral radius p(A) < 1, or
often even more stringently, the spectral norm [|A[, < 1

*Denote the spectral radius of A by p(A) := max{|A1|,..., | a|}, where \; are
|A|l2 can be

the eigenvalues of A € R**?, Note that even when p(A) < 1,

arbitrarily large for an asymmetric matrix A.
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Our objective
— to study large VAR models from a more general viewpoint, without being confined to any
particular sparsity structure or to the stable regime

We provide a novel non-asymptotic (finite-time) analysis of the ordinary
least squares (OLS) estimator for

e possibly unstable VAR models (applicable region: p(A) <14 ¢/T)

e under linear restrictions in the form of

N vec(A) = p (2)

known restriction matrix stacking the rows of A known vector

often, we may simply use p = 0.

= note that (2) encompasses zero and equality restrictions
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Example 1: Banded VAR model of Guo et al. (2016, Biometrika)

Location plot and estimated transition matrix A

e Motivation: in practice, it is often sufficient to collect information

from “neighbors”

e Note that the same reasoning can be applied to general graphical
structures: the zero-nonzero pattern of A can be determined

according to any practically motivated graph with d nodes
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Example 2: Network VAR model of Zhu et al. (2017, AoS)

An example of both zero and equality restrictions
0 n
0O -~

00‘ o
onﬂ

(2]

(2)

e To analyze users’ time series data from large social networks, the
network VAR model of Zhu et al. (2017, AoS) imposes that

(i) all diagonal entries of A are equal,

(i) all nonzero off-diagonal entries of A are equal, and

(iii) the zero-nonzero pattern of A is known

(e.g., a;; is nonzero only if individual j follows individual ¢ on the
social network)

e But this model is essentially low-dimensional, as the number of
unknown parameters is a fixed small number.
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Problem formulation

10/56



General framework: Multivariate stochastic regression

— This includes VAR models as a special case

The unrestricted model:

Y, = A, X, + (3)
~—~ N~
nx1 nxd dx1 nx1

® This becomes the VAR(1) model when Y; = X,;, and n =d.

e Note that (X;,Y;) are time-dependent.
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Imposing linear restrictions

e Let 3, =vec(A.) € RV, where N = nd.

® Then the parameter space of a linearly restricted model can be
defined as

L={BeRY: C pB= \’f/}’

(N—m)xN (N—m)x1

where C and i are known, rank(C) = N —m (representing N —m

independent restrictions)

® To ease the notation, we restrict our attention to p = 0 in this talk.
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An equivalent form

Note that
_ N . _
L={BeRY: C pB= _0 '}

(N—m)xN (N—m)x1
has an equivalent, unrestricted parameterization:
L={ R 0:0cR"}.
~—~—
Nxm
Specifically:
e letCbeanmx N complement of C such that Cq, = (CN’,C’)’ is
invertible, and let C;,' = (R, R), where R is an N x m matrix.

e Note that if C8 =0, then 8 = C;!Cou3 = RCS + RC = RH, where
0= 5B. Conversely, if 3 = R0, then C5 =CRA = 0. Thus, we have

the above equivalence.
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Implications

e There exists a unique unrestricted 6, € R™ such that 3, = R0,.

e Therefore, the original restricted model can be converted into a

reparameterized unrestricted model.

® Special case: when R = I, there is no restriction at all, and
B =10,.
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How to encode restrictions via R or C?

Example 1 (Zero restriction):

e Suppose that the i-th element of S is restricted to zero: i.e., §; = 0.
e Then this can be encoded in R by setting the i-th row of R to zero.

e Alternatively, it can be built into C by setting a row of C to
0,...,0,1,0,...,0) € RN,

where the i-th entry is one.
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How to encode restrictions via R or C?
Example 2 (Equality restriction):

e Consider the restriction that the i-th and j-th elements of /3 are
equal: i.e., 5; — B; = 0.

e Suppose that the value of §; = §; is ), the k-th element of 6.
Then this restriction can be encoded in R by setting both the i-th
and j-th rows of R to

(0,...,0,1,0,...,0) € R™,

where the k-th entry is one.

e \We may set a row of C to the 1 x N vector (7, j) whose ¢-th entry is
[e(i, )]e = 1€ = 1) = 1(£ = j),

where 1(-) is the indicator function.
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The ordinary least squares (OLS) estimator

e Define T' x n matrices

Y:(}/lw'wYT)’v E:(nlﬂ

and T x d matrix
X =(X,...,Xr)"

Then (3) has the matrix form

Y =XA +E.

777T),
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The ordinary least squares (OLS) estimator

e Moreover, let

y=vec(Y), n=vec(E) and Z=(I,®X)R.

e By vectorization and reparameterization, we can write the linearly

restricted model in vector form as

y= I, @X)s.+n=20.+n.

e As a result, the OLS estimator of 3, for the restricted model can be

defined as

B=RO, where 0=argmin|y— Z0|>. (4)
QERWL
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The ordinary least squares (OLS) estimator

® To ensure the feasibility of (4), we assume that nT > m.

(note that Z € R"T*™: however, Z need not have full rank).

e let R=(R),...,R), where R; are d x m matrices. Then,

A, =(I,®0,)R,

where R is an mn x d matrix:
E = (Rla .. .,Rn)/.
Hence, we can obtain the OLS estimator of A by

A=(I,®0)R.
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General upper bound analysis
— will be applied to VAR models later...
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Key technical tool for upper bound analysis

Mendelson's small-ball method for time-dependent data (Simchowitz
et al., 2018, COLT)

Why using this method?

e Asymptotic tools require substantially different approach to deal
with stable and unstable processes {X,}.

e Nonasymptotic tools usually rely on mixing conditions, which suffer
from error bound degradation for unstable processes.

e The small-ball method helps us establish lower bounds of the Gram
matrix X'X (or Z'Z) under very mild conditions, while dropping the
stability assumption and avoiding reliance on mixing properties.
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How to use the small-ball method?

Formulate a small-ball condition

Use this condition to control the lower tail behavior of the Gram

matrix

e Derive estimation error bounds

Verify the small-ball condition
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Main idea of the small-ball method to lower-bound )\min(thzl X X))

a. Divide the data into size-k blocks, with the ¢-th block being
{X(Zfl)k+17 ce 7Xlk}-

b. Lower-bound each 3% (X, 1)r4s,w)? w.h.p. by (establishing) a
block martingale small ball condition.

c. Aggregate to get with probability at least 1 — exp(—cT'/k),

T
Z(Xt,w>2 > Tw'Tyw.

t=1

d. Strengthen the pointwise bound into a lower bound on
inf,,cgi1 ZtT:l<Xt,w>2 by the covering method.
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Small-ball condition for dependent data

The block martingale small ball (BMSB) condition is defined as follows:

(i) Univariate case: For {X,},>; taking values in R adapted to the
filtration {F;}, we say that {X,} satisfies the (k,, a)-BMSB
condition if:

there exist an integer k > 1 and universal constants and

a € (0, 1) such that for every integer s > 0,
k ZP(|Xs+t| > |F)>a
t=1

with probability one.

Here, k is the block size.
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Small-ball condition for dependent data

(ii) Multivariate case: For {X,};>; taking values in R?, we say that
{X,} satisfies the (k, 1., a)-BMSB condition if:

there exists
c Rdxd

such that, for every w € S, the univariate time series
{WX,t=1,2,...}
satisfies the (k,v/w'l ., w, «)-BMSB condition.
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Regularity conditions for upper-bound analysis

Al. {X,}]., satisfies the (k, g, «)-BMSB condition.

A2. For any § € (0,1), there exists 'y, = R'(I,, ® I') R dependent on &
such that P(Z'Z A TTr) < 4.

A3. For every integer t > 1, n, | F; is mean-zero and o2-sub-Gaussian,

where
Ft = U{nl,...,nt_l,Xl,...,Xt}.

Note that X, € F;.
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General upper bound for |3 — B,/|(= || A — A.||r)

Theorem 1: Let {(X,,Y;)}_, be generated by the linearly restricted
stochastic regression model. Fix § € (0,1). Suppose that Assumptions
AIl-A3 hold, 0 < Ty, < T, and

9%k

2 1 — 1
T> ?{mlogg+§logdet(FRL;1)+logn+log5}. (*)

Then, with probability at least 1 — 39, we have

A R 14 _ 1177
< 97 {ma"(RRR) {12mlog — +9logdet(TxLL") + 610g7H .
o T « )
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General upper bound for ||[A — A, ||

Proposition 1: Under the conditions of Theorem 1, with probability at

least 1 — 36, we have

14— A. |2
90 [Amax (30, RI'RY) 14 1"
< 20 | Amax i:r} =R {12m log — + 9logdet(T'zxL';") + 6log 5 }} .
a a
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Linearly restricted VAR models
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Notations for the VAR(1) representation

® We consider the model with Y, = X, ; € R%, ie, {X,}/}
generated by
X1 = A X+, (5)

subject to
ﬂ* = Re*;

where 3, = vec(A’) e R”, 0, e R™, R= (R],...,R,) € R¥"*m,
and R; are d X m matrices. {X,} is adapted to the filtration

]:t = 0{7717 .. ant—l}'
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Representative examples

Example 1 (VAR(p) model)

® Interestingly, VAR models of order p < oo can be viewed as linearly
restricted VAR(1) models. Consider the VAR(p) model

v =AaZi+AnZ -+ ApZipia + e, (6)

where Z,,c, € R%, and A,; € R¥>d fori=1,...,p.

o let X, =(Z,Z,_,,.. '7Zt,—p+1)/ eRY, = (£,,0,...,0) € RY,
and
A*l M A*p—l A*p
) 0 0
A, = ) . € R4, (7)
0o - I, 0

where d = dyp. As a result, (6) can be written exactly as the
VAR(1) model in the previous slide.
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Representative examples

Example 2 (Banded VAR model)

® Zero restrictions:
a*ij = 0, |Z — ]| > k07 (8)

where the integer 1 < ko < |(d — 1)/2] is called the bandwidth
parameter.
® In this case, R is a block diagonal matrix:
R= e RT*™, (9)
0 R
Example 3 (Network VAR model)
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Representative examples

Example 4 (Pure unit-root process)

e Consider A, = pl, where p € R is the only unknown parameter.

e This can be imposed by setting R = (¢}, ...,¢,) € R” where ¢, is
the d x 1 unit vector with the i-th being one.

® When p =1, it becomes the pure unit-root process, a classic
example of unstable VAR processes; e.g., the problem of testing
A, = I has been studied extensively in the asymptotic literature.

e Our non-asymptotic approach can precisely characterize the behavior
of the estimator p over a continuous range of |p| € [0,1 + ¢/T].
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Verification of regularity conditions in Theorem 1

We will replace Assumptions A1-A3 with the following:
A4. (i) The process {X;} starts at t = 0, with X, = 0.

(i) The innovations {7, } are independent and N(0,021;).

Assumption A4 paves the way to the unified analysis of stable and
unstable processes via the finite-time controllability Gramian

t—1
Tp=) A(A)", (10)
s=0

a key quantity closely related to var(X,).
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Why do we need to fix Xy =07

e Under this assumption, it holds
t—1
Xe=ma+AM o+ +Ai_1770 +AiXo = ZAint—s—ly t>1,
s=0

which yields
Var(Xt) = E(Xth) = 0_21-\1&. (11)

e This highlights a subtle but critical difference from the typical set-up
in the asymptotic theory where X, starts at £ = —o0, so that

X, = ZAint—s—la t€Z,
s=0

which implies that var(X;) < oo if and only if the spectral radius
p(A,) = max{|\|,..., | 4|} <1 (when the process is stable), and if
p(A.) <1, then var(X,) =02y 0 A%(AL)* = 0 lim, ., ;.
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Verifying Assumptions A1-A3

Lemma 1: Let {X,}; ' be generated by the linearly restricted VAR
model. Under Assumption A4, we have the following results:
(i) forany 1 <k <|T/2|, {X,}£, satisfies the (2k,T,,3/20)-BMSB
condition, where I'y, = o°T';,; and
(ii) for any & € (0,1), it holds that P(Z'Z # TTr) < 4, where L'y, is
defined as before withn = d and T = o*mI' /4.
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Applying the general result in Theorem 1

Theorem 1 revisited: Let {(X,,Y;)}._, be generated by the linearly
restricted stochastic regression model. Fix 6 € (0,1). Suppose that
Assumptions AI-A3 hold, 0 < T'y, < T, and

9 27 1 . 1
T> 2 {mloga + ilogdet(FRle) +1ogn—|—log§}. (%)

Then, with probability at least 1 — 3§, we have

18 = Bl
95 [Aumax (RL 'R 14 T "
<22 Amax (R R') 12mlog — + 9logdet(T'z',,") + 6log ~ :
oY T o 8

By Lemma 1, the matrices ' and [, in Theorem 1 become
FR :szR'([d@)FT)R/(; and ER :UZR/([(1®F )R7
where 1 < k < |T/2].
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Verifying the existence of k

log det(TxL';") = mlog(m/8)+log det [R’(Id ®Tr)R{R (I, ® rk)R}*l] .

kR (T,k)

We need to derive an explicit upper bound for kz(T, k). Recall that
t—1
Ft = ZAi(A;)S
s=0

Main idea:
® Since 0 < Id j Fk j FT: we have l‘iR(T’ k) S IQZR(T’7 1)

® Note that I'r behaves differently in stable and unstable regimes: if
p(A,) <1, then Ty < T, =limy_, ., '+ < 00, and therefore
kr(T,1) < kr(oo,1).

However, if p(A.) > 1, then T, no longer exists, so, we need to

carefully control the growth rate of I'r as T increases.
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Verifying the existence of k

e ... to do so, we consider the Jordan decomposition:
A, =SJS™, (12)
where J has L blocks with sizes
1<by,...,b <d,
and both J and S are d x d complex matrices. Let
binax = 11;1%)% by,
and denote the condition number of S by
cond(S) = {Amax (5°S)/Amin(5°5)}'/?

where S* is the conjugate transpose of S.
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Upper bound on kg(oo, 1)(> kr(oo, k))

Proposition 1: For any A, € R*™<, we have the following results:

(i) If p(A.) <1+ ¢/T for a fixed ¢ > 0, then
kr(T,1) < m{logcond(S) + logd + by, logT} .
(ii) In particular, if p(A.) < 1 and 0,.x(A.) < C for a fixed C' > 0, then

kr(T,1) < m.

Implication: Provided that o,,.,(A4.) < C, the results from Theorem 1
will be different for the stable regime (p(A.) < 1) and the unstable
regime (1 < p(A,) <1+ ¢/T) in both

e the feasible region for k

e and the upper bound of ||B— Ball
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Feasible region for k

By Proposition 1, we obtain the following sufficient conditions for (x):

T
b < m [log{md cond(S)/0} + byax log T]’
~ T
mlog(m/d) + logd’

if p(A.) <1+ ¢/T,

if p(A.) <1 and 0p..(A4.) <C.

We refer to this condition as (%) in the following slides.
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Analysis of upper bounds in VAR model

Denote
Tpe=R{R(I,®T,)R} 'R

Theorem 2: Let {X,}/' be generated by the linearly restricted VAR
model. Fix§ € (0,1). For any 1 < k < |T/2]| satisfying (% ), under
Assumption A4, we have the following results:
(i) If p(A.) <14 ¢/T for a fixed ¢ > 0, then, with probability at least
1 — 39, we have

= m [log {md cond(S)/6} + buax log T]\ />
155115 (Ane(Ts) - )

(i) In particular, if p(A.) < 1 and o max(AL) < C for a fixed C > 0,
then, with probability at least 1 — 39, we have

mmamw?”Q

18— 511 % {0
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Understanding the scale factor A\yax(I'rk)

This scale factor may be viewed as a low-dimensional property:

e The limiting distribution of B under the assumptions that d is fixed
(and so are m and A,) and p(4,) <1is

TY2(B — B.) = N(0, R{R (I, ® To)R} ' R') (13)

limg oo Amax (TR, k)

in distribution as T — oo, where I' oo = limy_, . [').

® The strength of our non-asymptotic approach is signified by the
preservation of this scale factor in the error bounds.

The key is to simultaneously bound Z’Z and Z’'n through the
Moore-Penrose pseudoinverse ZT. (Recall that ZT = (Z2'2)~* 2" if
2'Z = 0)
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Insight from Theorem 2

Adding more restrictions will reduce the error bounds through not only
the reduced model size m, but also the reduced scale factor Ao (T x)-

e To illustrate this, suppose that 8, = RI, = RV R®4,, where
RMW € R¥*™ has rank 7, and R® € R™*™ has rank m, with
m>m+ 1.

o Then L& = {RWY:0 € R"} D L ={RO:0 € R™}.

e If the estimation is conducted on the larger parameter space £,
then the scale factor in the error bound will become )\maX(I‘Rm’k),
and the (effective) model size will increase to m.

® it can be shown that

)\max(FR,k) S )\max(PR(l) Yk)'
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Asymptotic rates implied by Theorem 2

Note that

Amax(FR,k) S Amax{R(R/R)_IRI} = )\max{(R/R)_lRlR} = 1

Corollary 1: Under the conditions of Theorem 2, the following results
hold:

(i) If p(A.) <14 ¢/T for a fixed ¢ > 0, then

I _ m [log {md cond(S)} + buax log T]\ /?
IIB—,B*I—Op{( : ) }

(ii) In particular, if p(A.) < 1 and 0,.x(A.) < C for a fixed C' > 0, then

~ _ mlogm\ />
Iﬁ—ﬁ*ll—Op{< ) }
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Strengthening Theorem 2: leveraging k

e Note that An..(I'r %) is monotonic decreasing in k.

e By choosing the largest possible k, we can obtain the sharpest

possible result from Theorem 2.

e We will capture the magnitude of A\,..(T'r 1) Via omin(4.), a
measure of the least excitable mode of the underlying dynamics.

e This allows us to uncover a split between the slow and fast error rate
regimes in terms of o, (A.).
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Theorem 3

Fix § € (0,1), and suppose that the conditions of Theorem 2 hold.

(i) If p(A.) <14 ¢/T for a fixed ¢ > 0, then we have the following
results:
When
cym [log {mdcond(S)/6} + bpax log T
T )
where ¢, > 0 is fixed, with probability at least 1 — 36, we have
=B < ({1 — o2, (A.)}m [log {md cond(S)/8} + bumax logT])l/2 .

O-min(A*) S 1-— (A]‘)

T )
(S1)
and when the inequality in (A1) holds in the reverse direction, with
probability at least 1 — 39, we have

m [log {md cond(S)/0} + buayx log T

18- 8.1 5 ¥ (Y
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Theorem 3 cont'd

(ii) In particular, if p(A,) <1 and 0.« (A.) < C for a fixed C > 0,
then we have the following results:

Wh
e co{mlog(m/éd) + logd}

T )
where ¢, > 0 is fixed, with probability at least 1 — 39, we have

2 1/2
18- ) 5 | Tl mlostn/O) 2, o)

Tain(A,) <1 — (A2)

and when the inequality in (A2) holds in the reverse direction, with
probability at least 1 — 39, we have

18 - 5] 5 T0B/O). (F2)
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A simple example: A, = ply

Note that the smallest true model has size one, and hence we may fit any

larger model with m > 1. Moreover, we have
p(AL) = omin(AL) = |p|, cond(S) =1 and by.. =1

Then, by Theorem 3:

(a) If |p| <1 —=0O{(mlogm +logd)/T}, then
18 = Bl S O{/(1 — p>)mlogm/T}, w.h.p.; see (S2).

(b) If 1 —O{(mlogm +logd)/T} < |p| < 1, then
18 — B.]| < O(T~*mlogm), w.h.p.; see (F2).

(c) 1< |p| <1+ 0(1/T), then |3 — B.| < O{T~'mlog(mdT)},
w.h.p.; see (F1).
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Analysis of lower bounds
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Notations

For a fixed p > 0, we consider the subspace of 6 such that the spectral
radius of A(#) is bounded above by p, i.e.,

O(p) = {0 e R™ : p{A(0)} < p}-
Then, the corresponding linearly restricted subspace of 3 is

L(p) ={R0:0 € O(p)}.

Denote by IE”E)T) the distribution of the sample (X,..., Xr,,) on the
space (X7, Fri1).
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Analysis of lower bounds

Theorem 4: Suppose that {X,}/' follow the VAR model
X1 = AX, + ny, with linear restrictions defined previously, and
Assumption A4 holds. Fix é € (0,1/4) and p > 0. Let

Then, for any € € (0, p/4], we have
inf sup P {|IB- g >} >0,
B 0€0(p)
where the infimum is taken over all estimators of 3 subject to

B € {RO:0 cR™}, for any T such that

Trye(p) < m+ log(l/é).

€2
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Asymptotic rates implied by Theorem 4

Corollary 2: The minimax rates of estimation over 3 € L(p) in different

stability regimes are as follows:

(i) VL =p)m/T, if p € (0,/1=1/T);

(i) T=*v/m, if p € [\/1—1/T,1+ ¢/T) for a fixed ¢ > 0; and
(i) p~ T/ (p> —1)m/T, ifpe (14 ¢/T,00).
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Discussion

The following directions are worth exploring in the future:

® The small-ball method is known for its capability to accommodate
heavy tailed data. It may be possible to drop the normality
assumption of the innovations.

e |n addition, one may consider the recovery of unknown restriction
patterns by methods such as information criteria or regularization,
e.g., the fussed lasso (Ke et al., 2015).

e Similar non-asymptotic theory for possibly unstable, low rank (Ahn
and Reinsel, 1988; Negahban and Wainwright, 2011) or cointegrated
(Onatski and Wang, 2018) VAR models, which would be useful for
high dimensional inference.
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Thank you!
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