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The vector autoregressive (VAR) model

Vector autoregressive (VAR) model of order one:

Xt+1 = AXt + ηt, t = 1, . . . , T, (1)

where

 Xt ∈ Rd is the observed d-dimensional time series

 A ∈ Rd×d is the unknown transition matrix (possible

over-parametrization when d is even moderately large!)

 ηt ∈ Rd are i.i.d. innovations with mean zero

 T is the sample size/time horizon (asymptotic analysis: T →∞)

 Applications: e.g., economics and finance, energy forecasting,

psychopathology, neuroscience, reinforcement learning, ...
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The problem of over-parameterization

... is more severe for general VAR(p) models:

Xt+1 = A1Xt +A2Xt−1 + · · ·+ApXt+1−p + ηt,

Number of parameters = O(pd2)

⇒ cannot provide reliable estimates and forecasts without

further restrictions (Stock and Watson, 2001).
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Literature: Taming the dimensionality of large VAR models

(D). Direct dimensionality reduction:

 Regularized estimation: Davis et al. (2015, JCGS), (Han et al.,

2015, JMLR), (Basu and Michailidis, 2015, AoS), etc.

 Banded model: Guo et al. (2016, Biometrika)

 Network model: Zhu et al. (2017, AoS)

 Other parameter restrictions motivated by specific applications

(I). Indirect dimensionality reduction: low-rank structure, PCA, factor

modelling, ...

We focus on direct dimensionality reduction in this paper.
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What most existing work on (D) has in common:

(i) A particular sparsity or structural assumption is often imposed on

the transition matrix A

e.g., exact sparsity, banded structure, certain network structure

(ii) There is an almost exclusive focus on stable processes

technically, this is to impose that the spectral radius ρ(A) < 1, or

often even more stringently, the spectral norm ‖A‖2 < 1

*Denote the spectral radius of A by ρ(A) := max{|λ1|, . . . , |λd|}, where λi are
the eigenvalues of A ∈ Rd×d. Note that even when ρ(A) < 1, ‖A‖2 can be

arbitrarily large for an asymmetric matrix A.
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Our objective
– to study large VAR models from a more general viewpoint, without being confined to any

particular sparsity structure or to the stable regime

We provide a novel non-asymptotic (finite-time) analysis of the ordinary

least squares (OLS) estimator for

 possibly unstable VAR models (applicable region: ρ(A) ≤ 1 + c/T )

 under linear restrictions in the form of

C︸︷︷︸
known restriction matrix

vec(A′)︸ ︷︷ ︸
stacking the rows of A

= µ︸︷︷︸
known vector

; (2)

often, we may simply use µ = 0.

⇒ note that (2) encompasses zero and equality restrictions
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Example 1: Banded VAR model of Guo et al. (2016, Biometrika)
Location plot and estimated transition matrix Â

 Motivation: in practice, it is often sufficient to collect information

from “neighbors”

 Note that the same reasoning can be applied to general graphical

structures: the zero-nonzero pattern of A can be determined

according to any practically motivated graph with d nodes
8 / 56



Example 2: Network VAR model of Zhu et al. (2017, AoS)
An example of both zero and equality restrictions

 To analyze users’ time series data from large social networks, the

network VAR model of Zhu et al. (2017, AoS) imposes that

(i) all diagonal entries of A are equal,

(ii) all nonzero off-diagonal entries of A are equal, and

(iii) the zero-nonzero pattern of A is known

(e.g., aij is nonzero only if individual j follows individual i on the

social network)

 But this model is essentially low-dimensional, as the number of

unknown parameters is a fixed small number.
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Problem formulation
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General framework: Multivariate stochastic regression
– This includes VAR models as a special case

The unrestricted model:

Yt︸︷︷︸
n×1

= A∗︸︷︷︸
n×d

Xt︸︷︷︸
d×1

+ ηt︸︷︷︸
n×1

. (3)

 This becomes the VAR(1) model when Yt = Xt+1 and n = d.

 Note that (Xt, Yt) are time-dependent.
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Imposing linear restrictions

 Let β∗ = vec(A′∗) ∈ RN , where N = nd.

 Then the parameter space of a linearly restricted model can be

defined as

L = {β ∈ RN : C︸︷︷︸
(N−m)×N

β = µ︸︷︷︸
(N−m)×1

},

where C and µ are known, rank(C) = N −m (representing N −m
independent restrictions)

 To ease the notation, we restrict our attention to µ = 0 in this talk.
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An equivalent form

Note that

L = {β ∈ RN : C︸︷︷︸
(N−m)×N

β = 0︸︷︷︸
(N−m)×1

}

has an equivalent, unrestricted parameterization:

L = { R︸︷︷︸
N×m

θ : θ ∈ Rm}.

Specifically:

 Let C̃ be an m×N complement of C such that Cfull = (C̃′, C′)′ is

invertible, and let C−1
full = (R, R̃), where R is an N ×m matrix.

 Note that if Cβ = 0, then β = C−1
full Cfullβ = RC̃β + R̃Cβ = Rθ, where

θ = C̃β. Conversely, if β = Rθ, then Cβ = CRθ = 0. Thus, we have

the above equivalence.
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Implications

 There exists a unique unrestricted θ∗ ∈ Rm such that β∗ = Rθ∗.

 Therefore, the original restricted model can be converted into a

reparameterized unrestricted model.

 Special case: when R = IN , there is no restriction at all, and

β∗ = θ∗.

14 / 56



How to encode restrictions via R or C?

Example 1 (Zero restriction):

 Suppose that the i-th element of β is restricted to zero: i.e., βi = 0.

 Then this can be encoded in R by setting the i-th row of R to zero.

 Alternatively, it can be built into C by setting a row of C to

(0, . . . , 0, 1, 0, . . . , 0) ∈ RN ,

where the i-th entry is one.
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How to encode restrictions via R or C?

Example 2 (Equality restriction):

 Consider the restriction that the i-th and j-th elements of β are

equal: i.e., βi − βj = 0.

 Suppose that the value of βi = βj is θk, the k-th element of θ.

Then this restriction can be encoded in R by setting both the i-th

and j-th rows of R to

(0, . . . , 0, 1, 0, . . . , 0) ∈ Rm,

where the k-th entry is one.

 We may set a row of C to the 1×N vector c(i, j) whose `-th entry is

[c(i, j)]` = 1(` = i)− 1(` = j),

where 1(·) is the indicator function.

16 / 56



The ordinary least squares (OLS) estimator

 Define T × n matrices

Y = (Y1, . . . , YT )′, E = (η1, . . . , ηT )′

and T × d matrix

X = (X1, . . . , XT )′.

Then (3) has the matrix form

Y = XA′∗ + E.
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The ordinary least squares (OLS) estimator

 Moreover, let

y = vec(Y ), η = vec(E) and Z = (In ⊗X)R.

 By vectorization and reparameterization, we can write the linearly

restricted model in vector form as

y = (In ⊗X)β∗ + η = Zθ∗ + η.

 As a result, the OLS estimator of β∗ for the restricted model can be

defined as

β̂ = Rθ̂, where θ̂ = arg min
θ∈Rm

‖y − Zθ‖2. (4)
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The ordinary least squares (OLS) estimator

 To ensure the feasibility of (4), we assume that nT ≥ m.

(note that Z ∈ RnT×m; however, Z need not have full rank).

 Let R = (R′1, . . . , R
′
n)′, where Ri are d×m matrices. Then,

A∗ = (In ⊗ θ′∗)R̃,

where R̃ is an mn× d matrix:

R̃ = (R1, . . . , Rn)′.

Hence, we can obtain the OLS estimator of A by

Â = (In ⊗ θ̂′)R̃.
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General upper bound analysis
– will be applied to VAR models later...
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Key technical tool for upper bound analysis

Mendelson’s small-ball method for time-dependent data (Simchowitz

et al., 2018, COLT)

Why using this method?

 Asymptotic tools require substantially different approach to deal

with stable and unstable processes {Xt}.

 Nonasymptotic tools usually rely on mixing conditions, which suffer

from error bound degradation for unstable processes.

 The small-ball method helps us establish lower bounds of the Gram

matrix X ′X (or Z ′Z) under very mild conditions, while dropping the

stability assumption and avoiding reliance on mixing properties.
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How to use the small-ball method?

 Formulate a small-ball condition

 Use this condition to control the lower tail behavior of the Gram

matrix

 Derive estimation error bounds

 Verify the small-ball condition
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Main idea of the small-ball method to lower-bound λmin(
∑T

t=1XtX
T
t )

a. Divide the data into size-k blocks, with the `-th block being

{X(`−1)k+1, . . . , X`k}.

b. Lower-bound each
∑k

i=1〈X(`−1)k+i, w〉2 w.h.p. by (establishing) a

block martingale small ball condition.

c. Aggregate to get with probability at least 1− exp(−cT/k),

T∑
t=1

〈Xt, w〉2 & TwTΓkw.

d. Strengthen the pointwise bound into a lower bound on

infw∈Sd−1

∑T

t=1〈Xt, w〉2 by the covering method.
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Small-ball condition for dependent data

The block martingale small ball (BMSB) condition is defined as follows:

(i) Univariate case: For {Xt}t≥1 taking values in R adapted to the

filtration {Ft}, we say that {Xt} satisfies the (k, ν, α)-BMSB

condition if:

there exist an integer k ≥ 1 and universal constants ν > 0 and

α ∈ (0, 1) such that for every integer s ≥ 0,

k−1

k∑
t=1

P(|Xs+t| ≥ ν | Fs) ≥ α

with probability one.

Here, k is the block size.
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Small-ball condition for dependent data

(ii) Multivariate case: For {Xt}t≥1 taking values in Rd, we say that

{Xt} satisfies the (k,Γsb, α)-BMSB condition if:

there exists

0 ≺ Γsb ∈ Rd×d

such that, for every ω ∈ Sd−1, the univariate time series

{ω′Xt, t = 1, 2, . . . }

satisfies the (k,
√
w′Γsbw,α)-BMSB condition.
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Regularity conditions for upper-bound analysis

A1. {Xt}Tt=1 satisfies the (k,Γsb, α)-BMSB condition.

A2. For any δ ∈ (0, 1), there exists ΓR = R′(In ⊗ Γ)R dependent on δ

such that P(Z ′Z � TΓR) ≤ δ.

A3. For every integer t ≥ 1, ηt | Ft is mean-zero and σ2-sub-Gaussian,

where

Ft = σ{η1, . . . , ηt−1, X1, . . . , Xt}.

Note that Xt ∈ Ft.
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General upper bound for ‖β̂ − β∗‖(= ‖Â− A∗‖F )

Theorem 1: Let {(Xt, Yt)}Tt=1 be generated by the linearly restricted

stochastic regression model. Fix δ ∈ (0, 1). Suppose that Assumptions

A1–A3 hold, 0 ≺ Γsb � Γ, and

T ≥ 9k

α2

{
m log

27

α
+

1

2
log det(ΓRΓ−1

R ) + log n+ log
1

δ

}
. (?)

Then, with probability at least 1− 3δ, we have

‖β̂ − β∗‖

≤ 9σ

α

[
λmax(RΓ−1

R R′)

T

{
12m log

14

α
+ 9 log det(ΓRΓ−1

R ) + 6 log
1

δ

}]1/2

.
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General upper bound for ‖Â− A∗‖2

Proposition 1: Under the conditions of Theorem 1, with probability at

least 1− 3δ, we have

‖Â−A∗‖2

≤ 9σ

α

[
λmax

(∑n

i=1 RiΓ
−1
R R′i

)
T

{
12m log

14

α
+ 9 log det(ΓRΓ−1

R ) + 6 log
1

δ

}]1/2

.
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Linearly restricted VAR models
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Notations for the VAR(1) representation

 We consider the model with Yt = Xt+1 ∈ Rd, i.e., {Xt}T+1
t=1

generated by

Xt+1 = A∗Xt + ηt, (5)

subject to

β∗ = Rθ∗,

where β∗ = vec(A′∗) ∈ Rd
2
, θ∗ ∈ Rm, R = (R′1, . . . , R

′
d)
′ ∈ Rd2×m,

and Ri are d×m matrices. {Xt} is adapted to the filtration

Ft = σ{η1, . . . , ηt−1}.
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Representative examples

Example 1 (VAR(p) model)

 Interestingly, VAR models of order p <∞ can be viewed as linearly

restricted VAR(1) models. Consider the VAR(p) model

Zt+1 = A∗1Zt +A∗2Zt−1 + · · ·+A∗pZt−p+1 + εt, (6)

where Zt, εt ∈ Rd0 , and A∗i ∈ Rd0×d0 for i = 1, . . . , p.

 Let Xt = (Z ′t, Z
′
t−1, . . . , Z

′
t−p+1)′ ∈ Rd, ηt = (ε′t, 0, . . . , 0)′ ∈ Rd,

and

A∗ =


A∗1 · · · A∗p−1 A∗p

Id0 · · · 0 0
...

. . .
...

...

0 · · · Id0 0

 ∈ Rd×d, (7)

where d = d0p. As a result, (6) can be written exactly as the

VAR(1) model in the previous slide.

31 / 56



Representative examples

Example 2 (Banded VAR model)

 Zero restrictions:

a∗ij = 0, |i− j| > k0, (8)

where the integer 1 ≤ k0 ≤ b(d− 1)/2c is called the bandwidth

parameter.

 In this case, R is a block diagonal matrix:

R =


R(1) 0

. . .

0 R(d)

 ∈ Rd2×m, (9)

Example 3 (Network VAR model)
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Representative examples

Example 4 (Pure unit-root process)

 Consider A∗ = ρI, where ρ ∈ R is the only unknown parameter.

 This can be imposed by setting R = (e′1, . . . , e
′
d)
′ ∈ Rd2 , where ei is

the d× 1 unit vector with the i-th being one.

 When ρ = 1, it becomes the pure unit-root process, a classic

example of unstable VAR processes; e.g., the problem of testing

A∗ = I has been studied extensively in the asymptotic literature.

 Our non-asymptotic approach can precisely characterize the behavior

of the estimator ρ̂ over a continuous range of |ρ| ∈ [0, 1 + c/T ].

33 / 56



Verification of regularity conditions in Theorem 1

We will replace Assumptions A1–A3 with the following:

A4. (i) The process {Xt} starts at t = 0, with X0 = 0.

(ii) The innovations {ηt} are independent and N(0, σ2Id).

Assumption A4 paves the way to the unified analysis of stable and

unstable processes via the finite-time controllability Gramian

Γt =
t−1∑
s=0

As∗(A
′
∗)
s, (10)

a key quantity closely related to var(Xt).
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Why do we need to fix X0 = 0?

 Under this assumption, it holds

Xt = ηt−1 +A∗ηt−2 + · · ·+At−1
∗ η0 +At∗X0 =

t−1∑
s=0

As∗ηt−s−1, t ≥ 1,

which yields

var(Xt) = E(XtX
′
t) = σ2Γt. (11)

 This highlights a subtle but critical difference from the typical set-up

in the asymptotic theory where Xt starts at t = −∞, so that

Xt =
∞∑
s=0

As∗ηt−s−1, t ∈ Z,

which implies that var(Xt) <∞ if and only if the spectral radius

ρ(A∗) = max{|λ1|, . . . , |λd|} < 1 (when the process is stable), and if

ρ(A∗) < 1, then var(Xt) = σ2
∑∞

s=0 A
s
∗(A

′
∗)
s = σ2 limt→∞ Γt.

35 / 56



Verifying Assumptions A1–A3

Lemma 1: Let {Xt}T+1
t=1 be generated by the linearly restricted VAR

model. Under Assumption A4, we have the following results:

(i) for any 1 ≤ k ≤ bT/2c, {Xt}Tt=1 satisfies the (2k,Γsb, 3/20)-BMSB

condition, where Γsb = σ2Γk; and

(ii) for any δ ∈ (0, 1), it holds that P(Z ′Z � TΓR) ≤ δ, where ΓR is

defined as before with n = d and Γ = σ2mΓT/δ.
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Applying the general result in Theorem 1

Theorem 1 revisited: Let {(Xt, Yt)}Tt=1 be generated by the linearly

restricted stochastic regression model. Fix δ ∈ (0, 1). Suppose that

Assumptions A1–A3 hold, 0 ≺ Γsb � Γ, and

T ≥ 9k

α2

{
m log

27

α
+

1

2
log det(ΓRΓ−1

R ) + log n+ log
1

δ

}
. (?)

Then, with probability at least 1− 3δ, we have

‖β̂ − β∗‖

≤ 9σ

α

[
λmax(RΓ−1

R R′)

T

{
12m log

14

α
+ 9 log det(ΓRΓ−1

R ) + 6 log
1

δ

}]1/2

.

By Lemma 1, the matrices ΓR and ΓR in Theorem 1 become

ΓR = σ2mR′(Id ⊗ ΓT )R/δ and ΓR = σ2R′(Id ⊗ Γk)R,

where 1 ≤ k ≤ bT/2c. We need to verify the existence of k satisfying (?).
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Verifying the existence of k

log det(ΓRΓ−1
R ) = m log(m/δ)+log det

[
R′(Id ⊗ ΓT )R{R′(Id ⊗ Γk)R}−1

]
︸ ︷︷ ︸

κR(T,k)

.

We need to derive an explicit upper bound for κR(T, k). Recall that

Γt =
t−1∑
s=0

As∗(A
′
∗)
s.

Main idea:

 Since 0 ≺ Id � Γk � ΓT , we have κR(T, k) ≤ κR(T, 1).

 Note that ΓT behaves differently in stable and unstable regimes: if

ρ(A∗) < 1, then ΓT � Γ∞ = limT→∞ ΓT <∞, and therefore

κR(T, 1) ≤ κR(∞, 1).

However, if ρ(A∗) ≥ 1, then Γ∞ no longer exists, so, we need to

carefully control the growth rate of ΓT as T increases.
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Verifying the existence of k

 ... to do so, we consider the Jordan decomposition:

A∗ = SJS−1, (12)

where J has L blocks with sizes

1 ≤ b1, . . . , bL ≤ d,

and both J and S are d× d complex matrices. Let

bmax = max
1≤`≤L

b`,

and denote the condition number of S by

cond(S) = {λmax(S∗S)/λmin(S∗S)}1/2 ,

where S∗ is the conjugate transpose of S.
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Upper bound on κR(∞, 1)(≥ κR(∞, k))

Proposition 1: For any A∗ ∈ Rd×d, we have the following results:

(i) If ρ(A∗) ≤ 1 + c/T for a fixed c > 0, then

κR(T, 1) . m {log cond(S) + log d+ bmax log T} .

(ii) In particular, if ρ(A∗) < 1 and σmax(A∗) ≤ C for a fixed C > 0, then

κR(T, 1) . m.

Implication: Provided that σmax(A∗) ≤ C, the results from Theorem 1

will be different for the stable regime (ρ(A∗) < 1) and the unstable

regime (1 ≤ ρ(A∗) ≤ 1 + c/T ) in both

 the feasible region for k (becomes larger)

 and the upper bound of ‖β̂ − β∗‖ (becomes smaller)

(as the upper bound of κR(T, k) becomes smaller)
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Feasible region for k

By Proposition 1, we obtain the following sufficient conditions for (?):

k .


T

m [log{md cond(S)/δ}+ bmax log T ]
, if ρ(A∗) ≤ 1 + c/T,

T

m log(m/δ) + log d
, if ρ(A∗) < 1 and σmax(A∗) ≤ C.

We refer to this condition as (F) in the following slides.
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Analysis of upper bounds in VAR model

Denote

ΓR,k = R {R′(Id ⊗ Γk)R}−1
R′.

Theorem 2: Let {Xt}T+1
t=1 be generated by the linearly restricted VAR

model. Fix δ ∈ (0, 1). For any 1 ≤ k ≤ bT/2c satisfying (F), under

Assumption A4, we have the following results:

(i) If ρ(A∗) ≤ 1 + c/T for a fixed c > 0, then, with probability at least

1− 3δ, we have

‖β̂ − β∗‖ .
(
λmax(ΓR,k)

m [log {md cond(S)/δ}+ bmax log T ]

T

)1/2

.

(ii) In particular, if ρ(A∗) < 1 and σmax(A∗) ≤ C for a fixed C > 0,

then, with probability at least 1− 3δ, we have

‖β̂ − β∗‖ .
{
λmax(ΓR,k)

m log(m/δ)

T

}1/2

.
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Understanding the scale factor λmax(ΓR,k)

This scale factor may be viewed as a low-dimensional property:

 The limiting distribution of β̂ under the assumptions that d is fixed

(and so are m and A∗) and ρ(A∗) < 1 is

T 1/2(β̂ − β∗)→ N(0, R{R′(Id ⊗ Γ∞)R}−1R′︸ ︷︷ ︸
limk→∞ λmax(ΓR,k)

) (13)

in distribution as T →∞, where Γ∞ = limk→∞ Γk.

 The strength of our non-asymptotic approach is signified by the

preservation of this scale factor in the error bounds.

The key is to simultaneously bound Z ′Z and Z ′η through the

Moore-Penrose pseudoinverse Z†. (Recall that Z† = (Z ′Z)−1Z ′ if

Z ′Z � 0)
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Insight from Theorem 2

Adding more restrictions will reduce the error bounds through not only

the reduced model size m, but also the reduced scale factor λmax(ΓR,k).

 To illustrate this, suppose that β∗ = Rθ∗ = R(1)R(2)θ∗, where

R(1) ∈ Rd2×m̃ has rank m̃, and R(2) ∈ Rm̃×m has rank m, with

m̃ ≥ m+ 1.

 Then L(1) = {R(1)θ : θ ∈ Rm̃} ⊇ L = {Rθ : θ ∈ Rm}.

 If the estimation is conducted on the larger parameter space L(1),

then the scale factor in the error bound will become λmax(ΓR(1),k),

and the (effective) model size will increase to m̃.

 it can be shown that

λmax(ΓR,k) ≤ λmax(ΓR(1),k).

44 / 56



Asymptotic rates implied by Theorem 2

Note that

λmax(ΓR,k) ≤ λmax{R(R′R)−1R′} = λmax{(R′R)−1R′R} = 1.

Corollary 1: Under the conditions of Theorem 2, the following results

hold:

(i) If ρ(A∗) ≤ 1 + c/T for a fixed c > 0, then

‖β̂ − β∗‖ = Op

{(
m [log {md cond(S)}+ bmax log T ]

T

)1/2
}
.

(ii) In particular, if ρ(A∗) < 1 and σmax(A∗) ≤ C for a fixed C > 0, then

‖β̂ − β∗‖ = Op

{(
m logm

T

)1/2
}
.
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Strengthening Theorem 2: leveraging k

 Note that λmax(ΓR,k) is monotonic decreasing in k.

 By choosing the largest possible k, we can obtain the sharpest

possible result from Theorem 2.

 We will capture the magnitude of λmax(ΓR,k) via σmin(A∗), a

measure of the least excitable mode of the underlying dynamics.

 This allows us to uncover a split between the slow and fast error rate

regimes in terms of σmin(A∗).
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Theorem 3

Fix δ ∈ (0, 1), and suppose that the conditions of Theorem 2 hold.

(i) If ρ(A∗) ≤ 1 + c/T for a fixed c > 0, then we have the following

results:

When

σmin(A∗) ≤ 1− c1m [log {md cond(S)/δ}+ bmax log T ]

T
, (A1)

where c1 > 0 is fixed, with probability at least 1− 3δ, we have

‖β̂−β∗‖ .
(
{1− σ2

min(A∗)}m [log {md cond(S)/δ}+ bmax log T ]

T

)1/2

;

(S1)

and when the inequality in (A1) holds in the reverse direction, with

probability at least 1− 3δ, we have

‖β̂ − β∗‖ .
m [log {md cond(S)/δ}+ bmax log T ]

T
. (F1)
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Theorem 3 cont’d

(ii) In particular, if ρ(A∗) < 1 and σmax(A∗) ≤ C for a fixed C > 0,

then we have the following results:

When

σmin(A∗) ≤ 1− c2{m log(m/δ) + log d}
T

, (A2)

where c2 > 0 is fixed, with probability at least 1− 3δ, we have

‖β̂ − β∗‖ .
[
{1− σ2

min(A∗)}m log(m/δ)

T

]1/2

; (S2)

and when the inequality in (A2) holds in the reverse direction, with

probability at least 1− 3δ, we have

‖β̂ − β∗‖ .
m log(m/δ)

T
. (F2)
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A simple example: A∗ = ρId

Note that the smallest true model has size one, and hence we may fit any

larger model with m ≥ 1. Moreover, we have

ρ(A∗) = σmin(A∗) = |ρ|, cond(S) = 1 and bmax = 1.

Then, by Theorem 3:

(a) If |ρ| ≤ 1−O{(m logm+ log d)/T}, then

‖β̂ − β∗‖ . O{
√

(1− ρ2)m logm/T}, w.h.p.; see (S2).

(b) If 1−O{(m logm+ log d)/T} ≤ |ρ| < 1, then

‖β̂ − β∗‖ . O(T−1m logm), w.h.p.; see (F2).

(c) If 1 ≤ |ρ| ≤ 1 +O(1/T ), then ‖β̂ − β∗‖ . O{T−1m log(mdT )},
w.h.p.; see (F1).
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Analysis of lower bounds

50 / 56



Notations

For a fixed ρ̄ > 0, we consider the subspace of θ such that the spectral

radius of A(θ) is bounded above by ρ̄, i.e.,

Θ(ρ̄) = {θ ∈ Rm : ρ{A(θ)} ≤ ρ̄}.

Then, the corresponding linearly restricted subspace of β is

L(ρ̄) = {Rθ : θ ∈ Θ(ρ̄)}.

Denote by P(T )
θ the distribution of the sample (X1, . . . , XT+1) on the

space (X T+1,FT+1).
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Analysis of lower bounds

Theorem 4: Suppose that {Xt}T+1
t=1 follow the VAR model

Xt+1 = AXt + ηt, with linear restrictions defined previously, and

Assumption A4 holds. Fix δ ∈ (0, 1/4) and ρ̄ > 0. Let

γT (ρ̄) =
T−1∑
s=0

ρ̄2s.

Then, for any ε ∈ (0, ρ̄/4], we have

inf
β̂

sup
θ∈Θ(ρ̄)

P(T )
θ

{
‖β̂ − β‖ ≥ ε

}
≥ δ,

where the infimum is taken over all estimators of β subject to

β ∈ {Rθ : θ ∈ Rm}, for any T such that

TγT (ρ̄) .
m+ log(1/δ)

ε2
.
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Asymptotic rates implied by Theorem 4

Corollary 2: The minimax rates of estimation over β ∈ L(ρ̄) in different

stability regimes are as follows:

(i)
√

(1− ρ̄2)m/T , if ρ̄ ∈ (0,
√

1− 1/T );

(ii) T−1
√
m, if ρ̄ ∈ [

√
1− 1/T , 1 + c/T ] for a fixed c > 0; and

(iii) ρ̄−T
√

(ρ̄2 − 1)m/T , if ρ̄ ∈ (1 + c/T,∞).
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Discussion

The following directions are worth exploring in the future:

 The small-ball method is known for its capability to accommodate

heavy tailed data. It may be possible to drop the normality

assumption of the innovations.

 In addition, one may consider the recovery of unknown restriction

patterns by methods such as information criteria or regularization,

e.g., the fussed lasso (Ke et al., 2015).

 Similar non-asymptotic theory for possibly unstable, low rank (Ahn

and Reinsel, 1988; Negahban and Wainwright, 2011) or cointegrated

(Onatski and Wang, 2018) VAR models, which would be useful for

high dimensional inference.

 ...
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