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Summary. We present a semiparametric statistical model for the probabilistic index which can
be defined as P .Y �Y Å/, where Y and Y Å are independent random response variables asso-
ciated with covariate patterns X and XÅ respectively. A link function defines the relationship
between the probabilistic index and a linear predictor. Asymptotic normality of the estimators
and consistency of the covariance matrix estimator are established through semiparametric
theory. The model is illustrated with several examples, and the estimation theory is validated in
a simulation study.
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1. Introduction

Consider the class of studies in which a single response variable is measured simultaneously
with some covariates. Let Y and X denote the response variable and the d-dimensional
covariate respectively, and let fYX and fY |X denote the density functions of the joint
distribution and the conditional distribution of Y given X respectively. We use the same notation
for the probability mass functions when Y or X are discrete variables. When Y is a continuous
random variable, most statistical methods focus on the conditional mean of Y, given X. For
example, in linear regression models E.Y |X/ = ZTβ, where Z is a p-dimensional vector with
elements that are functions of the covariates and where β is a p-dimensional parameter vector.
Sometimes the complete conditional distribution of Y given X is specified (e.g. the normal regres-
sion model), allowing for likelihood-based inference, but this is often asymptotically replaced
by some mild assumptions on the higher order moments of the conditional distribution so that
the likelihood is no longer defined and semiparametric theories are required for inference.

In this paper we propose models that model the effects of the covariates through the proba-
bilistic index (PI), which, in the present setting, is defined as

P.Y<YÅ|X, XÅ/+ 1
2 P.Y =YÅ|X, XÅ/, .1/

where .Y , X/ and .YÅ, XÅ/ are independently distributed with density fYX. We introduce the
notation P.Y �YÅ|X, XÅ/ for the PI as defined in expression (1). When Y is continuous P.Y =
YÅ|X, XÅ/=0 and the PI simplifies to P.Y �YÅ|X, XÅ/=P.Y<YÅ|X, XÅ/. Definition (1) is also
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meaningful and convenient when the response is ordinal. Our definition implies that P.Y �
YÅ|X =x, XÅ =x/= 1

2 for both continuous and ordinal responses.
Although the PI requires the conditional distribution fY |X, in the present paper we do not

make full distributional assumptions on fY |X. Apart from some minimal technical assumptions
we assume only that fY |X satisfies

P.Y �YÅ|X, XÅ/=m.X, XÅ;β/, .2/

in which m is a function with range [0, 1] and β a p-dimensional parameter vector. In Section 2
more details will be given. Equation (2) thus implies a restriction on fY |X that describes how the
covariate X affects the response distribution in terms of the PI. Because fY |X is not fully specified
by assumption (2), model (2) represents a semiparametric model which we refer to as the prob-
abilistic index model (PIM). Inference on the parameter vector β thus requires semiparametric
theory which is presented in Section 3.

An interesting special case arises when X is a binary design variable which refers to two
populations. With m.X, XÅ;β/ = 0:5 + β.XÅ − X/ model (2) becomes P.Y � YÅ|X = 0, XÅ =
1/ = P.Y0 � Y1/ = 0:5 +β, which is the parameter of interest in the Wilcoxon–Mann–Whitney
(WMW) test. In particular, under the general two-sample null hypothesis H0 : fY |X=0 =fY |X=1,
the PI equals P.Y0 <Y1/=0:5 when the response variable is continuous, and thus β =0. Under
mild conditions, the WMW test is consistent against the alternative H1 : P.Y0 < Y1/ �= 0:5 or
β �=0. The class of models that is presented here can be considered as extensions of the WMW
setting. Just as a linear regression model and the t-tests for testing the covariate effects in the
linear model embed the two-sample t-test when the linear regression model has only one 0–1
dummy covariate, so do the tests for testing covariate effects in the PIM result in a WMW-type
test in a two-sample design. Our models also extend the work of Brumback et al. (2006), who
proposed models for the PI, but with the restriction that Y and YÅ are continuous response
variables that always belong to two different populations or treatment groups. In terms of our
formulation this restriction could be expressed as X and XÅ being distinct in at least one com-
ponent which is a binary indicator for two treatment groups. Brumback and colleagues thus
provided a WMW-type test for comparing two treatment groups, while controlling for one or
more covariates. Our methods do not impose any particular restriction on the covariate vector
X. Moreover, the methods that are proposed in this paper further improve on Brumback et al.
(2006) by being directly applicable to both continuous and ordinal response variables, and by
providing a consistent estimator of the variance–covariance matrix of the parameter estimators
so that no computationally intensive bootstrap procedure is required.

To demonstrate the scope and the interpretation of the models that form the topic of this
paper, we first introduce an example data set. In psychiatry the mental state of a patient is
often assessed by means of patient-rated questionnaires. For example, the Beck depression
inventory (BDI) (Beck et al., 1988) is a 21-item self-report rating inventory measuring char-
acteristic attitudes and symptoms of depression. The BDI is the sum of the scores on the 21
items; it ranges from 0 to 63, with 63 indicating severe depression.Van den Eynde et al. (2008)
reported on a study in which patients with a borderline personality disorder were treated with
quetiapine, which is an antipsychotic drug. It is of interest to know how the quetiapine dose
affects the patients in terms of the BDI. As the design of the original study is quite compli-
cated, we present here partial results from a simplified setting. The response variable of interest
is the improvement in BDI, which is calculated as the BDI at baseline minus the BDI at the
end of the study and which we denote by BD. The regressor variable is the total dose of que-
tiapine measured in grams (DOSE). Fig. 1 shows a scatter plot of the data. We consider the
PIM
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(a)
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Fig. 1. (a) Scatter plot of BDI improvement versus dose (-- - - - - -, linear regression model based on least
squres; � � � � � �, linear regression model based on Huber’s robust M -estimator), and histograms of the improve-
ments in BDI for (b) small doses and (c) large doses

P.BD�BDÅ/= expit{β.DOSEÅ −DOSE/}:

Using the methods that are described in this paper, we find the estimate β̂ =0:1711 with estim-
ated standard deviation 0:0398. The p-value for testing H0 : β = 0 versus H1 : β �= 0 is smaller
than 0:0001, and thus at the 5% level of significance the null hypothesis is rejected. Therefore
we conclude that patients who are treated with a larger dose of quetiapine are more likely
to benefit from the treatment. In particular, when the dose is increased by 5 g, the estimated
PI equals expit.5β̂/ = 70:2%, i.e., when comparing a group of patients treated with quetia-
pine with a group that received an extra 5 g of quetiapine, we conclude that, with probability
70:2%, the BDI of a patient from the high dose group shows a larger improvement than for
a patient from the low dose group. At first sight the reader might think that the data could
just as well have been analysed with a (linear) regression model, but, as illustrated in Fig. 1,
the linearity assumption would be violated; a transformation or non-linear regression tech-
niques may resolve this problem. However, Figs 1(b) and 1(c) further demonstrate that the
dose affects not only the mean response, but also the variance and the skewness of the BDI
distribution. The PI acts here as a quantity that summarizes the covariate effect on the res-
ponse distribution in a meaningful effect size measure. Another important characteristic of
the example is that BDI is basically an ordinal score variable. Although the BDI scale counts
64 levels, the mean BDI does not necessarily have an unambiguous interpretation. Regression
techniques that focus on the conditional mean of the BDI are thus not to be recommended. The
interpretation of the PI, in contrast, applies to both continuous and ordinal variables. Cumula-
tive or adjacent categories logistic regression models (McCullagh, 1980) may also be used for the
analysis of ordinal data; see, for example, Agresti (2007) or Liu and Agresti (2005) for exten-
sive overviews on methods for ordinal data. Some other examples of response variables for
which classical regression models are not the most appropriate are briefly discussed in the next
paragraph.

There are many examples of response variables that are measured on an ordinal scale; we
name just one more example. In pain management the effectiveness of treatments is often
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measured on an ordinal scale. Patients may be asked to fill out a questionnaire with ques-
tions related to their (subjective) pain experience, resulting in a pain score that has only an
ordinal meaning. The scale of Turk et al. (1993), for example, is a 0–10 rating scale. The analysis
of pain scores with PIMs would result in probabilities that quantify how likely it is that the
pain will decrease as a function of a set of covariates. Pain may also be measured on the visual
analogue scale of Wallerstein (1984). For this the patient is presented with a horizontal line of
10 cm, anchored by the words ‘no pain’ and ‘very severe pain’ at the two ends. The patient is
asked to mark the point on the line that best represents his or her level of pain at that moment.
The distance, which is measured in millimetres, between the left-hand end of the line and the
point marked by the patient is the numerical value that is used as a measure of pain. This is an
example of a response variable that may be interpreted as being ordinal, but it may just as well
be considered as a continuous response variable. However, not every variable that is measured
on a continuous scale is necessarily an interval or ratio scale variable. For example, a patient
with a visual analogue scale pain score of 4 does not necessarily have twice as much pain as
someone with a pain score of 2. Thus, again the mean does not have a meaning, but statements
involving order comparisons, such as P.Y �YÅ/, do make sense. See Myles et al. (1999) for more
details of the visual analogue scale.

PIMs may also turn out to be useful for analysing genuine continuous response variables on
a ratio scale for which classical regression models also seem to be appropriate. Beyerlein et al.
(2008) observed that a child’s body mass index may be affected by several risk factors that, how-
ever, do not act only on the mean body mass index. In particular, the skewness of the body mass
index distribution may change with covariate patterns. As illustrated in the BDI example, the
PI summarizes the covariate effects on the shape of the response distribution, while remaining
a very informative interpretation of the covariate effect sizes. Hence, PIMs could be a valuable
alternative for body mass index data. Beyerlein et al. (2008) suggested analysing the body mass
index data with quantile regression methods. Quantile regression (Koenker, 2005) is another
important class of models. It focuses on the quantile distribution of Y given X, QY |X.·|X/,
say. Without the complete specification of the joint distribution of Y and X, the τ th quan-
tile of the distribution of Y given X is modelled as QY |X.τ |X/= ZTβτ . These models are also
semiparametric as the distribution of Y given X is not completely specified or parameterized.

The examples of the previous paragraphs already give a flavour of the usefulness of the PIM.
In particular, the response variables were defined on an ordered scale, which could be discrete or
continuous, for which the mean of the difference Y −YÅ did not have a proper interpretation as
an effect size, but for which the PI did. More generally, the PIM may be the statisticians’ method
of choice whenever the PI is considered as a meaningful parameter for quantifying effect sizes.

In Section 6 three example data sets are worked out in detail to demonstrate the scope of
PIMs.

When no covariates are present, the PI has been discussed already by many researchers. To
our knowledge, however, no unambiguous terminology is used throughout the literature. Some
researchers even use the notation ‘P.Y<YÅ/’ in the title of their papers; see for example Browne
(2010), Enis and Geisser (1971), Tian (2008) and Zhou (2008). Others have called it the indi-
vidual exceedance probability, relative effect or stochastic improvement. Thas (2009) gives an
overview in his section 7.6. In engineering sciences it is known as reliability in the context of
stress–strength problems; see Kotz et al. (2003) for an overview. Probabilities of the form (1) also
appear in the analysis of receiver operating characteristic curves. We refer to Page (2003) for an
excellent and relevant treatment. The PI may also be interpreted as the area under the curve of
the population PP-plot, which is defined as the curve {.p, F1{F−1

2 .p/}/ : p ∈ [0, 1]}, where F1
and F2 are the distribution functions of Y |X=x1 and YÅ|XÅ =x2 respectively. Suppose that Y
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is a continuous response variable and that F1 and F2 have the same support, S, say. Then the
area under the curve becomes∫ 1

0
F1{F−1

2 .p/}dp=
∫

S
F1.y/ dF2.y/=EYÅ|x2{PY |x1.Y �y|y =YÅ, x1, x2/}

=PYYÅ|x1,x2.Y �YÅ|x1, x2/=P.Y �YÅ|x1, x2/, .3/

with Y |x1 and YÅ|x2 independently distributed; usually we shall drop the index YYÅ|x1, x2 from
the probability operator. In the context of receiver operating characteristic curves, we refer to
Dodd and Pepe (2003), who proposed regression models for the area under the curve which have
formed the theoretical basis of the work of Brumback et al. (2006), which has been referred to
earlier in this section. The PI is also closely related to stochastic ordering. A distribution F1 is
said to be stochastically smaller than F2 if and only if F1.y/�F2.y/ for all y ∈S and with strict
inequality for at least a subset of S. When F1 is stochastically smaller than F2, equation (3)
immediately implies that P.Y � YÅ|x1, x2/ > 0:5. The implication does not hold necessarily in
the other direction. Stochastic ordering is thus a stronger property than PI>0:5, but the PI has
the advantage of being a very informative effect size measure, as argued by many researchers;
see Acion et al. (2006), Browne (2010), Laine and Davidoff (1996) and Zhou (2008), among
others. This is further illustrated in the examples that are included in this paper.

After the class of PI models has been formally defined in Section 2 and the parameter estim-
ation and asymptotic distribution theory are presented in Section 3, we discuss in Section 4
the relationship between the PIM and several other statistical methods such as linear regres-
sion, Cox proportional hazards regression, the WMW test, rank regression and the Hodges–
Lehmann estimator. Note, however, that these connections to other statistical methods are
given only to gain a better understanding of the PIMs and to motivate certain PI model formu-
lations. We do not claim that PIMs should replace other statistical models, but they may be a
valuable addition to the statisticians’ toolbox, particularly when the research question allows a
natural formulation with the PI as an effect size measure. The validity of the asymptotic theory
is assessed in a simulation study in Section 5. More examples are presented in Section 6, and
conclusions are formulated in Section 7.

2. The model and its interpretation

In its most general form the PIM is defined as

P.Y �YÅ|X, XÅ/=m.X, XÅ;β/, .4/

where m is a function with range [0, 1], and β is a p-dimensional parameter vector. For the model
to have a coherent interpretation, the function m must satisfy m.X, X;β/=m.XÅ, XÅ;β/=0:5
and m.X, XÅ;β/=1−m.XÅ, X;β/, i.e. m must be antisymmetric about 1. The former restriction
is guaranteed to hold because of the definition of the PI as in expression (1). When m does not
satisfy the antisymmetry condition, the model may still be coherent when equation (4) is only
defined for all X ≺XÅ or X �XÅ. The former refers to an order relation between the covariate
patterns; so does the latter, but it includes X = XÅ. Suppose that XT = .X1, X2/ is a vector of
dimension 2. Then an example of such an order relation is the lexicographical ordering, i.e.
X �lex XÅ if X1 < XÅ

1 , or X1 =XÅ
1 and X2 �XÅ

2 . By applying this definition recursively we can
extend this order relation to vectors of dimension larger than 2. See Fishburn (1974) for more
information about the lexicographical order. To avoid having always to make throughout the
paper the distinction between models for which the antisymmetry condition holds and models
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for which an order restriction is imposed, we introduce the set X of elements .X, XÅ/ for which
model (4) is defined. We use the notation X0 when no order restriction is imposed, which is
further referred to as the ‘NO’ order restriction. To summarize, the PIM is defined as

P.Y �YÅ|X, XÅ/=m.X, XÅ;β/ for all .X, XÅ/∈X : .5/

This model expresses restrictions on the conditional distribution of Y given X, but it does not
fully specify this distribution. Hence, it is a semiparametric model. When P.Y =YÅ/=0 model
(5) may just as well be defined in terms of P.Y<YÅ|X, XÅ/.

In this paper we restrict the function m to be related to a linear predictor, ZTβ, say, with
Z a p-dimensional vector with elements that may depend on X and XÅ. In many examples
Z=XÅ −X will be a convenient and meaningful choice. We write

m.X, XÅ;β/=g−1.ZTβ/, .6/

with g.·/ a proper link function that maps [0, 1] onto the range of ZTβ, which is usually the
real line. Since we basically model a probability, popular choices for g include the logit and the
probit link functions. In some instances the identity link may be convenient.

Although ZTβ may include an intercept or an offset, we sometimes choose to write the linear
predictor as β0 + ZTβ, where β0 is an offset. If the scope of the PIM includes X = XÅ and the
response is continuous, the offset β0 must be set to a constant so that P.Y �YÅ|X=x, XÅ =x/=
0:5. The offset thus depends on the link function. For example, when Z=XÅ −X the offsets for
the logit, probit and identity link become β0 =0, β0 =0 and β0 =0:5 respectively.

3. Parameter estimation and statistical inference

3.1. Parameter estimation
Define I.Y �YÅ/= I.Y < YÅ/+ 1

2 I.Y =YÅ/ in which I.Y < YÅ/ and I.Y =YÅ/ denote the usual
indicator functions evaluated for the events Y < YÅ and Y = YÅ respectively. The PIM (5) can
then be written as

E{I.Y �YÅ/|X, XÅ}=P.Y �YÅ|X, XÅ/=m.X, XÅ;β/=g−1.ZTβ/, .7/

for .X, XÅ/∈X . When .Y1, X1/, .Y2, X2/, . . . , .Yn, Xn/ denotes a sample of n independent identi-
cally distributed (IID) random variables with joint density function fYX, model formulation (7)
suggests that the β parameter vector can be estimated by using the set of pseudo-observations
Iij = I.Yi � Yj/ for all i, j = 1, . . . , n for which .Xi, Xj/ ∈X . In particular, model (7) resembles
a conditional moment semiparametric model (see for example Chamberlain (1987), Newey
(1988) or chapter 4 of Tsiatis (2006)), in which the conditional mean of the pseudo-observa-
tions is specified. We therefore propose to estimate the parameters by solving the estimating
equations

Un.β/= ∑
.i,j/∈In

A.Zij;β/{Iij −g−1.ZT
ijβ/}=0, .8/

where In is the set of indices .i, j/ for which .Xi, Xj/∈X , and A.Zij;β/ is a p-dimensional vec-
tor function of the regressors Zij. Let β̂ denote the estimator. Although perhaps more efficient
choices for A exist, we shall consider only

A.Zij;β/= @g−1.ZT
ijβ/

@β
V−1{g−1.ZT

ijβ/}, .9/

where V{g−1.ZT
ijβ/}= .1=ν/var.Iij|Zij/, with ν a scale parameter. This choice corresponds to
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the quasi-likelihood estimating equations as used, for example, in the analysis of longitudinal
data (Liang and Zeger, 1986; Zeger and Liang, 1986), where they are also referred to as gen-
eralized estimating equations. In the present setting, however, the conditional mean does not
refer to the mean of the conditional distribution of the response, but it refers to the mean of the
pseudo-observations. Moreover, despite the close relationship between our method of estim-
ation and generalized estimating equations, the asymptotic distributional properties of the
estimator β̂ do not follow immediately from these theories, for the pseudo-observations Iij

have a more complicated dependence structure than, for example, block independence as in
clustered or longitudinal data. Lemmas 1 and 2 of Section 3.2 state that the pseudo-observa-
tions have the sparse correlation structure of Lumley and Hamblett (2003). This result makes
the semiparametric theory of Lumley and Hamblett (2003) directly applicable to our setting.
Theorems 1 and 2 that we present in Section 3.3 summarize the most important distribution
theory results for the PIM.

When m.X, XÅ;β/=1−m.XÅ, X;β/ the solution of equations (8) for the NO order restriction
is identical to the solution for a lexicographical order restriction. Therefore, when m satisfies the
antisymmetry condition, the lexicographical ordering is preferred over the NO order restriction
for only half of the pseudo-observations are needed. This also demonstrates that the estimator is
independent of the order in which the covariates appear in the definition of the lexicographical
ordering.

3.2. Sparse correlation
In this section we shall show that the pseudo-observations are sparsely correlated, but we start
with the defining sparse correlation in the context of pseudo-observations. A more general defi-
nition can be found in Lumley and Hamblett (2003).

Definition 1. LetIij ..i, j/∈In/ denote a set of pseudo-observations. For each pseudo-obser-
vation Iij a set of pairs of indices Sij ..i, j/ ∈In/ is defined such that .k, l/ =∈ Sij and .i, j/ =∈ Skl

implies that Iij and Ikl are independent. Let Mnij denote the number of pairs in Sij, let Mn =
max.i,j/∈In

.Mnij/ and let mn denote the size of the largest subset T such that Sij ∩Skl =∅ for all
pairs .i, j/, .k, l/∈T . Then the set of pseudo-observations is called sparsely correlated if we can
choose Sij ..i, j/∈In/ so that Mnmn =O.|In|/, with |In| the number of pseudo-observations.

In the following lemmas we demonstrate that the pseudo-observations are sparsely correlated
when no order restriction or the lexicographical order restriction is imposed.

Lemma 1 (sparse correlation: NO order restriction). The NO ordered pseudo-observations
have the sparse correlation structure.

Proof. Each pseudo-observation Iij ∈In ={.i, j/ : i �=j} is correlated with 4n−7 other pseudo-
observations. Indeed, let k=1, . . . , n with k �= i and k �=j; then Iij is correlated with Iik, Ikj, Iki, Ijk,
Iji and with itself. Thus Mn = Mnij = 4n − 6. The largest set of pseudo-observations that are
mutually independent consists of any Iij and all other Ikl with i, j, k and l mutually distinct. The
size of this set is thus �n=2	, i.e. the largest integer not larger than n=2. Suppose that n is even.
Then

Mnmn = .4n−6/n=2=2n2 −3n=O.n2/:

Since O.|In|/=O.n2/, lemma 1 holds for n even. Similarly, when n is odd, Mnmn = .4n− 6/×
�n=2	=O.n2/=O.|In|/.

Lemma 2 (sparse correlation: lexicographical order restriction). The lexicographical ordered
pseudo-observations have the sparse correlation structure.
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Proof. The lexicographical pseudo-observations Iij for which Xi �lex Xj can be obtained by
sorting the data .Y , X/ on the basis of lexicographical ordering on X and then considering the
pseudo-observations Iij ∈In = {.i, j/ : i < j and i, j = 1, . . . , n}. Each pseudo-observation Iij is
correlated with 2n−4 other pseudo-observations. Indeed Iij is correlated with

(a) Iik where k = i+1, . . . , n and k �= j,
(b) Ikj where k =1, . . . , j −1 and k �= i,
(c) Iki where k =1, . . . , i−1,
(d) Ijk where k = j +1, . . . , n

and with itself. Thus Mn =Mnij =2n−3. The largest set of pseudo-observations that are mutu-
ally independent consists of any Iij and all other Ikl with i < j, k < l mutually distinct. The size
of this set is thus �n=2	. Suppose that n is even. Then

Mnmn = .2n−3/n=2=n2 −3n=2=O.n2/:

Since O.|In|/=O.n2/, lemma 2 holds for n even. Similarly, when n is odd, Mnmn = .2n− 3/×
�n=2	=O.n2/=O.|In|/.

3.3. Asymptotic normality of the parameter estimators
Since the following two theorems are special cases of theorem 7 of Lumley and Hamblett (2003)
we shall omit the proof. We only need to define the true β-parameter, β0, say, in the semipara-
metric PIM. Instead of defining β0 through the independence working log-likelihood function
as in Lumley and Hamblett (2003), we define β0 as the β for which

lim
n→∞

(
E

[ ∑
.i,j/∈In

A.Zij;β/{Iij −g−1.ZT
ijβ/}

])
=0: .10/

The regularity conditions in the statement of theorem 1 imply the existence of β0.

Theorem 1 (asymptotic normality). Consider the PIM (7) with predictors Zij taking values
in a bounded subset of Rp. We make the following assumptions.

Assumption 1. The pseudo-observations are sparsely correlated, with mn as in lemma 1 or
lemma 2.

Assumption 2. The link function g and the variance function V have three continuous deriv-
atives.

Assumption 3. The true parameter β0, as defined by equation (10), is in the interior of a convex
parameter space.

Assumption 4. There are a vector W and positive definite matrix T such that

|In|−1 ∑
.i,j/∈In

Zij →W and |In|−1 ∑
.i,j/∈In

ZijZT
ij →T:

Assumption 5. lim sup{m−1
n var.Σ.i,j/∈In

Iij/}> 0.

Then, as n→∞, .β̂n −β0/
√

mn converges in distribution to a multivariate Gaussian distri-
bution with zero mean and some positive definite variance–covariance matrix Σ.

Theorem 2 (consistent variance estimator). Under the regularity conditions of theorem 1,
the variance–covariance matrix Σ can be consistently estimated by the sandwich estimator
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mnΣ̂β̂n
=mn

{ ∑
.i, j/∈In

@Uij.β̂n/

@βT

}−1{ ∑
.i, j/∈In

∑
.k,l/∈In

φijkl Uij.β̂n/UT
kl.β̂n/

}{ ∑
.i,j/∈In

@Uij.β̂n/

@β

}−1

,

where the indicator φijkl is defined as φijkl = 1 if Iij and Ikl are correlated and φijkl = 0
otherwise.

4. Relationship with other methods

In this section we show how the PIMs are related to other statistical methods. In Sections 4.1
and 4.2 we demonstrate that the parameters of linear regression models and Cox proportional
hazard models have simple relationships with the parameters of a PIM with particularly chosen
link functions and linear predictors. The connection between hypothesis tests in the semipara-
metric PIM framework and the WMW rank test is explored in Section 4.3, and the link between
the PIM parameter estimators and rank regression is the topic of Section 4.4. We do not suggest
that the PIM methodology is a direct competitor of these other methods, but by understand-
ing these relationships the reader may gain a better appreciation of the PIMs’ position in the
landscape of statistical models, and he or she may find arguments for choosing one or other
link function.

4.1. Linear regression models
Without loss of generality we limit the discussion to a one-dimensional covariate X. Consider
the linear model

Y =μ+αX+ ",

where " is a zero-mean error term with continuous distribution function F" which does not
depend on the covariate X. The model can be equivalently formulated as

Y − .μ+αX/|X∼F":

Since Y is continuous, P.Y �YÅ/=P.Y<YÅ/. Consider now the PI for this class of regression
models,

P.Y<YÅ|X, XÅ/=P.μ+αX+ "<μ+αXÅ + "Å|X, XÅ/

=P{"− "Å <α.XÅ −X/}=FΔ{α.XÅ −X/},

where FΔ is the distribution function of " − "Å. Thus, for a PIM with link function g we find
the relationship

g{P.Y<YÅ|X, XÅ/}=g[FΔ{α.XÅ −X/}]=βZ: .11/

This relationship for linear regression models immediately suggests the link function g.·/ =
F−1

Δ .·/, for which a PIM with linear predictor Z =XÅ −X and β =α is obtained.
A simple and important example is the normal linear regression model for which the error

term " is normally distributed with mean 0 and constant variance σ2. The distribution FΔ is also
normal with mean 0 and variance 2σ2. With Φ the distribution function of a standard normal
distribution, equation (11) becomes

g{P.Y<YÅ|X, XÅ/}=g

[
Φ
{

α.XÅ −X/√
2σ

}]
=βZ:

With the probit link function (g.·/=Φ−1.·/) and with Z=XÅ −X, a simple relationship between
α and β is established: β = α=

√
2σ, which expresses that β is proportional to α. Under the
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normality, linearity and homoscedasticity assumptions of the regression model we therefore
conclude that β has also an interpretation in terms of the effect of X on the conditional mean
of the response. When the regression model assumptions do not hold, the parameter β in the
PIM still has the interpretation in terms of the PI.

Without repeating the calculations we also give the relationship between α and β when the
residual variance σ2 is not constant in the normal linear regression model. Without loss of
generality we suppose that X > 0. We discuss only σ2.X/ = γX as the variance function. The
relationship between the regression parameters then becomes

β = α√{σ2.X/+σ2.XÅ/} = α√{γ.XÅ +X/} ,

which suggests that the PIM should better be formulated as

Φ−1{P.Y<YÅ|X, XÅ/}= XÅ −X√
.XÅ +X/

β for .X, XÅ/∈X0 .12/

so we again find a simple relationship between the parameters, β =α=
√

γ. Model (12) gives a
slightly different interpretation of β in terms of the PI. For XÅ =X+1, we find

P.Y<YÅ|X, XÅ =X+1/=Φ
{

β√
.2X+1/

}
:

This expression illustrates that the effect of X on the distribution of Y diminishes as X increases,
at least in terms of the PI. In the normal regression model, the increasing residual variance does
not affect the covariate effect on the mean response, whereas it results in a negative effect mod-
ulation in terms of the PI. This is further illustrated with a real data example in Section 6.3.
This was also noted by Brumback et al. (2006) and it suggests that we should take care in inter-
preting the α-parameter in a normal regression model with non-constant variance because the
importance of the covariate effect may actually depend on the covariate value.

4.2. Cox proportional hazard model
Cox proportional hazard regression models (Cox, 1972) form a very popular class of models for
the analysis of survival data, or, more generally, time-to-event data. Although the PIM was not
known during the 1970s, several references on Cox regression models appear to present results
that are closely related to PIMs. For example, Holt and Prentice (1974), while studying Cox
regression models for paired data, showed that the marginal likelihood of their models contains
factors of the form P.T1i < T2i|X1i, X2i/, where T1i and T2i are paired survival times (e.g. from
twin studies) with covariates .X1i, X2i/. Under the assumption of proportional hazards in the
absence of censored or tied data, they found that

logit{P.T1i <T2i|X1i, X2i/}=β.X1i −X2i/,

which resembles a PIM with Z =X1 −X2 in which the parameter β originates from the hazard
function λ.t|X/ = λ0.t/ exp.βX/. Note, however, that in the PIMs that are presented in this
paper it is assumed that all observations are mutually independent, whereas Holt and Prentice
(1974) developed their method for paired response variables (paired survival times).

Also the marginal likelihood formulation of Kalbfleisch and Prentice (1973), which is related
to the ranks of the survival times, is closely related to a PIM and the parameters are again
interpretable in the proportional hazard model.

We shall show that conditional distributions that belong to the class of proportional hazard
models imply a PIM with logit link. Let S.y|X/=1−F.y|X/ denote the survival function. The
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hazard function is defined as λ.y|X/=−@ log{S.y|X/}=@y =f.y|X/=S.y|X/. In a proportional
hazard model the hazard function allows a factorization of the form λ.y|X/=λ0.y/ exp.XTβ/,
in which λ0.y/ is the baseline hazard function that does not depend on the covariate X. Thus,
within the class of proportional hazard models the survival function is of the form

S.y|X/= c.X/S0.y/exp.XTβ/, .13/

where S0.y/=S.y|X=0/ is the baseline survival function and c.X/ is a normalization constant to
make S.y|X/ a proper distribution function. Suppose that S is the support of Y. Straightforward
algebra then gives

P.Y<YÅ|X, XÅ/=
∫

S
F.y|X/dF.y|XÅ/=−

∫
S

{1−S.y|X/}dS.y|XÅ/

=1− exp{β.XÅ −X/}P.Y<YÅ|X, XÅ/,

from which we find the PIM

logit{P.Y<YÅ|X, XÅ/}=β.XÅ −X/:

This illustrates that the PIM with a logit link and with Z=XÅ −X arises naturally from a widely
applicable class of distributions. A straightforward example is the exponential distribution with
rate parameter γ which has survival function S.y/ = exp.−γy/. Equation (13) is satisfied with
S0.y/= exp.y/ and γ.X/= exp.XTβ/.

Equation (13) characterizes this class of distributions through its survival function, but its
form immediately suggests that, for distributions for which F.y|X/= c.X/F0.y/exp.XTβ/ holds,
a PIM also results.

4.3. Two-sample problem
Consider a sample of n IID random variables .Yi, Xi/, i=1, . . . , n, with Yi continuous. Without
loss of generality assume that the sample of Y observations does not contain ties and that the
observations are ordered so that the first n1 observations belong to the first group and the last
n2 =n−n1 to the second. Let Xi =0 if 1� i�n1 and Xi =1 if n1 +1� i�n. Consider the PIM
with identity link,

P.Y<YÅ|X, XÅ/= 1
2 + .XÅ −X/β for .X, XÅ/∈X ={.X, XÅ/ : X<XÅ}: .14/

The offset β0 = 1
2 is not strictly necessary, because the scope of the model does not include

X=XÅ. However, by having it in the model, the traditional two-sample null hypothesis becomes
equivalent to β =0, which is the default null hypothesis in most statistical software. The order
relation restriction in X implies that only X= 0 and XÅ = 1 are allowed so that the model can
be reformulated in a more convenient form. We use the notation Y.1/ and Y.2/ to denote two
independent observations from the first (X.1/ =0) and the second (X.2/ =1) group respectively.
The model is now reformulated as

P.Y.1/ <Y.2/|X.1/ =0, X.2/ =1/= 1
2 + .X.2/ −X.1//β = 1

2 +β: .15/

The estimating equation (8) becomes

n1∑
i=1

n∑
j=n1+1

I.Yi <Yj/− 1
2 −β

. 1
2 +β/. 1

2 −β/
=0:

Therefore β̂ = .n1n2/−1Σn1
i=1Σ

n
j=n1+1 I.Yi < Yj/ − 1

2 . With MW = Σn1
i=1Σ

n
j=n1+1I.Yi < Yj/ de-

noting the Mann–Whitney test statistic, we see immediately that β̂ = MW=n1n2 − 1
2 . The
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traditional Mann–Whitney test, however, is usually based on the standardized test statistic
TMW = .MW − n1n2=2/=σ0, where σ0 is the standard deviation of MW under the two-sample
null hypothesis H0 : F1 =F2, with F1 and F2 the distribution functions of Y.1/ and Y.2/ respec-
tively. Under this restrictive null hypothesis σ2

0 = n1n2.n + 1/=12. Using a variance which is
obtained under the null hypothesis is related to score tests, whereas using a variance estimator
that is more generally consistent is related to the Wald test. The advantage of using a more
generally consistent variance estimator is that the test may then also be used for testing the null
hypothesis H0 : P.Y.1/ <Y.2//= 1

2 versus H0 : P.Y.1/ <Y.2// �= 1
2 (i.e. H0 :β =0 versus H1 :β �=0).

Such a variance estimator was proposed by Fligner and Policello (1981) and, using the equality
β̂ =MW=n1n2 − 1

2 , their results give immediately a variance estimator for β̂ which can be written

σ̂2
β̂
= .n1n2/−1{.n1 −1/φ̂

2
1 + .n2 −1/φ̂

2
2 + . 1

2 + β̂/. 1
2 − β̂/}, .16/

with

φ̂
2
1 = 1

n1n2.n1 −1/

n∑
j=n1+1

n1∑
i=1

n1∑
i′=1
i′ �=i

I.Yi <Yj/I.Yi′ <Yj/−
(

1
2

+ β̂

)2

and

φ̂
2
2 = 1

n1n2.n2 −1/

n1∑
i=1

n∑
j=n1+1

n∑
j′=n1+1

j′ �=j

I.Yi <Yj/I.Yi <Yj′/−
(

1
2

+ β̂

)2

:

It can be easily shown that the sandwich variance estimator of lemma 2 gives exactly the same
expression. The PIM and the inference based on the estimating equations thus include the Wald-
type WMW test of Fligner and Policello (1981). We refer to chapter 9 of Thas (2009) for more
information about the use of the WMW test in a semiparametric setting.

We started this section by assuming that the response Y is continuous, resulting in a simplifi-
cation of P.Y �YÅ/ and I.Yi �Yj/. However, when the continuity assumption on Y is dropped
and ties are allowed, the relationship with the WMW test statistics still holds, but with midranks
instead of ranks.

For the K -sample problem, the PIM can be similarly parameterized so that each parameter,
β̂kl, say, corresponds to MWkl=nknl − 1

2 , with MWkl the Mann–Whitney test statistic for com-
paring groups k and l and nk (or nl) the sample size of group k (or l), k < l and k, l =1, . . . , K.
The equivalence between a PIM with this parameterization and the Kruskal–Wallis test is based
on an equivalent representation of the Kruskal–Wallis statistic in terms of Mann–Whitney sta-
tistics; see Fligner (1985) for more details.

4.4. Rank regression and Hodges–Lehmann estimators
For the class of linear models of Section 4.1 the parameters can be estimated by means of several
methods. With no full parametric assumption on the error distribution, least squares is probably
the most popular method. However, least squares suffers from the drawback that it is very sen-
sitive to outliers. Rank regression is considered as a robust alternative to least squares. We refer
to McKean (2004) and McKean et al. (2009) for excellent reviews. Although rank regression
parameter estimation can be defined in a general way, we shall formulate it here only with the
Wilcoxon scores. The parameters of the linear regression model are estimated by minimizing

n∑
i=1

[
R{Yi − .μ+αXi/}

n+1
− 1

2

]
{Yi − .μ+αXi/}, .17/
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where R{Yi − .μ+αXi/} denotes the rank of the residual Yi − .μ+αXi/ among the n residuals.
The estimate of α is thus obtained by solving the estimating equation (based on the partial
derivative of expression (17))

n∑
i=1

Xi

[
R{Yi − .μ+αXi/}

n+1
− 1

2

]
=0: .18/

In what follows we shall replace the denominator n+1 with n (asymptotically equivalent). The
relationship with the estimating equation (8) of the PIM parameters becomes more transparent
when the rank in equation (18) is replaced by an expression involving the indicator function.
We assume that there are no ties in the residuals. Equation (18) may then be written as

1
n

n∑
i=1

n∑
j=1

Xi

[
I{Yj − .μ+αXj/�Yi − .μ+αXi/}− 1

2

]
=0:

This can be simplified to
n∑

i=1

n∑
j=1

Xi

[
I{Yj �Yi −α.Xi −Xj/}− 1

2

]
=0: .19/

Consider now the estimating equation (8) of a PIM with identity link, Zij =Xi −Xj and with
a very simple index function A.Zij, β/=Zij,

n∑
i=1

n∑
j=1

.Xi −Xj/{I.Yi �Yj/−β.Xi −Xj/− 1
2}=0: .20/

Assuming that there are no ties, straightforward algebra shows that the left-hand side of equa-
tion (20) equals

2
n∑

i=1

n∑
j=1

Xi{I.Yi �Yj/−β.Xi −Xj/− 1
2}: .21/

By comparing the two estimating equations (19) and (20) with the left-hand side of the latter
replaced by expression (21), we note that the major difference is that in rank regression the
linear predictor α.Xi −Xj/ appears within the indicator function, whereas for the PIM estim-
ation method the linear predictor β.Xi − Xj/ appears outside the indicator function. Thus,
in rank regression the parameter α is estimated as α̂ so that, after subtracting α̂Xi from the
responses Yi, the estimated PI equals 1

2 . The estimator of β in the PIM makes on average, for
each Xi −Xj, the estimated PI deviate from 1

2 by β̂.Xi −Xj/. Another interesting observation
is that the scores Xi and Xi −Xj are interchangeable in the PIM estimating equation. This also
holds true asymptotically in the estimating equation (19) of the rank regression estimator. Thus
pseudo-observations with equal covariate patterns do not contribute to the estimation of the
parameter.

We now take a closer look at both approaches when the covariate X is a dummy variable
coding for two groups. Let X=1 be used for group 1 and X=0 for group 2, and suppose that
the sample observations are ordered so that the first n1 form group 1 and the last n2 form group
2. This setting corresponds to the two-sample problem of Section 4.3. The estimating equation
(18) becomes

n1∑
i=1

[
R{Yi − .μ+α/}

n+1
− 1

2

]
=0,

which is the estimating equation of the Hodges–Lehmann estimator of α (Hodges and Lehmann,
1963). The PIM estimator is now the solution of
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n1∑

i=1

n∑
j=n1+1

{I.Yi �Yj/−β − 1
2}=0,

which is β̂ = .1=n1n2/Σn1
i=1 Σn

j=n1+1I.Yi �Yj/− 1
2 , as in Section 4.3.

5. Simulation study

A generic problem in the set-up of simulation studies for the evaluation of semiparametric
methods is that a semiparametric model encompasses a large class of data-generating models.
Moreover, in the class of data-generating distributions of the PIMs there may be a complicated
relationship between the parameters of both models. Here, we have chosen to generate data
with a normal linear regression model, an exponential generalized linear model and multi-
nomial regression model. For the first two models the relationship with the PIM is provided in
Section 4, and for the last more details will be given later. Since for each of the three settings the
data-generating model is known, their parameters can also be estimated by means of maximum
likelihood. Variances of the maximum likelihood estimators and powers of the Wald tests using
the maximum likelihood estimators will also be reported in this section. These variances and
powers need to be interpreted as optimistic benchmarks as they give only an impression of the
parametric lower bound of the variances and upper bound of the powers. Moreover, it is unfair
to compare variances and powers from a semiparametric method with their counterparts from
a parametric method because the former methods will usually only be applied when the data-
generating mechanism is unknown or incompletely specified so that no parametric statistical
analysis is advised. Moreover, we remind the reader that we have introduced PIMs as a flexible
class of semiparametric models to be used when the focus is on the PI as an effect size measure.
In the absence of strong parametric assumptions no parametric methods can be used for this
purpose.

All computations have been performed with the R software (R Development Core Team,
2010) and all PIMs are defined for the lexicographical order relation because they all satisfy the
antisymmetry condition; see Section 3 for more information.

5.1. Checking asymptotic properties of the estimators
The theoretical properties of the estimators of Section 3 are evaluated in a simulation study.
Since a PIM does not represent a unique data-generating model we simulate data from two
models for which we have established a relationship with the PIMs: a normal linear model and
an exponential model.

5.1.1. Normal linear model
We consider the model

Yi =αXi + "i, i=1, . . . , n, .22/

where "i|Xi are IID N{0, σ2
" .Xi/}. Sample sizes of n = 25, n = 50 and n = 200 are considered.

The predictor X takes equally spaced values in the interval [0:1, u] where u= 1 or u= 10. The
parameter α equals 1 or 10. Table 1 presents the results for a constant standard deviation, i.e.
σ".X/=σ, with σ =1 or σ =5. The corresponding PIM is given by

Φ−1{P.Y �YÅ|X, XÅ/}=β.XÅ −X/,

where β =α=
√

2σ. For each setting, 1000 Monte Carlo simulation runs are used for the empiri-
cal investigation of the distributions of the semiparametric estimator of β. The semiparametric
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Table 1. Simulation results for the normal linear homoscedastic model, based on 1000 Monte Carlo runs†

α u σ β Av(β̂) var(β̂) Av(Ŝβ̂) EC Av(β̄) var(β̄) Av(β̃) var(β̃)

n=25
1 1 1 0.707 0.736 0.33900 0.27877 92.0 0.729 0.06814 0.744 0.07098
1 1 5 0.141 0.130 0.32438 0.27008 92.8 0.135 0.05817 0.138 0.06059
1 10 1 0.707 0.721 0.00990 0.01184 93.0 0.729 0.01214 0.745 0.01265
1 10 5 0.141 0.149 0.00332 0.00248 90.2 0.145 0.00106 0.148 0.00111

10 1 1 7.071 7.309 1.55061 1.22519 85.7 7.320 1.36451 7.471 1.42136
10 1 5 1.414 1.463 0.40365 0.29884 88.7 1.444 0.10516 1.474 0.10954

n=50
1 1 1 0.707 0.736 0.16640 0.15048 92.9 0.718 0.03465 0.725 0.03536
1 1 5 0.141 0.148 0.14905 0.14542 93.5 0.148 0.02759 0.150 0.02815
1 10 1 0.707 0.714 0.00615 0.00634 94.4 0.714 0.00568 0.721 0.00580
1 10 5 0.141 0.147 0.00148 0.00139 93.4 0.145 0.00052 0.146 0.00054

10 1 1 7.071 7.224 0.78701 0.67363 89.1 7.171 0.59224 7.244 0.60433
10 1 5 1.414 1.465 0.18646 0.16191 92.5 1.439 0.05014 1.454 0.05117

n=200
1 1 1 0.707 0.716 0.03803 0.03942 95.3 0.710 0.00798 0.712 0.00802
1 1 5 0.141 0.145 0.04048 0.03817 94.8 0.145 0.00673 0.146 0.00676
1 10 1 0.707 0.709 0.00179 0.00170 94.3 0.709 0.00128 0.710 0.00128
1 10 5 0.141 0.141 0.00037 0.00036 95.6 0.141 0.00013 0.142 0.00013

10 1 1 7.071 7.110 0.19105 0.17489 93.2 7.089 0.14540 7.107 0.14613
10 1 5 1.414 1.427 0.04400 0.04308 95.0 1.421 0.01164 1.424 0.01170

†β is the true parameter, Av.β̂/ the average of the β-estimates according to the semiparametric PIM theory,
var.β̂/ the sample variance of the simulated β̂, Av.Ŝβ̂/ the average of the sandwich variance estimates according to
the semiparametric PIM theory, EC the empirical coverage of a 95% confidence interval for β, Av.β̄/ the average
of the least squares estimates, var.β̄/ the sample variance of the simulated β̄, Av.β̃/ the average of the maximum
likelihood estimates and var.β̃/ the sample variance of the simulated β̃.

estimator of Section 3 is denoted by β̂, and it is further referred to as the PIM estimator. Table 1
shows for each simulation setting the true β-parameter and the average of the simulated estim-
ates. The latter is an approximation of the true mean of the estimator. Table 1 also reports
the average of the simulated sandwich variance estimates, which is an approximation of the
expectation of the sandwich estimator, and the sample variance of the 1000 estimates β̂, which
is an approximation of the true variance of the estimator β̂. The empirical coverages of 95%
confidence intervals are also reported. As a result of the identity β = α=

√
2σ, β can also be

estimated through the estimation of α and σ in model (22) by means of least squares and max-
imum likelihood. In the normal linear regression model least squares and maximum likelihood
give the same point estimator of α, but their estimators of the residual variance σ2 are different
up to a factor .n − 1/=n. Hence, the methods give difference estimators of β, particularly in
small samples.

From Table 1 we conclude that the PIM estimator of β is nearly unbiased, particularly for
sample sizes of 50 and more. A similar conclusion holds for the sandwich variance estimator.
The empirical coverages of the 95% confidence intervals are close to their nominal level for
sample sizes of 50 and more. The simulation study also reveals that the sample distribution of β̂
is close to normal (the results are not shown). As expected the parametric estimators are more
efficient, but, when α or the range of X increases, the difference in efficiency decreases.

Table 2 shows the results of simulations of heteroscedastic data with σ".X/ =σ
√

X, where
σ =1 or σ =5. The corresponding PIM is given by
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Table 2. Simulation results for the normal linear heteroscedastic model, based on 1000 Monte Carlo runs†

α u σ β Av(β̂) var(β̂) Av(Ŝβ̂) EC Av(β̄) var(β̄) Av(β̃) var(β̃)

n=25
1 1 1 1 1.052 0.34771 0.27673 91.2 1.097 0.12945 1.053 0.10286
1 1 5 0.2 0.192 0.31399 0.26122 92.8 0.206 0.09299 0.198 0.08389
1 10 1 1 1.045 0.05487 0.03584 90.1 1.096 0.05970 1.051 0.03285
1 10 5 0.2 0.206 0.02317 0.01884 92.2 0.219 0.01163 0.209 0.00963

10 1 1 10 9.268 0.50991 1.75345 93.9 10.987 4.94362 10.563 2.79136
10 1 5 2 2.080 0.46761 0.32145 88.4 2.169 0.27392 2.086 0.17884
10 10 5 2 2.088 0.13541 0.10231 85.5 2.209 0.23559 2.114 0.12025

n=50
1 1 1 1 1.032 0.17125 0.15259 92.9 1.044 0.06014 1.026 0.05177
1 1 5 0.2 0.210 0.14692 0.14205 94.4 0.214 0.03981 0.211 0.03839
1 10 1 1 1.025 0.02554 0.01967 90.0 1.039 0.02407 1.019 0.01525
1 10 5 0.2 0.208 0.01086 0.01034 94.4 0.212 0.00533 0.208 0.00464

10 1 1 10 9.410 0.22462 0.95066 96.0 10.471 1.99398 10.244 1.18719
10 1 5 2 2.063 0.20438 0.17953 92.5 2.093 0.11833 2.056 0.08404
10 10 5 2 2.046 0.06469 0.05539 91.4 2.089 0.08120 2.047 0.04754

n=200
1 1 1 1 1.010 0.03905 0.04005 95.1 1.010 0.01361 1.006 0.01161
1 1 5 0.2 0.204 0.03891 0.03740 95.2 0.206 0.00939 0.205 0.00921
1 10 1 1 1.006 0.00568 0.00557 93.6 1.013 0.00557 1.005 0.00345
1 10 5 0.2 0.198 0.00271 0.00275 95.8 0.201 0.00118 0.200 0.00111

10 1 1 10 9.576 0.04093 0.26446 97.1 10.098 0.47093 10.051 0.28679
10 1 5 2 2.016 0.05006 0.04843 94.1 2.022 0.02577 2.014 0.01907
10 10 5 2 2.007 0.01548 0.01465 94.1 2.020 0.01913 2.008 0.01061

†β is the true parameter, Av.β̂/ the average of the β-estimates according to the semiparametric PIM theory,
var.β̂/ the sample variance of the simulated β̂, Av.Ŝβ̂/ the average of the sandwich variance estimates according
to the semiparametric PIM theory, EC the empirical coverage of a 95% confidence interval for β, Av.β̄/ the
average of the least squares estimates, var.β̄/ the sample variance of the simulated β̄, Av.β̃/ the average of the
maximum likelihood estimates and var.β̃/ the sample variance of the simulated β̃.

Φ−1{P.Y �YÅ|X, XÅ/}=β
XÅ −X√
.XÅ +X/

,

where β =α=σ. Similar conclusions hold to those for the homoscedastic case. Surprisingly the
semiparametric PIM estimator is more efficient than least squares and maximum likelihood
when α = 10, u = 1 and σ = 1. This observation does not contradict the theory, which only
assures the efficiency of the maximum likelihood estimator in an asymptotic sense.

5.1.2. Exponential model
Let Yi|Xi be IID Exponential{γ.Xi/} with

γ.Xi/= exp.αXi/, i=1, . . . , n: .23/

Sample sizes of n=25, n=50 and n=200 are considered. The predictor X takes equally spaced
values in the interval [0:1, u] where u = 1 or u = 10 and α takes the value 0:1 or −2. The cor-
responding PIM is

logit{P.Y �YÅ|X, XÅ/}=β.X−XÅ/, .24/

where β =α. Table 3 gives the results when model (24) is analysed with the semiparametric PIM
theory, resulting in β̂. As a result of the identity β =α, the parameter β can also be estimated
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Table 3. Simulation results for the exponential model, based on 1000 Monte Carlo runs†

α u σ β Av(β̂) var(β̂) Av(Ŝβ̂) EC Av(β̄) var(β̄) Av(β̃) var(β̃)

n=25
−2 1 1 −2 −2.226 1.19067 0.89060 90.4 −2.178 0.87454 −1.963 0.10657

0.1 10 1 0.1 0.110 0.00902 0.00630 91.1 0.110 0.00720 0.104 0.00130

n=50
−2 1 1 −2 −2.083 0.54166 0.47159 93.7 −2.083 0.41978 −1.986 0.05564

0.1 10 1 0.1 0.103 0.00337 0.00333 95.0 0.103 0.00262 0.103 0.00060

n=200
−2 1 1 −2 −2.023 0.12394 0.12220 94.7 −2.018 0.08917 −1.999 0.01460

0.1 10 1 0.1 0.098 0.00090 0.00087 94.6 0.100 0.00072 0.100 0.00015

†β is the true parameter, Av.β̂/ the average of the β-estimates by using the semiparametric PIM theory, var.β̂/
the sample variance of the simulated β̂, Av.Ŝβ̂/ the average of the sandwich variance estimates by using the semi-
parametric PIM theory, EC the empirical coverage of a 95% confidence interval for β, Av.β̄/ the average of the
semiparametric proportional hazards estimates, var.β̄/ the sample variance of the simulated β̄, Av.β̃/ the average
of the maximum likelihood estimates and var.β̃/ the sample variance of the simulated β̃.

on the basis of the semiparametric proportional hazards theory, resulting in β̄. The R package
survival (Therneau and Lumley, 2010) is used for fitting the proportional hazards model.
The estimator of β based on maximum likelihood theory is denoted by β̃. From Table 3 we
conclude that the PIM estimator of β and the sandwich variance estimator are nearly unbiased,
particularly for sample sizes of 50 and more. The empirical coverages of the 95% confidence
intervals are close to their nominal level for sample sizes of 50 and more. For large ranges of X
the efficiency of the PIM estimator is close to the efficiency of the semiparametric proportional
hazards estimator.

5.2. Power
In this section we examine empirically the power of tests for testing the no-effect null hypothesis
in terms of the PI. In particular, we shall look at the PIM

g{P.Y �YÅ|X1, XÅ
1 , X2, XÅ

2 /}=β1.XÅ
1 −X1/+β2.XÅ

2 −X2/, .25/

where X1 and XÅ
1 are 0–1 dummy variables that, for example, code for two treatment groups,

active treatment and placebo, say, and X2 and XÅ
2 refer to a continuous covariate, age, say. The

no-treatment-effect null hypothesis H0 : β1 = 0 is of interest. It expresses that, among patients
of the same age, the chance that a treated patient’s response is better than the response of an
untreated patient is 50%. To our knowledge hardly any statistical tests have been described in
the literature for this problem. In Section 1 we have discussed the most important competitors.
In this simulation study we have opted for the test of Brumback et al. (2006). Their test is also
semiparametric, but it is limited to testing the no-treatment-effect null hypothesis in the presence
of covariates, whereas our framework allows for a broad range of extensions. Their method can
be embedded in a particular PIM,

g{P.Y �YÅ|X1 <XÅ
1 , X2, XÅ

2 /}= δ1 + δ2.XÅ
2 −X2/, .26/

which does not allow for XÅ
1 =X1. Their test is based on the test statistic B= δ̂1=S1, where δ̂1 is

their estimator of δ1 and S1 is an estimator of the standard error of β̂1 which is obtained by the
bootstrap. For computational reasons we limit the bootstrap procedure to 200 runs.
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Three simulation scenarios are described next. For each scenario a parametric or a semipara-
metric test is included as a competitor test.

(a) Yi|Xi are IID N.α1X1i +α2X2i, 1). The data are analysed by least squares in a marginal lin-
ear model with conditional mean E.Y |X1, X2/=γ1X1 +γ2X2, by the PIM (25) with probit
link function and by Brumback’s bootstrap test based on equation (26) with probit link.
The least squares results serve as an indication of the best powers that can be expected.
The geepack R package (Højsgaard et al., 2005) is used to fit the marginal model.

(b) Yi|Xi are IID Exponential{exp.α1X1i +α2X2i/}. The data are analysed by partial like-
lihood in a proportional hazards model with hazard function λ.X/= exp.γ1X1 +γ2X2/,
by the PIM (25) with logit link and by Brumback’s bootstrap test based on equation
(26) with logit link. The powers with the partial likelihood method may be considered
as corresponding to a semiparametric competitor of the PIM, although the proportional
hazard model does not coincide with the class of PIMs: they express different restrictions
on the distribution fY |X.

(c) Zi|Xi are IID Logistic(α1X1i +α2X2i, 1), for which the latent response variable Zi is dis-
cretized into four ordered categories as described in section 6.2 of Agresti (2007). The
resulting ordinal response is denoted by Yi. The data are analysed by maximum likelihood
in the proportional odds model logit{P.Y � j|X1, X2/}=μj +γ1X1 +γ2X2, by the PIM
(25) with logit link and by Brumback’s bootstrap test based on equation (26) with logit
link. The R package MASS (Venables and Ripley, 2002) is used to fit the proportional
odds model.

The following design is considered. The covariate X1 is a 0–1 balanced dummy variable, X2
is equally spaced over [0:1, 10] and α1 takes the values 0, 0:5 and 1 whereas α2 is fixed at 1.
Sample sizes of 20, 50 and 200 are considered. All tests described above are applied for testing
H0 :γ1 =0 versus H1 :γ1 �=0, H0 :β1 =0 versus H1 :β1 �=0 or H0 :δ1 =0 versus H1 :δ1 �=0. All tests
are applied at the 5% level of significance. Table 4 shows the empirical powers based on 1000

Table 4. Empirical powers based on 1000 Monte Carlo runs for the three data-generating models†

α1 Powers for the following data-generating models:

1 2 3

PIM LS BT PIM PL BT PIM ML BT

n=20
0.0 7.6 9.5 0.0 9.7 4.3 0.0 10.8 4.5 2.2
0.5 15.0 27.3 0.0 22.7 16.2 0.0 14.1 7.3 2.8
1.0 45.9 72.3 0.2 42.3 44.4 0.0 25.3 16.8 4.8

n=50
0.0 5.7 6.4 2.0 8.1 6.4 3.3 7.7 5.1 4.9
0.5 35.3 50.6 24.4 30.1 38.4 17.5 18.3 15.6 12.9
1.0 89.5 97.5 78.7 76.0 89.2 57.6 39.7 37.5 33.4

n=200
0.0 4.7 5.3 4.2 4.8 4.7 4.1 7.1 6.1 6.4
0.5 93.4 98.0 91.0 77.1 93.3 75.3 36.8 37.5 35.6
1.0 100.0 100.0 100.0 100.0 100.0 100.0 88.5 88.8 87.4

†For each scenario the power of PIM is compared with a traditional regression technique: least squares, LS, partial
likelihood, PL, maximum likelihood, ML, or the bootstrap, BT.
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(a)

(b)

Fig. 2. FEV as a function AGE for (a) smokers and (b) non-smokers
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Monte Carlo simulation runs. For a small sample size (n=20) Brumback’s test shows complete
breakdown by showing virtually no power, and the tests based on the PIM are liberal. The tests
based on least squares are also liberal under model 1. When n= 50 all tests have sizes that are
not too far from the nominal level of 5%, but the PIM-based tests are often still slightly liberal
and Brumback’s test is often still conservative (although not for model 3). When n=200 all tests
are nearly unbiased. The powers of the tests in the PIM framework are generally larger than
those of Brumback’s test. The test based on least squares (model 1), partial likelihood (model
2) and maximum likelihood (model 3) are slightly more powerful, as expected.

6. Examples

To illustrate the interpretation of the PIM we present several examples. In Section 6.1 we pres-
ent the data analysis for a continuous response and two predictors showing interaction. The
example of Section 6.2 has an ordinal response variable and two predictors with no interaction.
An example data set with a continuous heteroscedastic response variable and one single con-
tinuous regressor is presented in Section 6.3. All PIMs are defined for the lexicographical order
relation and they all satisfy the antisymmetry condition; see Section 3 for more information.
For notational convenience we drop the conditioning in the PI notation. All hypothesis
tests are performed at the 5% level of significance and all computations are performed with
the R software (R Development Core Team, 2010).

6.1. Childhood respiratory disease study
The ‘Childhood respiratory disease study’ is a longitudinal study following pulmonary function
in children. We consider only the part of this study that was provided by Rosner (1999). The
response variable is the forced expiratory volume FEV, which is an index of pulmonary function
measured as the volume of air expelled after 1 s of constant effort. Along with FEV (litres), the
covariates AGE (years), HEIGHT (inches), SEX and SMOKING status (1 if the child smokes;
0 if the child does not smoke) are provided for 654 children of ages 3–19 years. See Rosner (1999),
page 41, for more information. The primary focus is on the analysis of the effect of smoking
status on pulmonary function. Fig. 2 displays FEV as a function of the AGE and SMOKING
status; note that all very young children are non-smokers. The WMW test is a natural choice.
However, it is believed that age may be a potential confounder, and thus the effect of smoking
on FEV should be adjusted for age. This is illustrated in Fig. 3, which shows density estimates of
the FEV distributions for several combinations of smoking status and age. Fig. 3 also suggests
an interaction between age and smoking status. It is also of interest to quantify the effect of
age.

For comparison we first analyse the data with a linear regression model with mean

E.FEV/=α0 +α1 AGE+α2 SMOKE+α3 AGE Å SMOKE: .27/

Table 5 gives the model fit with ordinary least squares. Since the residual plot (which is not
shown) indicates non-constant variance of the error, we also analyse the data by using weighted
least squares (see Table 5). The weights were obtained by fitting the absolute residuals of ordinary
least squares in a linear regression model with the fitted values of ordinary least squares as the
regressor.

With weighted least squares the effect of smoking on the mean level of FEV, while controlling
for age, is estimated as 1:84−0:15 AGE. If we consider, for example, the age categories 12, 13,
14 and 15 years from Fig. 3, the effect of smoking on the mean FEV is estimated by 0:01, −0:14,
−0:29 and −0:45 respectively, and the 95% confidence intervals are given by [−0:19, 0:21],
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(a) (b)

(c) (d)

Fig. 3. Kernel density estimates of the FEV-distributions for smokers (r) and non-smokers (�) of age (a)
12 years, (b) 13 years, (c) 14 years and (d) 15 years: the densities are estimated by using a Gaussian kernel
with a bandwidth of 0.5; beneath each kernel density plot is a rug plot to identify better the individual sample
observations that are used for the density estimation

[−0:33, 0:05], [−0:49, −0:09] and [−0:68, −0:21]. Thus for the ages of 14 and 15 years the mean
FEV of non-smokers is significantly larger. When the smoking status is fixed, the mean FEV
is estimated to change by 0:24 − 0:15 SMOKE when age increases by 1 year. For non-smokers
this effect is thus estimated by 0:24 with a 95% confidence interval of [0:22, 0:25], whereas for
smokers this is 0:082 with 95% confidence interval [0:009, 0:156]. Fig. 3 suggests that, while
controlling for age, smoking not only affects the mean. The effect of smoking is also visible in
higher order moments. The PI is well suited to quantify effects that do not act on one single
moment of the response distribution.

We consider the PI model with interaction:

logit{P.FEV�FEVÅ/}=β1.AGEÅ −AGE/+β2.SMOKEÅ −SMOKE/

+β3.AGEÅ Å SMOKEÅ −AGE Å SMOKE/: .28/

The model has no intercept, because, when AGEÅ =AGE and SMOKEÅ =SMOKE, the model
must give P.FEV � FEVÅ/ = expit.0/ = 1

2 . The parameter estimates are presented in Table 5.
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Table 5. Results of the ordinary least squares and weighted
least squares fits of model (27) and the results of the fit of the
PIM (28)

Parameter Estimate Standard p-value
error

Linear regression model ordinary least squares
Intercept (α0) 0.25 0.083 0:002
AGE (α1) 0.24 0.008 < 0:001
SMOKE (α2) 1.94 0.41 < 0:001
AGE Å SMOKE (α3) −0.16 0.03 < 0:001

Linear regression model weighted least squares
Intercept (α0) 0.32 0.054 < 0:001
AGE (α1) 0.24 0.007 < 0:001
SMOKE (α2) 1:84 0.51 < 0:001
AGE Å SMOKE (α3) −0.15 0.03 < 0:001

PIM
AGE (β1) 0:61 0.03 < 0:001
SMOKE (β2) 5:31 1.04 < 0:001
AGE Å SMOKE (β3) −0:46 0.08 < 0:001

For a fixed age, the probability of having a smaller FEV, as a non-smoker as compared with a
smoker, is estimated as expit.β̂2 + β̂3 AGE/= expit.5:31 − 0:46 AGE/. This illustrates that the
effect of smoking on the PI depends on age. For the age categories 12, 13, 14 and 15 years from
Fig. 3, the estimated probabilities of having a smaller FEV for a non-smoker are 46%, 35%,
26% and 18% respectively, with 95% confidence intervals [35%, 57%], [26%, 45%], [18%, 35%]
and [11%, 27%]. Thus if the age increases it becomes less likely that smokers have a larger FEV
than non-smokers. This effect is significant at the 5% level of significance for ages of 13, 14 and
15 years.

In contrast, if the smoking status is fixed, the probability of having a larger FEV when
age increases by 1 year is estimated as expit.β̂1 + β̂3 SMOKE/ = expit.0:61 − 0:46 SMOKE/.
Thus for non-smokers this probability is estimated by expit.0:61/= 65% whereas for smokers
this drops to expit.0:15/ = 54%. The 95% confidence intervals are given by [63%, 66%] and
[50%, 57%] respectively.

The PIM, just like any parametric or semiparametric regression model, expresses restrictions
on the joint distribution of the response and the covariates. As for any other regression model,
it is important to assess the validity of the model for a given data set. For this purpose we
propose a simple graphical diagnostic tool which is based on a lack-of-fit method for logistic
regression models (Hosmer and Lemeshow, 1980; Lemeshow and Hosmer, 1982; Hosmer et al.,
1988). When the model fits the data well, we expect that the predicted probabilities are close to
the observed (empirical) probabilities. Thus a plot of the former versus the latter could serve
for graphical model fit assessment. Hosmer and Lemeshow (1980) proposed to calculate the
empirical probabilities within groups of observations. In particular, observations with similar
predicted probabilities are grouped by partitioning the [0, 1] interval of the predicted probabil-
ities on the basis of their deciles. For each interval the average predicted probability and the
empirical probability are calculated. Fig. 4 shows the diagnostic plot; it suggests that the PIM
fits the data well. As the pseudo-observations are not mutually independent, the distribution
theory of the Hosmer–Lemeshow goodness-of-fit test does not directly apply to our setting.



Index Models 645

Fig. 4. Diagnostic plot for the respiratory disease data: the plot shows the average predicted PI according
to the fitted PIM versus the empirical PI; the grouping is based on the deciles of the predicted PI

6.2. Mental health study
The ‘Mental health study’ is a study of mental health for a random sample of 40 adult residents
of Alachua County, Florida. See Agresti (2007), page 185, for more information. The response
variable is mental impairment MI, which is ordinal with categories 1 (well), 2 (mild symptom
formation), 3 (moderate symptom formation) and 4 (impaired). Along with the mental impair-
ment, the life index LI and socio-economic status SES are also reported. SES is a binary variable
coded as 0 (low socio-economic status) and 1 (high socio-economic status). LI is a composite
measure that quantifies the severity and the number of important life events such as birth of a
child, death in the family and divorce. One of the objectives of the study is to assess whether
SES has an effect on MI. As the average MI-score has no clear interpretation, Agresti (2007)
analysed the data with a cumulative logistic regression model. Here we analyse the data in terms
of the PI. As it is believed that LI may be a potential confounder, we propose to analyse the
mental health data with the PIM

logit{P.MI�MIÅ/}=β1.SESÅ −SES/+β2.LIÅ −LI/: .29/

The parameter estimates are presented in Table 6. The diagnostic plot for model (29) is shown in
Fig. 5 (see Section 6.1 for details on the construction). The graph demonstrates that the PIM fits
the data quite well. For comparison Table 6 also contains the maximum likelihood parameter
estimates of the cumulative logit model,

logit{P.MI� j/}=μj +α1 SES+α2 LI, j =1, 2, 3, .30/

for which the parameter estimates are obtained by using the MASS R package (Venables and
Ripley, 2002).



646 O. Thas, J. De Neve, L. Clement and J.-P. Ottoy

Table 6. Results of the fits of the PIM (29) and the
cumulative logit model (30)

Parameter Estimate Standard p-value
error

PIM (29)
SES (β1/ −0:74 0:34 0:03
LI (β2) 0:20 0:07 0:006

Cumulative logit model (30)
Intercept 1 (μ1) −0:28 0:64 0:66
Intercept 2 (μ2) 1:21 0:66 0:07
Intercept 3 (μ3) 2:21 0:72 0:002
SES (α1) 1:11 0:61 0:07
LI (α2) −0:32 0:12 0:008

The PIM analysis shows that, at the 5% level of significance, SES and LI have significant effects
on the MI-score in terms of the PI. With β̂1 =−0:74 we conclude that, of people with equal LI,
someone with a high socio-economic status has an estimated probability of expit.−0:74/=32%
to have a larger MI-score than someone with a low socio-economic status and a 95% confidence
interval is given by [20%, 48%]. People with a low socio-economic status are thus more likely
to be mentally impaired than others with a high socio-economic status, while all having the
same LI. The effect of LI on MI can be estimated by the probability expit.β̂2/. In particular,
among people with the same SES, those with an LI of 1 unit smaller than the LI of another
group of people have a smaller MI-score with estimated probability expit.0:2/ = 55%, with a
95% confidence interval of [51%, 59%]. Thus, the larger the LI, the more likely someone is to
be mentally impaired.

The cumulative logit model (30) gives no significant effect of SES at the 5% level of signifi-
cance (p= 0:07). Similarly to PIM analysis, there is a significant effect of the life index on the
cumulative logit (p = 0:008): if LI increases by 1 unit, the odds that the mental impairment
score is not larger than a particular level decreases by an estimated factor exp.−0:32/ = 0:73
with a 95% confidence interval of [0:56, 0:91]. Although the conclusions based on the PIM and
the cumulative logit model agree quite well, there is thus a difference in interpretation. The
cumulative logit model (30) can be further extended so that the covariate effect on the odds
ratios for the events MI� j depends on the level j. Since this more complex model does not fit
significantly better (the results are not shown; p = 0:68), we keep the model with the propor-
tional odds assumption. The PIM (29) can also be extended so that the effects of SES and LI on
the PI depend not only on the differences SESÅ −SES and LIÅ −LI, but also on the covariates
themselves. For example,

logit{P.MI�MIÅ/}=β1.SESÅ −SES/+β2.LIÅ −LI/+β3 SES+β4 LI, .31/

which is well defined for the strict lexicographical order restriction SES<SESÅ, or SES=SESÅ

and LI < LIÅ. However, this more complex model did not fit significantly better (the results are
not shown; p=0:77). Note that the addition of β3 SES and β4 LI in model (31) is another way
of introducing an interaction effect.

Although both models may have their merits and shortcomings we believe that the PIM has
the advantage of quantifying the effects of the covariates on the response distribution more
directly. More specifically the PIM (29) models the log-odds,



Index Models 647

Fig. 5. Diagnostic plot for the mental health data: the plot shows the average predicted PI according to the
fitted PIM versus the empirical PI; the grouping is based on the deciles of the predicted PI

log{odds.MI�MIÅ|SES, SESÅ, LI, LIÅ/},

whereas the proportional odds model (30) models the log-odds-ratio,

log
{

odds.MI� j|SES, LI/
odds.MIÅ � j|SESÅ, LIÅ/

}
:

6.3. Food expenditure data set
The food expenditure data set contains data on food expenditure FE (in Belgian francs), and
annual household income HI (in Belgian francs) for 235 Belgian working-class households.
Ernst Engel provided these data to support his hypothesis that the proportion that is spent on
food falls with increasing income, even if actual expenditure on food rises. The data were also
used in Koenker (2005) for the illustration of quantile regression; the data are also available
in the quantreg R package (Koenker, 2011). Fig. 6(a) plots FE versus HI as well as showing
a fitted linear model based on weighted least squares. The weights were obtained by fitting
the squared residuals of a classical least squares fit in a linear regression model with the fitted
values of the least squares fit as the regressor. As a result of the increasing variability in food
expenditure as household income increases, we analyse the data with the PIM

logit{P.FE�FEÅ/}=β
HIÅ −HI√
.HIÅ +HI/

, .32/

in which the denominator
√

.HIÅ +HI/ is suggested by the arguments that were given in Section
4.1. The estimated slope is β̂ = 0:39 (p < 0:001 and 95% confidence interval [0:34, 0:44]). This
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(a)

(b) (c)

Fig. 6. (a) Scatter plot of the food expenditure data with a fitted linear regression line, and non-parametric
Gaussian kernel smoother density estimates with bandwidths (b) 20 and (c) 50 of the food expenditure for
household incomes (b) 500 (�) and 600 (r) and (c) 1200 (�) and 1300 BEF (r): beneath each kernel density
plot is a rug plot to identify better the individual sample observations that are used for the density estimation;
the notation P {Y.500/<Y.600/} and P {Y.1200/<Y.1300/} is used as a compact notation for the PI

analysis supports Engel’s hypothesis. Indeed if the household income is 500 BEF then the
probability of larger food expenditure with a household income of 600 BEF is estimated as 76%
with a 95% confidence interval of [74%, 79%]. When we compare households with 1200 and 1300
BEF this estimated probability drops to 69% with a 95% confidence interval of [66%, 71%]. This
is an example of the negative effect modification of the increasing error variance (see Section
4.1). Figs 6(b) and 6(c) illustrate this phenomenon. As the data set contains no two households
with exactly the same income, an observation with income u is assigned to income v if |u−v|<50
BEF.

The diagnostic plot is presented in Fig. 7; it shows convincingly a very good fit.

7. Conclusion

We have introduced a general class of semiparametric models for the PI. The models ap-
ply to continuous and ordinal response variables. The parameters of the PIM have direct
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Fig. 7. Diagnostic plot for the food expenditure data: the plot shows the average predicted PI according to
the fitted PIM versus the empirical PI; the grouping is based on the deciles of the predicted PI

and informative interpretations that have been illustrated on four data sets. The PIM frame-
work may be considered as a generalization of the area under the curve regression models
of Dodd and Pepe (2003) and of the related covariate-corrected WMW test of Brumback et al.
(2006). It extends these methods by providing a more flexible model formulation that

(a) not only applies to the comparison of response variables for two treatment groups,
(b) is not restricted to continuous responses and
(c) includes a consistent estimator of the covariance matrix of the parameter estimators

without relying on the bootstrap method.

The asymptotic theory that we have presented is based on the work of Lumley and Hamb-
lett (2003), using the concept of sparse correlation. The estimating equations make use of
the score function of regression models under the working independence condition. Although
this choice results in consistent and asymptotically normally distributed parameter estima-
tors, it does not guarantee semiparametric efficient estimators. In future research we plan to
improve the methods further by the construction of efficient score functions. The results of
our simulation study demonstrate that the theoretical properties of the parameter and variance
estimators apply well to moderately sized samples, and that the powers of our tests are quite
good.

The semiparametric PIMs are flexible, but, as for all regression models, they impose some
restrictions on the conditional distribution of the response variable. Therefore we have proposed
a simple graphical diagnostic tool that is based on the ideas of Hosmer and Lemeshow (1980).
The development of more formal lack-of-fit tests for the PIMs may be an interesting direction
for future research. In particular, we believe that the ideas of Deschepper et al. (2006) and Hart
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(1997) may be helpful. Another restriction in the present definition of the PIMs is the linearity
in the predictor, which in our current model is formulated in the spirit of generalized linear
models (McCullagh and Nelder, l989). Future extensions may involve non-parametric regres-
sion terms which may be estimated by means of kernel smoothers, splines or any other type
of non-parametric estimator, eventually resulting in PIMs that resemble generalized additive
models (Hastie and Tibshirani, 1990) for the PI.

In the present paper PIMs are only defined for use with mutually independent observations.
Extensions to clustered and longitudinal data would also be very useful. This may involve the
introduction of random-effect terms in the linear predictor, or it may be accomplished through
extensions of the estimating equations.

Finally, we want to stress that PIMs are not to be considered as a competitor of other classes
of statistical models. We rather think that the PIM framework is a valuable addition to the
statisticians’ toolbox which may be used whenever the PI is chosen as a meaningful scale for the
formulation of the research question.
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Discussion on the paper by Thas, De Neve, Clement and Ottoy

Thomas Alexander Gerds (University of Copenhagen)
I am pleased to welcome this paper to the Society. At a first glance the probabilistic index model (PIM) is
the instrument that has always been missing in my toolbox: a multiple-regression model which generalizes
the Wilcoxon rank sum test. If it is as indicated, we can now leave the multiple (normal) linear regression
model and use a PIM as a robust alternative. I believe that this class of models will have a significant
influence on applied statistical work. Let me outline two arguments.

(a) PIMs will be used by young statisticians. Let us think about a young statistician as someone work-
ing with a default toolbox equipped with default tools composed according to their type and
place of education. Such a person aims to apply the correct tool to a given problem and may
believe that it is wrong, say, to apply a t-test when the outcome is a discrete variable. Hence, a
young statistician applies a PIM when the task is to do multiple-regression analysis of apparently
not normally distributed outcomes. However, a PIM certainly cannot solve all the problems of
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experienced statisticians who know how to apply the wrong tools and still arrive at sound conclu-
sions.

(b) PIMs will find their way into medical statistics. The generic argument of Thas and his colleagues
is that their models provide effect measures which have an intuitive interpretation. They also make
an important connection to area under the curve regression. The relationship can be extended to
the concordance index which generalizes the area under the curve. The concordance index is widely
used to assess the discrimination ability of risk prediction models (Harrell et al., 1996). It is usually
defined as the probability that the risk predicted for person i is greater than that for person j given
that the event occurs earlier for person i, i.e.

C =P.Ri �Rj|Ti <Tj/:

From the PIM perspective a more natural formulation is to condition the order of the outcome on
the order of the predicted risks:

C =P.Ti �Tj|Ri >Rj/:

This latter formulation is appealing since one does not condition on the future. It can be noted that
if both the predicted risks and the event times are continuous variables then P.Ti < Tj/ = P.Ri >
Rj/=0:5 and hence the two formulations are equivalent. A potentially interesting new application
of PIMs is to test whether a biomarker X improves the predictive ability of the prediction model
with a suitably formulated ‘concordance index model’, e.g.

P.Ti �Tj|Ri, Rj , Xi, Xj/=g−1.β 1{Ri >Rj}+γ 1{Xi −Xj}/:

Thas and his colleagues discover a fascinating relationship between the PIM and the Cox mod-
el in Section 4.2 but they do not deal with censored data. In survival analysis we observe only
min.Ti, Ci/ where Ci is the censoring time. A necessary first step is to truncate the pseudovalue at a
time t where the probability of being uncensored is positive:

Iij.t/=1{Ti �Tj , Ti < t},
P.Ci > t/> 0:

Still, the value of the pseudovalue is unknown for pairs where Ti >Ci. To deal with censored data one
possibility would be to apply inverse probability weighting. Here I propose a different approach.
The idea is to construct a pseudovalue for the pseudovalue following Andersen et al. (2003). Apart
from correction terms it is given as.

Ĩ ij.t/=n2
∫ t

0
{1− F̂ .s/}dF̂ .s/− .n−1/2

∫ t

0
{1− F̂

.j/
.s/}dF̂

.j/
.s/

where F̂ is the Kaplan–Meier estimate calculated with all the data and F̂
.j/

is the Kaplan–
Meier estimate when the data from the jth patient have been removed. I conjecture that if
censoring is independent of the covariates and the event times then one can argue by using a
second-order von Mises expansion of the Kaplan–Meier estimator as in Graw et al. (2009) to show
that

E{Ĩ ij.t/|Xi, Xj}=E{Iij.t/|Xi, Xj}:

Under the usual regularity conditions on the link function, estimating equations based on the
pseudo-pseudovalue will be asymptotically consistent. Note that in uncensored data the pseudo-
pseudovalues are equal to the pseudovalues. I close my discussion with a couple of remarks.
(i) Thas and his colleagues treat ties rigorously throughout their paper. A potentially important

further distinction is between ties that occur due to observational imprecision and real ties
where the underlying characteristics are equal for some individuals.

(ii) In Section 6, pseudocalibration plots are used to assess goodness of fit. Thas and his colleagues
note a problem with the arbitrary grouping that is inherent in these plots and in the Hosmer–
Lemeshow test. To avoid arbitrary grouping one could use non-parametric smoothing (Le
Cessie and Van Houwelingen, 1991), or measure the calibration by the expected value of a
strictly proper scoring rule (Gneiting and Raftery, 2007). For example, one could measure
calibration by the average mean-squared pseudoerror
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1
n

1
n

∑
i

∑
j

[1{Yi �Yj}−PIM.Xi, Xj , β/]2:

The PIM should score below the benchmark of 25% which is obtained when 50% chance is
predicted for the event {Yi �Yj} independently of i and j.

(iii) To improve the interpretation of PIMs further one could introduce an offset into the proba-
bilistic index: P.YÅ �Y − "/. Then the regression parameters in a suitably defined PIM would
express the effects of predictor variables on the probability that the outcome will be reduced
by at least ", which could be a clinically meaningful change.

In summary, I think that Thas and his colleagues have provided us with a new hammer for the default
toolbox. It gives me great pleasure to propose the vote of thanks.

Stephen Senn (Centre de Recherche Public de la Santé, Strassen)
We need many ways of looking at data and a technical exploration of an alternative approach to modelling
with a chance for discussion should always be welcome to this Society. As such it is a pleasure to second
the vote of thanks for this interesting paper. It is, however, the tradition of this Society for seconders to be
critical and although I think that it will be good for the applied statistician to know that these techniques
exist and have been developed in detail I also think that will usually be wise for the statistician not to use
them (Senn, 2011).

Before explaining why, I draw attention to some connections. The authors use the term probabilistic
index (PI). They refer to the fact that individual exceedence probability has been used before but do not
give the reference, which I now provide (Senn, 1997). Recently Buyse (2010) has proposed a multivariate
version called the proportion in favour of treatment. More important, however, is that, in the context of
longitudinal data and factorial experiments, there is an extensive treatment of relative treatment effects
using normalized empirical distribution functions in the beautiful book by Brunner et al. (2001). I urge
the authors to study this as I believe that they will find many interesting connections to their work. The
indicator function that is defined at the beginning of Section 3.1 is essentially, of course, the Heaviside
function H.d/, d =YÅ −Y , and this raises the possibility of a close connection to the very extensive theory
of counting processes applied to survival analysis. Of course the authors themselves develop a connection
in Section 4.2 and, indeed, Kalbfleisch and Prentice (1980) to whom they refer used H.d/.

I illustrate my reasons for distrusting the PI as a measure of effect by looking at the first example. First,
note that violation of the linearity assumption for this example is a red herring. The technique proposed
does nothing to deal with this. If the conditional distribution of the response depends on the dose in the way
implied, then there is no universal effect of a 5-g change whether measured by the PI or more convention-
ally. Furthermore, the reference to the ordinal nature of the Beck depression inventory is also misleading.
This is a sum of 21 items and since change from baseline is used a 21st linear operation has been added
unnecessarily to the 20 already performed in its construction. If the Beck depression inventory change
score is truly ordinal it only is so because it is interval. Furthermore, the use by the authors of change
scores immediately raises a worrying issue. Suppose that we take the simplest case where we assume that
although baseline is related to outcome it is unrelated to dose (if this is not so then any modelling approach
will have to tread delicately). If this is so then it makes no difference (in expectation) to the conditional
estimate of the ‘effect’ of dose by using conventional least squares whether we use raw outcomes only, or
differences from baselines only or condition on the baselines by using them as a covariate. However, even
in the best behaved of cases the PI would be quite different since it is, essentially, a signal-to-noise ratio:
the degree of overlap depends not just on the signal but also on the noise.

The authors seem to see this as a good thing. I cannot agree. Consider a placebo-controlled trial of an
angiotensin-converting enzyme inhibitor in hypertension with diastolic blood pressure as the outcome mea-
sures. Any one of the following will change the value of the PI even if the effect as conventionally measured
is stable across patients: narrowing or broadening the inclusion criteria; taking more precise measurements;
using the average of a number of measurements; using the difference from baseline; stratifying. Can this
be a good thing? Can physicians let alone patients interpret the resulting PI? Consider the authors’ first
example. It is certainly a challenge to explain what this 70.2% is. Is it the probability that a randomly chosen
patient will improve his or her value if given 5 g extra?: no. Is it the probability that such a patient will benefit
from taking 5 g extra?: no. Is it an inherent property of the treatment?: no. It is a combined property of the
treatment, the variability of the way that we measure it and the variability of the patients we happen to have
recruited into a study for which we did not use random sampling. I shall repeat what I have said in discussion
of such measures previously: only those who misunderstand them will find them simple (Senn, 2006).
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Of course, all statisticians use measures that are not collapsible: odds ratios and hazard ratios (Ford
et al., 1995; Gail et al., 1984; Robinson and Jewell, 1991) are cases in point. However, one justification for
using such measures is that they should be interpreted ultimately in terms of predictions (Lee and Nelder,
2004; Senn, 2004). Whatever problems such measures have the PI will have much worse.

However, now that my grumble is over, I return to my opening comments. I found this paper inter-
esting and stimulating, as I am sure will do many who read it and as did all who heard it delivered. In
encouraging us to think again it increases our understanding of what we are doing in statistical modelling.
I applaud the authors’ final remarks that the approach to analysis is not a superior substitute for conven-
tional approaches but a possible alternative or perhaps supplement on occasion. If this is so one cannot
but welcome this exposition and exploration and I am very pleased to second the vote of thanks.

The vote of thanks was passed by acclamation.

Ingrid Van Keilegom (Université catholique de Louvain)
I first congratulate the authors for this interesting paper and important contribution to the area of semi-
parametric regression modelling. The model proposed has many links with other known models in the
literature and has the advantage of allowing the response to be discrete and even ordinal.

As the authors point out, it is not clear for the moment whether their estimation procedure is efficient.
To shed some light on the estimation of the model and on its semiparametric efficiency bound, which is
at the same time an important and a very difficult problem, I concentrate here on the case where Y is
continuous and rewrite the model as

h.Y/=g−1.ZTβ/+ ", .33/

where h.y/ = P.YÅ � y|XÅ/, E."|Z/ = 0 and var."|Z/ = σ2.Z/. Indeed, we can write P.Y � YÅ|X, XÅ/ =
EY [P.Y �YÅ|X, XÅ, Y/|X, XÅ]=E[h.Y/|X, XÅ]. This shows that the probabilistic index model (PIM) is a
special case of a transformation model. The transformation methodology has been quite successful and a
large literature exists on this subject for parametric models; see for example Carroll and Ruppert (1988)
among many others. To estimate β, we can now proceed as follows. Define

m.Z, Y , β, h, σ2/=σ−2.Z/{h.Y/−g−1.ZTβ/}@g−1.ZTβ/

@β
:

Then, E[m.Z, Y , β, h, σ2/] = 0. To estimate β, first replace h and σ2 by non-parametric estimators (say ĥ
and σ̂2/, and then define the estimator β̂ by solving the system of equations

n−1
n∑

i=1
m.Zi, Yi, β, ĥ, σ̂2/=0

with respect to β. The asymptotic normality of β̂ can be obtained from Chen et al. (2003), who developed
primitive conditions for the asymptotic normality of any semiparametric Z-estimator.

A second way to look at the PIM is by rewriting the model as

φ{S.·|XÅ/|X}=g−1.ZTβ/, .34/

where S.y|XÅ/ = P.YÅ � y|XÅ/ and φ{S.·|XÅ/|X}= E[S.Y |XÅ/|X, XÅ]. By writing the PIM in this way,
it becomes a special case of the model that was studied by Grigoletto and Akritas (1999), except that the
function φ depends on X here.

Since models (33) and (34) are well known and have been well studied in the literature, they can be
helpful in determining the semiparametric efficiency bounds of the PIM. However, the estimation of these
models builds almost inevitably on the estimation of conditional functions (h and σ2 for model (33), and
φ for model (34)), which can be a difficult task involving for example the delicate choice of smoothing
parameters, whereas the estimation method that is proposed by the authors does not rely on any smoothing
methods.

Lori E. Dodd (National Institute of Allergy and Infectious Diseases, Bethesda) (© US Government)
The probabilistic index (PI) arises naturally where relative orderings of outcomes from pairs of obser-
vations can be assigned. PI-like indices have been used extensively in psychophysics, in which subjective
readers may be unable to assign scores directly but can rank pairs of images with respect to ‘signal’ or
‘noise’ in what are referred to as two-alternative forced choice experiments (Green and Swets, 1966). In
clinical trials, the PI has been proposed as a clinically intuitive way of combining multiple outcomes
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Table 7. Coefficient estimates under different orderings

SES�SESÅ SESÅ �SES No ordering
.β̂1, β̂2 − β̂1/ (−0.04, 0.60) (−0.53, 1.09) (0.70, 0.89)

(Follmann, 2002). For example, a rule-based method to combine the outcomes of death and hospitaliza-
tion might proceed as follows.

(a) Death is the worst outcome; earlier death worse than later.
(b) Among survivors, hospitalization for disease is the worst outcome, with early hospitalization worse

than later.

Patient outcomes can be naturally ordered and covariate effects evaluated by using ‘pairwise ordering
regression’ (POR) (Follmann, 2002), which is similar to probabilistic index models (PIMs).

Thas and his colleagues nicely demonstrate the relationship between PIMs and standard linear regres-
sion, proportional hazards (PH) and rank regression models. For PHs, the PIM covariate effects provide
an alternative interpretation that may be easier to explain to collaborators. Follmann (2002) showed a
similar connection between logistic PIMs and PH models in POR, but POR allows for censoring. Alterna-
tive models of the PIM can be obtained by considering the PIM as an expected placement value—i.e. the
expected ‘place’ in the conditional survivor distribution function, EYÅ [SY |X.YÅ/] (Pepe and Cai, 2004; Cai
and Dodd, 2008), This interpretation suggests alternative estimating equations that may be more efficient
than those developed by Thas and his colleagues.

In general, the choice of and effect of lexicographic ordering on covariates and model coherence is not
self-evident. For binary covariates, the use of a strict lexicographical ordering X<XÅ results in the Wald-
type Mann–Whitney statistic. This is one case in which the lexicographical ordering is clear. However,
more guidance and intuition about this in the general setting would be helpful. Equation (31) presents a
model for which the authors impose the lexicographical ordering SES�SESÅ. Consider a simpler model
(and its complement):

logit{P.MI�MIÅ/}=β1.SESÅ −SES/+β2 SES, .35/

logit{P.MIÅ �MI/}=β′
1.SES−SESÅ/+β′

2 SESÅ: .36/

It was not clear whether the authors would expect a lack of coherency, in the sense that m.SES, SESÅ/ �=
1−m.SESÅ, SES/, for .SES, SESÅ/= .1, 0/. However, the fitted PIs for this case demonstrate coherency
for all .SES, SESÅ/. Now, consider two different orderings SESÅ �SES and no ordering. Within a given
ordering, coherency holds, as can be seen in Table 7. Results are presented in terms of β1 and β2 − β1
because they describe the effect on SES and SESÅ respectively.

The estimates in Table 7 imply different relationships between the covariates and the PI. What is the
preferred ordering? It may be SES � SESÅ because the PI is defined as P.MI � MIÅ/ but the motivation
should be made more explicit.

I conclude with two final cautionary notes about PIs. First, it is well known that, when receiver oper-
ating characteristic curves cross, conclusions about covariate effects on the PI become more complex, as
this phenomenon can mask true covariate relationships on SY |X: Graphical procedures displaying receiver
operating characteristic curve regression models may provide a complementary tool for diagnosing this
phenomenon (Pepe, 2000). Additionally, Hand (1992) cautioned against using the PI for causal effects and
provided examples for which the PI would lead to the incorrect conclusion about which of two treatments
is better.

Wicher Bergsma (London School of Economics and Political Science) and Marcel Croon, Jacques A.
Hagenaars and Andries van der Ark (Tilburg University)
We would like to point out the relationship to Bergsma et al. (2009), where probabilistic index models
(PIMs) were introduced under the name of Bradley–Terry-type models, and full maximum likelihood for
fitting and testing with categorical variables was used. Below we also point out possible interpretational
problems with certain PIMs, and how to avoid these.

We begin by giving a justification for the use of the probabilistic index. Consider a set of ordinal random
variables {Yi, i∈I} (not necessarily independently or identically distributed). Being ordinal, the Yi are only
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meaningful comparatively, i.e. an individual Yi has no meaning. However, a set of meaningful sufficient
statistics is

{sgn.Yi −Yj/|i �= j}:

This suggests the use of

Lij =E[sgn.Yi −Yj/]=P.Yi >Yj/−P.Yi <Yj/

which is related to the probabilistic index via

PIij = .1−Lij/=2:

Linking to the notation of Thas and his colleagues, write Yi = .Y |X = i/ so that

PIij =P.Y< YÅ|X = i, XÅ = j/:

We see that models based on the Lij or the PIij are truly ordinal, in contrast with, for example McCullagh’s
logistic models and normal threshold models, which assume that ordinal data are realizations of some
underlying interval level variable.

It might be tempting to interpret Lij > 0 as ‘Yi >Yj ’. However, a problem is that it is possible that

Lij > 0, Ljk > 0 and Lik > 0

so Yi >Yj , Yj >Yk and Yk >Yi, i.e. the inequality relation is intransitive. For PIM (31) in the paper an intransi-
tive solution arises if β1 =β2 =β4 =0, β3 >0, SESi =SESj =SESk >0, in which case MIi < MIj , MIjk <MIk

and MIk < MIi.
Ideally, we would like to be able to interpret Lij as a difference in location of Yi and Yj . However, this

is not possible in general, since we may have

Lij +Ljk �=Lik:

However, if the Bradley–Terry-type model

Lij =λi −λj .37/

holds, then

Lij +Ljk =Lik

and the λs can be interpreted as ordinal location parameters for the Y s. A regression model for the ordinal
locations λi can then be formulated as

λi =XT
i β: .38/

More generally than model (37) for a link g, we can consider

g.Lij/=λi −λj: .39/

Substitution of equation (38) into equation (39) yields

g.Lij/= .Xi −Xj/
Tβ

which is a subclass of the PIMs that were considered by Thas and his colleagues. Note that, assuming
that equation (39) holds, our formulation (38) is easy to interpret and falls within the classical regression
framework.

Bergsma et al. (2009) considered a very broad class of models, which includes PIMs, and derived
multinomial ‘maximum’ likelihood equations. These equations apply to PIMs for the case that the response
variable is categorical. However, the Lagrangian algorithm that was described there (and implemented
in Bergsma and Van der Ark (2009)) appears to suffer from numerical problems when covariates are
continuous. We wonder how a full likelihood method could be implemented for the continuous case.

Stijn Vansteelandt (Ghent University and London School of Hygiene and Tropical Medicine)
I thank the authors for an interesting and stimulating paper. When interest lies in the effect of treatment
A (1, treatment; 0, no treatment) on outcome Y , covariate-adjusted probabilistic indices have been sug-
gested to avoid attenuation of the estimated treatment effect (Brumback et al., 2005), to boost its precision
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(Brumback et al., 2005) or to adjust for confounding by Thas and his colleagues. I shall reflect on these
various suggestions.

I remind the reader that covariate adjustment is a subtle consideration, even when the treatment is ran-
domly assigned. The unadjusted analysis then targets the marginal probabilistic index P{Y.0/�YÅ.1/},
which expresses how likely it is, if one picks two random individuals and randomly chooses to treat one
(in which case we observe YÅ.1// but not the other (in which case we observe Y (0)), for the untreated
individual to score lower. The adjusted analysis targets the same comparison, but for two random indi-
viduals with the same covariate value L. As one adjusts for increasingly more baseline predictors of the
outcome, the covariate-adjusted probabilistic index will tend to move increasingly further from 0.5, and
to come increasingly closer to the within-subject comparison P{Y.0/�Y.1/}, which expresses how likely
it is that a random individual would score lower if untreated than if treated. Although such within-subject
comparison may be the statistician’s ultimate dream, interpretation as such is always hindered by the fact
that one will never know how close the approximation is.

Since covariate adjustment thus changes the treatment effect estimand, it cannot be used to boost its
precision and in fact would often inflate its standard error (Robinson and Jewell, 1991). Rather than letting
the choice of covariate set change the interpretation, I shall here focus on the marginal probabilistic index
P{Y.0/�YÅ.1/}. Adjustment for confounding may now alternatively happen by calculating

n∑
i=1

n∑
j=1

I.Ai =0, Aj =1/ I.Yi �Yj/={P.Ai =0|Li/P.Aj =1|Lj/}
n∑

i=1

n∑
j=1

I.Ai =0, Aj =1/={P.Ai =0|Li/P.Aj =1|Lj/}
: .40/

This has the advantage that it relies instead on a model for the propensity score P.A|L/, which is arguably
easier to specify than the dependence of the probabilistic index on the covariate values of two individuals.
Using semiparametric efficiency theory under the model defined by the sole restrictions of a propensity
score model, more efficient estimators of P{Y.0/�YÅ.1/} can be constructed. Application of a semipara-
metric efficient estimator would guarantee that the adoption of auxiliary covariate information boosts
precision. When the exposure is randomly assigned, the resulting inference would be (asymptotically) dis-
tribution free, because of the estimator’s reliance on the known randomization probabilities P.A|L/ (see
for example expression (40) and Zhang et al. (2008)), in contrast with inference under (covariate-adjusted)
probabilistic index models which does not exploit that knowledge.

The following contributions were received in writing after the meeting.

David Draper (University of California, Santa Cruz)
The authors have offered an interesting semiparametric approach to regression modelling based on their
probabilistic index (PI). However, I do not see that this technique offers significant gains when compared
with existing Bayesian non-parametric fitting methods. Consider, for instance, the authors’ example exam-
ining the relationship between Beck depression inventory (BDI) improvement and dose of quetiapine in
Section 1, which is illustrated in the paper’s Fig. 1(a). The authors point out correctly that their PI analysis
is superior to a naive linear regression, in two ways: their approach attempts to capture non-linearity in a
particular way, and it also attempts to respond to the evident heteroscedasticity. However, Fig. 8 presents
the results from fitting a treed Gaussian process model (Gramacy and Lee, 2008) to this data set, using
the freeware R function btgp ‘straight out of the box’, with no special tuning or other user intervention.
This is a Bayesian non-parametric technique that finds an optimal partition of the X -space, for fitting
Gaussian process regression models to the separate regions identified by the partition. The treed Gaussian
process analysis automatically adapts to the heteroscedasticity and non-linearity in this data set, and in so
doing it reveals an important scientific finding that was not discovered with the authors’ PI approach: the
improvement in BDI is constant in the quetiapine dose up to about 19 g, above which it is approximately
linear with a slope of about 0.5 BDI points per gram.

In obtaining these results, I did not instruct btgp to find a specified number of partition sets, as defined
by the dose variable, or where to locate the ‘change-points’; the algorithm correctly deduced that the
optimal number of separate Gaussian process models to fit in this case is 2. I say ‘correctly’ and ‘optimal’
because—in an analysis not presented here in more detail, because of space limitations—I generated 100
simulated data sets, each with 49 observations, matching the structure of the BDI improvement by dose
data set (with one change-point randomly located between 16 and 22 g, a constant relationship to the left
of the change-point at a value varying randomly from 2 to 8 BDI improvement points, a linear relationship
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Fig. 8. Bayesian treed Gaussian process, fit to the relationship between DOSE and BDI improvement
in Fig. 1: , estimated underlying mean function; , 90% uncertainty bands; , optimal partition

to the right of the break point with a slope varying randomly from 0.25 to 0.75, and heteroscedasticity
values chosen randomly from ranges similar to those in the observed data set), and btgp identified the
correct structure in 93 of these 100 replications.

Michael P. Fay (National Institute of Allergy and Infectious Diseases, Bethesda) (© US Government)
Although Thas and his colleagues discussed the k-sample case, it is helpful to compare the probabilistic
index models (PIMs) and linear models in the simple three-sample case to point out some non-intuitive
behaviour of the PIMs. Let Y.a/ be a random response from group a, and the associated covariate be
X.a/, a 3 × 1 vector with the ath element equal to 1 and the others 0. The associated linear model has
E.Y |X/=XTμ, where μ= .μ1, μ2, μ3/, and the model imposes no additional structure on the means. For
comparing groups a and b in the linear model, we use the difference E.Y.b/ −Y.a//=μb −μa. So knowing
μ allows us to obtain any pairwise comparison between the groups.

Now consider a PIM for the three-sample case. Let Pab =P.Y.a/ �Y.b// and let βab =Pab − 1
2 . Suppose

that our model of Pab is m.X.a/, X.b/;β/= 1
2 + .X.b/ −X.a//β = 1

2 +βb −βa, where β = .β1, β2, β3/. For this
model, the comparison between group a and b gives βab =βb −βa. As with the linear model, knowing β
we can model all three pairwise comparisons, β12, β23 and β13, and if we know two of the three pairwise
comparisons we can obtain the third. Further, since there are only three unique pairs for comparisons,
it would appear that three parameters would not impose any additional structure. This is not true, since
there are distributions for which the PIM model above does not fit the data.

Consider three discrete distributions, each with three possible values which occur with equal probability.
Here are the possible values: group 1 (1,5,9), group 2 (2,6,7) and group 3 (3,4,8). Then P.Y.1/ � Y.2// =
P.Y.2/ �Y.3//=P.Y.3/ �Y.1//= 5=9 and β12 =β23 =β31 = 1=18. This is an example of the intransitivity of
the PI (see for example Brown and Hettmansperger (2006)). If we try to fit the model m.X.a/, X.b/;β/ =
1
2 +βb −βa to this scenario, then there are no values of the parameter vector β such that β2 −β1 =β3 −β2 =
β1 −β3 =1=18. So with these three distributions our model is misspecified.
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Asymptotically, with equal numbers in the three groups, it seems that the estimates of β1, β2 and β3
would all approach 0. For large samples, would we erroneously conclude that P12 ≈ 1

2 in the presence of the
third group, but conclude that P12 ≈ 5=9 if we did not observe the third group? Perhaps diagnostic plots
are important even in very simple cases where we might not use them in linear models.

Dean Follmann (National Institutes of Allergy and Infectious Diseases, Bethesda) (© US Government)
I very much liked this paper. It gave a thoughtful development of a flexible probabilistic index model (PIM)
approach, explored connections with other methods, had nice theoretical results and gave three substantial
examples. I also am hopeful that this approach becomes part of an applied statistician’s toolbox because
I think that there are settings where it will be the perfect choice.

In this comment I wanted to expand on an aspect of this approach that I became painfully aware of
when working on a similar method (Follmann, 2002). Under a simple version of a PIM, one postulates
that the probability that outcome i is better than j is given by a logistic regression with intercept 0 and
covariate Xi − Xj . I applied this pairwise logistic approach (PLA) to a clinical trial by using standard
software and waited for the result. After a while, I quit waiting as I realized what the hitherto esoteric
expression O.n2/ (the order of the number of terms in the PLA likelihood) truly meant for a data set with
n = 4228. And, even if I were patient, I would have had to wait even longer for the covariance estimate
based on O.n3/ operations. Being impatient and needing an example, I decided to analyse a subgroup of
645 diabetics to illustrate the method. Unfortunately, this is not a universal solution to the problem of
large n.

If we assume a proportional hazards (PH) model for the outcomes, then the pairwise logistic regres-
sion model obtains. The PLA does not imply a PH model, and thus the PH model requires a stronger
assumption. But there are tempting reasons to make this assumption. First, we can just run Cox regres-
sion software on the data. Under no censoring this should involve O.n/ terms for the partial likelihood.
Another reason is that, under the PH model, partial likelihood gives more efficient estimates than from
the PLA. To crystallize these points, I conducted one small simulation in R, for the two-group setting with
n=20 and then n=200 per group, X=0 or X=1 the group indicator, exponentially distributed outcomes
and no censoring. On the basis of 1000 replications, the ratio of mean-squared errors for the pairwise to
partial likelihoods was 1.66 .n=20/ and 1.31 .n=200/ whereas the ratio of computation times was about
14.3 .n=20/ and 1:15×104 .n=200/. The PH assumption has real advantages and it is not exactly clear
what additional flexibility the weaker assumption of the PLA buys us. And the PH model still allows us
the nice PIM interpretation of our parameters.

Vanda Inácio (Lisbon University), Miguel de Carvalho (Ecole Polytechnique Fédérale de Lausanne and
Universidade Nova de Lisboa) and Antónia Amaral Turkman (Lisbon University)
We congratulate the authors for this stimulating paper. In the space available, we concentrate on the
relationship of the probabilistic index model (PIM) to the normal linear regression model, and its pos-
sible extension for the case of functional predictors. Consider the normal functional linear model with
functional predictor and scalar response

Y =
∫

T

α.t/X.t/+ "=〈α, X〉+ ", "∼N.0, σ/, .41/

where the predictor X and the functional parameter α are square integrable over a compact T. Similarly
to what has been shown by the authors, we have

P.Y<YÅ|X, XÅ/=Φ
( 〈α, X−XÅ〉

σ
√

2

)
=〈β, X−XÅ〉, .42/

where X − XÅ = X.t/ − XÅ.t/, for t ∈ T , with β = α=σ
√

2 being a functional parameter in this context.
To estimate the functional PIM in equation (42) we only need to estimate α and σ. Cardot et al. (1999)
proposed to estimate α on the basis of functional principal components, using the estimator

α̂=
K∑

j=1

Δnv̂j

λ̂j

v̂j:

Here Δn is the empirical cross-covariance operator and v̂1, . . . , v̂K are the eigenfunctions associated with
the K largest eigenvalues λ̂1, . . . , λ̂K of the empirical covariance operator of the sample X1, . . . , Xn. For
further details see Cardot et al. (1999). Estimation of the PIM in equation (42) is completed after obtaining
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σ̂ =
⎧⎨
⎩

n∑
i=1

.Yi −〈α̂, Xi〉/2

n−K −1

⎫⎬
⎭

1=2

:

Recently, Inácio et al. (2012) have extended receiver operating characteristic curve regression method-
ology to the functional context. They investigated how the accuracy of gamma glutamyl transferase, as
a diagnostic test to detect metabolic syndrome, is affected by the nocturnal arterial oxygen saturation,
which was measured densely over the patient’s sleep. It would be interesting to study this relationship by

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10
−

5
0

5
10

t
(a)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
t

X
(t

)
X

(t
)−

X
*(

t)

Fig. 9. (a) 100 simulated predictor trajectories and (b) hypothetical difference curve X.t/�XÅ.t/
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means of a (functional) PIM. For example, it would be interesting to use an estimate of the probability in
model (42) as an index to compare the gamma glutamyl transferase values of someone with a ‘high’ curve
of arterial oxygen saturation against someone with a ‘low’ curve of arterial oxygen saturation.

We illustrate our thoughts by means of a numerical experiment, where we simulated 100 independent
data sets (sample size 100) according to model (41); Fig. 9(a) gives an idea of the shape of the predictor
curves X.t/, whereas Fig. 9(b) represents a hypothetical difference curve X.t/−XÅ.t/. The true probability
in model (42) under our simulated scenario is 0.710 and its average estimate (2.5%, 97.5% simulation
quantiles) is 0.712 (0.677,0.746).

Tom King and Lara E. Harris (Southampton University)
For subjective listening ratings, Wolfe and Firth (2002) showed the need for modelling personal response
scales. The ABX listening test remains a popular approach for subjective listening experiments for this
reason and other bias problems (Zielinski et al., 2008). This is a type of two-alternative forced choice test
that was mentioned by Dodd such that listeners are presented with two excerpts A and B and asked to
identify which is X. In a more general version, listeners are asked to identify which of A and B are most
similar to X, repeating these tests for multiple iterations of A and B from a finite list of excerpts.

Standard approaches to analysing results test null hypotheses of no audible difference by using exact
binomial probabilities (Leventhal, l 986). These also allow for an estimate of the proportion of correct
identifications to be made (Burstein, 1989), assuming equal allocation of forced ‘don’t knows’. Multiple
comparisons mean losing power without borrowing strength by using covariates. A density could be esti-
mated by using more advanced methods to estimate a ranking but this would be opaque to many working
in audio. Non-parametric methods might be able to test for a preferred ranking but would not afford much
insight into the relative support for different rankings, or the influence of covariates.

The probabilistic index model should be ideal for this type of data. The question in this instance is to
test preference of bass reproduction through digital simulation of a number of loudspeaker designs. The
probabilistic index model should be able to incorporate all the relevant covariates and to estimate specific
preferences and to estimate design preferences as well as identifying preference variation. More details are
given in Harris et al. (2012).

A. J. Lawrance (University of Warwick, Coventry)
I enjoyed this paper at the meeting but, in spite of the attractive presentation and a little reflection after-
wards, I still have a few points of query. As a person without previous knowledge of the area, it is still not
clear to me why a probabilistic index model (PIM) is in general a natural non-parametric regression way to
go which stands on its own two feet. I do understand that quite a few well-known methods can be cast in
the PIM way and be extended via a PIM, but this does not make it natural. The topic is regression so one
would expect to see a connection to the conditional distribution of response given covariates, even if not
fully specified. It seems very curious that this appears to be absent, at least on the surface, and even more
so that the PIM focuses on the difference distribution of two independent response variables. That seems
a very awkward way to relate to the conditional regression distribution. Nor do I know what information
is being neglected by a PIM by this formulation. The lack of a connection to the conditional distribution
would appear to be the reason why no sort of likelihood is available. Finally, to ride my graphical hobby
horse, can I plead for common scales in comparative graphs such as in Fig. 3 and between Figs 6(b) and
6(c)? Discussion at the meeting illustrated high regard for the work and I quite expect the authors to be
able to answer all my main points satisfactorily, and I look forward to the revelations.

Chenlei Leng (National University of Singapore) and Guang Cheng (Purdue University, West Lafayette)
We congratulate the authors on developing an interesting class of semiparametric models, i.e. probabilistic
index models (PIMs), that directly relates the probabilistic index to the covariates. The construction of a
PIM is well motivated by the ordinal response variable. We shall comment on the semiparametric efficiency
issues.

Given the pseudo-observations {Iij ≡ I.Yi �Yj/, Zij}.i,j/∈In , the PIM is essentially a special case of the
semiparametric conditional moment model. The authors thus propose to estimate β on the basis of the
quasi-likelihood estimating equation (8) in the presence of the nuisance function fxy. For the longitudinal
data modelled in the marginal generalized estimating equation framework, i.e. E.Yij|Xij/=g−1.X′

ijβ/ for
i=1, . . . , n and j =1, . . . , mi, it is not difficult to derive the efficient score function of β as

l̃β =
n∑

i=1

(
@g−1.Xiβ/

@β

)′
Σ−1

i {Yi −g−1.Xiβ/}, .43/
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where g−1.Xiβ/= .g−1.X′
i1β//, . . . , g−1.X′

imi
β//′, Σi = var.Yi|Xi/ and Yi = .Yi1, . . . , Yimi

/′, by only assum-
ing the conditional moment restrictions and bounded mis. The semiparametric efficiency bound trivially
follows from expression (43). However, efficiency bound calculation in this paper is non-trivial owing to the
more complicated dependence structure, i.e. sparsely correlated data. We suggest that the authors modify
equation (8) as an (approximate) efficient score function, according to Hansen (1985), who considered the
efficiency bound under weakly dependent data, which may be solved to obtain the efficient estimate.

We next discuss the efficient estimation of the PIM based on the fact that the PIM can be induced from
some marginal regression model with full parametric likelihood, i.e. fXY is known. Here, we focus on a
prototypical example (given independent, identically distributed observations):

Λ.Y/=X′β+ ", .44/

where Λ is an unknown increasing function and " follows a known distribution F". In this case, we can
choose an appropriate error distribution such that P{" − "Å < .XÅ − X/′β} = m.X, XÅ;β/ for the m.·/
in the PIM of interest. Linear transformation models (44) have a long history. Bickel and Ritov (1997)
proposed an efficient estimation of β based on rank statistic methods. Cheng et al. (1995) proposed a class
of estimating equations for β under possibly right-censored observations. Moreover, Han (1987) even
allowed F" to be unknown and gave the maximum rank correlation estimate

β̂=arg max
β

∑
i<j

I.Yi <Yj/ I.X′
iβ < X′

jβ/ .45/

that is shown to be asymptotically normal with root n rate. It would be quite interesting to compare the
asymptotic variances of the above estimators with that of the PIM estimate theoretically and empirically.

Thomas Lumley (University of Auckland)
The authors use the results of Lumley and Hamblett (2003) in their proofs, I believe from my suggestion
when I visited Ghent. Since that time, I have found out that related central limit theorem results were
proved much earlier in the probability literature where the concept that we called ‘sparse correlation’ is
described in terms of ‘graph-structured dependence’. In particular, Baldi and Rinott (1989) gave a bound
for the departure from normality of a sum of random variables in terms of the maximal degree of the
dependence graph.

Jorge Mateu (University Jaume I, Castellón) and Carlos Diaz-Avalos (National University of Mexico,
Mexico City)
The authors present in a clear manner the definition and theoretical issues related to probability index
models, and how they can be used to model the effect of covariates, with emphasis on the cases of cate-
gorical non-ordered covariates. We were pleased to read the clear review of the subject that they gave and
the examples shown in the paper. These are enlightening and motivate the reader to follow the subject
further.

We believe that the methods shown in the paper are applicable in the area of spatial analysis. The advent
of geographical information systems now makes information about spatial covariates easily available, and
for spatial variables of interest, say Z, models of the type E[Z.u/]=Xβ where u∈D are becoming common.
Testing P.Z < ZÅ|X, XÅ/ by using probability index models is an attractive choice if one is interested in
deciding whether, at some set of points u∈D, a spatial random variable Z.u/ is below a prescribed thresh-
old value ZÅ representing an upper limit for water quality, for instance. Z.u/ may represent a random field,
a Markov random field or the intensity function of a spatial point process. Another application could be
in testing the significance of spatial covariates. This is an issue of interest in several fields, such as plant
ecology. To our knowledge, in the field of spatial point process modelling little has been done regarding
significance tests for covariates included in the parametric models for the intensity function. Few references
(Rathbun et al., 2004; Waagepetersen, 2007) have considered such problems from the fully parametric point
of view but rely on their significance tests in confidence intervals resulting from asymptotic assumptions
that may not be realistic in applications, so the power of the tests may be overestimated.

Spatial observations are usually dependent, and the probabilistic index model as presented in the paper
is not directly applicable. However, the spatial association may be incorporated either by adding a spatial
term in the linear predictor, i.e. defining the pseudo-observations as

I.u/= I{Z.u/<ZÅ.u/}=g−1{.X−XÅ/β +W.u/},
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or by directly extending the sparse correlation structure of the pseudo-observations (Section 3.2) for the
case of a Markov random-field approach.

Joseph W. McKean (Western Michigan University, Kalamazoo)
Thas and his colleagues have presented an interesting procedure for semiparametric models. Their prob-
ability index model (PIM) relates the simple Wilcoxon–Mann–Whitney probability P.Y < YÅ/ to a linear
function of predictors through a link function. Although, as the authors caution, it is not necessarily
a competitor to robust procedures for linear or specified non-linear models, it seems useful for a wide
variety of semiparametric models. I confine my remarks to rank-based estimation and a few remarks on
pseudonorms.

The authors compare their PIM procedure with several procedures, including rank-based (rank regres-
sion) procedures for linear models. These estimates for Wilcoxon scores are obtained by minimizing the
dispersion function given in expression (17). This is equivalent to minimizing a pseudo-norm of the resid-
uals as discussed in section 5 of McKean and Schrader (1980); see, also, chapter 3 of Hettmansperger and
McKean (2011). Abebe et al. (2010) extended these rank-based estimates to a general estimating equa-
tion model which was discussed in Liang and Zeger (1986); see, also, section 5.5 of Hettmansperger and
McKean (2011) for a sketch of this development. On the basis of their asymptotic theory, as well as
empirical studies, these rank-based generalized estimating equation estimates are robust and highly effi-
cient. An appropriate choice of weights results in estimates that are robust in factor space. Also, the theory
holds for general scores, so optimal procedures for skewed as well as symmetric error distributions are
feasible. Although the asymptotic theory assumes continuous responses, the estimates can be obtained for
discrete responses. Hence, a comparison of these rank-based generalized estimating equation estimates
with the authors’ PIM estimates over continuous and discrete response models should prove interesting.

With regard to the authors’ discussion on page 635, for the Wilcoxon scores, the pseudonorm of expres-
sion (17) can be written to a constant multiplier as∑

i,j
|Yi −Yj − .Xi −Xj/α|;

see, for instance, section 2.2.2 of Hettmansperger and McKean (2011). Hence, in addition to an asymptotic
equivalence between these objective functions, as the authors point out, the equivalence holds for finite n.
Note, further, that least squares estimation can be obtained, except for the intercept, by minimizing the
squared pseudonorm ∑

i,j
{Yi −Yj − .Xi −Xj/α}2:

So least squares estimates are invariant to observations with the same vector of covariates, similar to
rank-based and PIM estimates.

I thank the authors for their presentation of the PIM procedure. I look forward to applying it to data
sets on which I am consulting and to comparing it with other procedures.

Hannu Oja (University of Tampere)
I congratulate the authors for an interesting and inspiring piece of work. It is always good to have new and
different tools for statistical inference. What I consider important for further analysis and development of
the approach are as follows.

(a) The dependence between Y and X is described through a function H : Rd ×Rd → [0, 1] such that

HY |X.X1, X2/=P.Y1 <Y2|X1, X2/+ 1
2 P.Y1 <Y2|X1, X2/:

It is remarkable that HY |X.X1, X2/=Hg.Y/|X.X1, X2/ for all strictly increasing functions g, and there-
fore the tests and estimates for unknown HY |X should depend on Y1, . . . , Yn only through their ranks
R1, . . . , Rn. To find a realistic parametric model for HY |X.X1, X2/ in a practical data analysis is a
demanding task indeed.

(b) A natural next step could be to consider triples .X1, Y1/, .X2, Y2/, .X3, Y3/ instead of pairs and to
define

HY |X.X1, X2, X3/=P.Y1 <Y2 <Y3|X1, X2, X3/+ 1
2 P.Y1 <Y2 =Y3|X1, X2, X3/

+ 1
2 P.Y1 =Y2 <Y3|X1, X2, X3/+ 1

6 P.Y1 =Y2 =Y3|X1, X2X3/,

and so on. Finally, the partial likelihood function that is used for Cox’s proportional hazard model
is, in the continuous case, the probability
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P.YS1 < . . . <YSn |X1, . . . , Xn/

where .S1, . . . , Sn/ are observed inverse ranks, i.e. RSi
= i, i=1, . . . , n.

(c) The estimating equations in expression (8) use variances of Iij but ignore the non-zero covariances
between Iij and Ii′j′ . More efficient estimates could be obtained if the whole variance–covariance
matrix was used to give weights for Iij −g−1.ZT

ijβ/. This is what is planned for future research.
(d) I am a little worried about how you define the true β-parameter β0. In my mind, the true popu-

lation value to be estimated should depend only on the conditional distribution fY |X or the joint
distribution fY ,X or HY |X.X1, X2/. It should not be a function of the sequence of design values .Xn/.

I hope that the authors will be interested to develop their approach further.

Emanuel Parzen and Subhadeep Mukhopadhyay (Texas A&M University, College Station)
We are inspired by this outstanding paper about the probabilistic index (PI) to discuss an extension, the
comparison mid-probability index (CMPI). Our research (extending research by Parzen (1979, 1994, 2004)
on non-parametric quantile data modelling) is currently developing (Mukhopadhyay et al., 2011; Parzen
and Mukhopadhyay, 2012) comprehensive approaches to the classification–dependence problem: observe
continuous or discrete variables (Y dimension 1; X dimension p); model the conditional distribution of Y
given X , the dependence between Y and X , and influential subsets of X.

To unify continuous and discrete cases, define the mid-distribution function F mid.y; Y/ = Pr.Y < y/ +
0:5 Pr.Y =y/. Define CMPI.YÅ, Y |X/=E[F mid.YÅ; Y/|X] where YÅ and Y are independent and identically
distributed. The authors’ PI compares conditional distributions Y |X and YÅ|XÅ. Our index compares
the conditional distribution YÅ|XÅ with the unconditional distribution Y. When Y is continuous and X
is binary, the CMPI estimates the Wilcoxon statistic; when Y is binary and X continuous, the CMPI
estimates Pr.Y =1|X/.

Step 1: construct (from sample distributions) marginally orthonormal score functions Sj.Y/, Sk.X/ and
S1.Y/={F mid.Y ; Y/−0:5}=σmid, with σ2

mid the variance of F mid.Y/. Construct Sj.Y/, j >1, by the Gram–
Schmidt method from powers of S1.Y/, and discrete Legendre polynomials. For vectors X , k integers
k′, construct Sk.X/ as the product of Sk′.X′/ of each component X ′ of X.
Step 2: compute score co-moments LP.j, k; Y , X/=E[Sj.Y/Sk.X/].
Step 3: compute the non-parametric estimator

CMPI.YÅ, Y |X/=∑
k

Sk.X/E[Sk.X/F mid.YÅ; Y/]:

Plot it on a scatter plot .F mid.X; X/, F mid.Y ; Y//. Measure the dependence (mutual information) of Y
and X non-parametrically by the sum of squares of LP.j, k; Y , X/.
Step 4: the parametric logistic regression model for the CMPI regresses on influential Sk.X/ identified
from the largest co-moments LP.j, k; Y , X/; choose sufficient statistics before parameters.
Step 5: the copula density function of .Y , X/ is non-parametrically estimated by maximum entropy
(exponential model) density estimation. The copula density is interpreted as the joint density of
.F mid.Y ; Y/, F mid.X, X//; F mid.X; X/ has components F mid.X′; X′/ marginal mid-distributions.

The authors deserve our appreciation for a path breaking and inspiring paper. Our comments aim to
outline additional tools for statisticians’ toolbox of modern applied statistics, looking at data as well as
modelling them.

Details and graphs can be obtained from www.stat.tamu.edu/∼deep/discussionPIM.pdf.

Emilio Porcu (Universidad de Valparaiso) and Alessandro Zini (University of Milano Bicocca)
We congratulate the authors for their nice paper: we have the following comments.

(a) The semiparametric class of models proposed enables us to understand better the statistical mean-
ing of both the parameters of a wide range of classic models or class of them (generalized linear
models and generalized additive models) and the relationships with both the applied estimators
(Mann–Whitney and Wilcoxon–Mann–Whitney) and estimating techniques (quasi-likelihood).

(b) The class of probabilistic index models seems not to be nested with respect to several wide classes
of models.

(c) In some situations, it contains models taking into account the heteroscedasticity of the data, in
spite of other traditional models.
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(d) In other contexts, with respect to a competitor, the probabilistic index model proposed appears
equivalent, but the convergence to asymptotic behaviour is faster.

(e) Referring to points (b) and (d), the authors propose, also, a simple new graphical tool, to evaluate
the specification or misspecification of a candidate model.

(f) In our opinion, the efficiency of estimators, instead of consistency established by the auth-
ors, is a more minor question than specification or misspecification of models, even in small
samples.

The authors may want to consider the following points.

(a) A general and crucial point is that of the choice, in the specification of a model, of the discrete
(natural) scale with which some phenomenon is subjectively measured: the authors assume, for sim-
plicity, scales on integers, subjectively chosen both by researchers and patients, implicitly claiming
‘granularity’. But, who or what guarantees equidistance about the subjective choices? From our
perspective, this matter should be taken into account (endogenously) by the model. We sketch here
two potential ways.
(i) When comparing the term β.XÅ −X/ in function m, the following choices may be taken into

account:

β{.XÅ/γ −Xγ},

and

β.XÅ −X/γ ,

for γ ∈R where the former choice underlies some Box–Cox transformation. The latter choice,
which is coherent with a future point of research in the authors’ conclusions about non-lin-
earity with respect to modelling dependence from covariates, may be an interesting alter-
native for specific problems. Both alternatives pose the problem of equidistance in catego-
ries.

(ii) For a discussion about the choice of the scale, a useful reference may be Zini (2008), where the
implications about ordering are discussed, though in the authors’ specific context.

Mark A. van de Wiel (VU University, Amsterdam)
I congratulate the authors for an excellent paper on this exciting and potentially very useful class of regres-
sion models. The authors show the wide applicability of probabilistic index models (PIMs) in various
examp1es. Below I address a few issues.

First of all, a philosophical one: PIMs are definitely useful for ordinal responses, in particular because
the ordering is then the only meaningful property of the response. To some extent this also holds for (med-
ical) survival data, at least in many settings where modelling of absolute survival is hopeless. However, I
believe that the use of PIMs for well-characterized continuous responses is limited. It seems to me that
we should use the ‘richness of the continuity’ for the response and not only its ordering. Of course, this
may lead to more complex models (e.g. including heteroscedasticity), but these should give more insight
on how the covariate impacts the response than does a PIM.

The ‘competition’ with parametric models becomes even more important when considering a paired or
clustered setting (which the authors briefly mention in Section 7). In an unpaired setting, the power of
the PIM-based test relative to that of parametric counterparts is relatively good, because all binomial

(
n

2

)
pairs are used in the PIM statistic. A well-known example is the high asymptotic power of the two-sample
Wilcoxon test with respect to a two-sample t-test. However, this relative power drops dramatically in a
paired setting when only the ordering within pairs (or clusters) can be used, unless additional distributional
assumptions are made.

My final concern is the relatively bad control of the type I error for the asymptotic test in the case of
small to moderate sample sizes (Table 4). It should be possible to obtain better small sample results, even
when multiple covariates are present. I understand the authors’ wish to avoid the bootstrap, but it would
have been nice to have these results for their setting. When concentrating on one β, it seems that these could
be obtained by assuming asymptotic (joint) normality for the other parameters under the assumption that
β =0, which defines a sampling model, and then compare β̂ with its bootstrap counterparts. Alternatively,
approximations that use higher moments, such as Edgeworth expansions or saddle point approximations,
could be explored.
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Wang Zhou (National University of Singapore)
It was my pleasure to read this important and interesting paper that proposes probabilistic index models.
I shall make two comments.

My first comment is about the inference of the parameter β. In theorem 1, the authors derive the asymp-
totic normality for their estimators βn, which satisfies equation (8). However, normal approximations are
often too rough to be useful in practice for small to moderate sample sizes. To improve the inference, one
may consider using some other techniques. We propose to use the empirical likelihood method.

To make the idea simple, we assume only that the function m is antisymmetric about 1. So equation (8)
becomes

Un.β/= ∑
1�i<j�n

h.Xi, Xj/=0,

where h.Xi, Xj/ = A.Zij ;β/{Iij − g−1.ZT
ijβ/}+ A.Zji;β/{Iji − g−1.ZT

jiβ/}. This is a U-structured estima-
tion equation. So we can use the jackknife empirical likelihood (see Jing et al. (2009)) for inference on β.
To be more specific, let

Tn =
(

n
2

)−1
Un.β/,

T
.−i/
n−1 =T.X1, . . . , Xi−1, Xi+1, . . . , Xn;β/, the statistic computed on the orginal data set with the ith obser-

vation removed. The jackknife pseudovalues

V̂ i.β/=nTn − .n−1/T
.−i/
n−1 , i=1, . . . , n,

can be shown to be asymptotically independent under mild conditions. Since Tn = n−1Σn
i=1V̂i.β/, a standard

empirical likelihood ratio can then be constructed on V̂i as follows:

R.β/=max
{

n∏
i=1

npi :
n∑

i=1
pi =1,

n∑
i=1

pi V̂i.β/=0
}

:

One can prove that −2 log{R.β0/}→d χ2
p as n→∞ under mild conditions, where p is the dimension of β.

My second comment is about Section 4.3, the two-sample problem. At the beginning of Section 4.3,
the authors assume that .Yi, Xi/, i = 1, . . . , n, are independent and identically distributed. So n1 and n2
should be random. Their MW is different from the classical Mann–Whitney test statistic in which the two
sample sizes n1 and n2 are fixed.

The authors replied later, in writing, as follows.

First we thank the discussants for reading our paper and for taking time to prepare interesting and very
insightful comments. After having prepared for writing this rejoinder, we are more than ever aware that
the probabilistic index model (PIM) method can be looked at from so many angles that it will take us, and
hopefully also many other researchers, quite some time to disentangle its colourful set of flavours. For
brevity we cannot respond to all the comments in detail.

We have organized this rejoinder as follows. Instead of replying to each discussant separately, we have
tried to arrange our answers by topic. As not all issues could be grouped, at the end we shall briefly give
some feedback to particular questions or problems.

Efficiency
Several discussants make suggestions for improving the efficiency of the parameter estimators. Ingrid
Van Keilegom proposes to embed a PIM in the transformation model, because efficient estimators in
such models have been described. In particular, she defines her model (33) with h.y/ = P.YÅ � y|XÅ/ =
1−FY |X.y; XÅ/. Within the transformation model framework, a PIM is presented as EY |X{h.Y/|X, XÅ}=
m.X, XÅ;β/. Note that this construction resembles the PIM formulation using expected placement values,
as suggested by Lori Dodd. Efficient estimators can be obtained when h.·/ is known, but under certain
conditions h.·/ may be replaced by a consistent estimator. Ingrid Van Keilegom recognizes that this may
not be simple in our setting. At this point we refer to Cai and Dodd (2008), who, in developing regression
methods for the partial area under the receiver operating characteristic curve came across a similar prob-
lem: the conditional distribution function FY |X.y; XÅ/ must be replaced by a consistent estimator in the
estimating equation. Although this is feasible under additional smoothness conditions, we deliberately did
not want to proceed along this path initially, because we fear that sparseness in the covariate space may
obstruct its use in real data settings. In the next section we briefly describe a simpler version of a PIM, for
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which the estimation of the nuisance function h.·/ becomes easier without having to introduce stringent
smoothness conditions.

Marginal probabilistic index model
For brevity, we limit the discussion here to continuous responses in the absence of ties. Consider the model

P.Y �YÅ|X/=g−1.XTβ/, .46/

in which the probability refers to the conditional distribution of Y given X and the marginal distribution
of YÅ, i.e. YÅ has distribution function FY .y/=EX{FY |X.y|X/}. We refer to model (46) as a marginal PIM.
The transformation model with h.y/=P.YÅ �y/=1−FY .y/ now reduces to the marginal PIM. As before,
h.·/ is unknown, but now its estimation is straightforward without requiring many additional assumptions.
In particular, ĥ.y/=1− F̂ Y .y/ in which F̂ Y is the empirical distribution function of the response variable.
It would be interesting to study this model further in the transformation model setting to find semipara-
metric efficient estimators. Later in our rejoinder we come back to the interpretation of this model, and its
relationship to the Kruskal–Wallis rank test. Finally, we also note that this marginal PIM resembles very
closely the comparison mid-probability index of Emanuel Parzen and Subhadeep Mukhopadhyay. At this
point we would like to take the opportunity to thank them for their very stimulating contribution (which
has been made available on their Web site) and their deep insights into the non-parametric modelling of
the comparison mid-probability index.

We are happy that Stephen Senn reminds us about Brunner et al. (2001) which describes rank methods
for analysing longitudinal and factorial experiments. The book inspired us in the early days of our PIM
research, and we should indeed have referred to this very nice work in the paper. In the simple setting of
the K -sample problem, Brunner et al. (2001) defined their relative effect as pi =P.Yi �YÅ/, where Yi has
distribution function Fi and YÅ has the marginal distribution function

FY .y/= 1
K

K∑
i=1

Fi.y/

(assuming equal sample sizes). The relative effect is thus directly related to the marginal PIM of the pre-
vious paragraph. Brunner and colleagues further extended their methods to factorial and longitudinal
studies. Their focus is on hypothesis testing in which non-parametric estimators of the relative effects play
a central role.

K-sample problem and transitivity
We now continue with the K -sample setting to shed some light on the issues that are related to intransitivity
raised by Michael Fay and by Wicher Bergsma and colleagues. As in the previous section we use Yj to
denote a response variable with distribution function Fj .j =1, . . . , K/. Consider a PIM with identity link
so that .j<k/

P.Yj �Yk/= 1
2 +βk −βj , .47/

with the constraint ΣK
j=1βj = 0. This corresponds to a dummy coding of Xj and Xk and with ZT

jkβ =
.Xk −Xj/

Tβ as used for most examples in the paper. Let Pjk =P.Yj �Yk/− 1
2 . Then, for all j<k<l,

Pjk +Pkl =Pjl, .48/

which expresses the same type of restriction as the one that holds for the Ljk of Bergma and colleagues in
their parameterization of the Bradley–Terry model. This restriction implies a kind of transitivity. Model
(47) can be extended to .j<k/

P.Yj �Yk/= 1
2 +βk −βl +βjk, .49/

with the constraints ΣK
j=1βj = 0 and Σj<k βjk = 0 for all k = 2, . . . , K. With this model equation (48) no

longer holds and transitivity is no longer guaranteed. Hypothesis tests for testing that all βjk are 0 may be
used for testing for transitivity. Whereas transitivity is often a desired property, or at least it is a convenient
characteristic that, for example, always holds in location–shift models, there are settings in which it is not
guaranteed or in which detecting intransitivity is even of interest. Several discussants (Lori Dodd, Wicher
Bergsma, Tom King and Dean Follmann) refer to examples of studies in which the response data come
immediately in the form of pairwise orderings (pseudo-observations) that do not necessarily satisfy tran-
sitivity. This suggests that PIMs may also be useful for this type of application. It is also worth noting that
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some study designs ensure that the pairwise orderings (pseudo-observations) are mutually independent so
that sparse correlation is no longer an issue.

In Section 4.3 of our paper we demonstrated how the Wilcoxon–Mann–Whitney statistic is related to
the PIM parameter estimators in the two-sample problem. We now briefly show how the transitive PIM
(47) and the marginal PIM relate to the Kruskal–Wallis statistic. First note that the transitive PIM (47)
has K −1 independent parameters, and the intransitive PIM (49) has 1

2 K.K −1/ independent parameters.
For both PIMs the marginal PIM becomes

P.Y �Yj/= 1
K

K∑
k=1

P.Yk �Yj/= 1
2 +βj:

This demonstrates that the marginal PIM cannot distinguish between the two PIMs. We further expect that
the Kruskal–Wallis test statistic is asymptotically equivalent to (up to a proportionality factor) ΣK

j=1β̂
2
j ,

with β̂j the estimator of βj in equation (47) (equivalent to the non-parametric estimator of P.Y �Yj/− 1
2 /.

Model (47) is also used by Michael Fay for illustrating that a PIM sometimes may be misspecified. We
agree with him, but we remark that his example only demonstrates that sometimes transitivity does not
hold. The saturated model (49) will fit his data. Goodness-of-fit methods may also be used for assessing
the quality of the fit. Recently we (De Neve et al., 2012) have developed a new method for assessing the fit
of a PIM.

Model formulation
In connection with the usefulness of goodness-of-fit methods, we also refer to the proposal of Emilio Porcu
and Alessandro Zini. They suggest considering terms β{.XÅ/γ −Xγ} or β.XÅ −X/γ in the PIM. Again a
model assessment will be required to evaluate the adequacy of the model.

Tony Lawrance wonders about the unconventional way in which PIMs refer to the conditional response
distribution and about the fact that PIMs require two independent response variables. Equation (3) in the
paper shows the most explicit connection between a PIM and the conditional response distributions. One
could also think about defining classical linear regression models in terms of the conditional distribution
of the difference Y −YÅ. In particular, consider

E.YÅ −Y |X, XÅ/= .XÅ −X/Tα:

With this model specification, the natural least squares criterion would be the squared pseudonorm that
is provided by Joe McKean in his contribution. Joe McKean gives also the corresponding L1-pseudo-
norm, and he concludes that this demonstrates that least squares, rank-based and PIM estimates share
the property that observations with the same covariate patterns do not contribute to the estimate.

The relationship between area under the curve regression and PIMs has been explained in the paper.
Thomas Gerds suggests the use of PIMs to model the concordance index, which generalizes the area
under the curve for assessing the discrimination ability of prediction models. His concordance index model
is basically a PIM and thus the PIM machinery may be used, for example, to test whether a biomarker
further improves the predictive ability of a prediction model. Another formulation of a concordance index
model may be

P.Ti �Tj|Ri, Rj , Xi, Xj/=g−1{β1I.Xi =Xj/+β2 I.Xi �=Xj/},

only defined for χ={.Ri, Xj , Rj , Xj/|Ri >Rj}. In this way

g−1.β1/=P.Ti �Tj|Ri >Rj , Xi =Xj/,
g−1.β2/=P.Ti �Tj|Ri >Rj , Xi �=Xj/,

and the null hypothesis of interest is H0:β1 =β2.
Finally, we remark that Lori Dodd’s models (35) and (36) with her lexicographical orderings SES � SESÅ

and SESÅ � SES do not agree with our model formulation of equation (31). We explicitly restricted the
PIM to a strict lexicographical ordering SES < SESÅ so that we do not run into the problem that she
encountered.

Computation
We agree with Dean Follmann, who has experience with modelling pseudo-observations (Follmann, 2002),
that the estimation procedure may be computationally demanding. We have some experience with large
data sets for which we implemented an approximation that seems to work well. The procedure goes as
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follows. First we randomly split the data set of size n into s disjoint subsamples of size m=n=s .i=1, . . . , s/.
With each subsample we fit a PIM, resulting in the parameter estimates β̂i and covariance matrix estimates
Σ̂i .i=1, . . . , s/. Finally we combine the estimates into

β̃= 1
s

s∑
i=1

β̂i

and

Σ̃= 1
s2

s∑
i=1

Σ̂i:

We can demonstrate that these estimators are asymptotically equivalent to the original estimators (with
fixed s < ∞/. The order of the computation time for estimating β reduces from O.n2/ to O.n2=s/, i.e. a
reduction by a factor s.

The method that is described in the previous paragraph may also turn out to be useful when further
research focuses on using computationally intensive methods for inference in PIMs. For example, Mark
van de Wiel and Wang Zhou suggest adopting a bootstrap or an empirical likelihood procedure.

Estimating equations
Hannu Oja suggests adopting estimation equations to account for the pairwise non-zero covariances
between the pseudo-observations Iij and Ikl. A possible way forward is to use pseudolikelihood by con-
structing the product of all bivariate distributions of two pseudo-observations. We are currently exploring
this path for PIMs for clustered data (a collaboration with Stijn Vansteelandt and Fanghong Zhang from
Ghent University).

Inspired by the relationship between the PIM and Cox proportional hazard models, Thomas Gerds sug-
gests further developing the PIM framework by allowing for censored data. He proposes two strategies.
The first involves inverse probability weighting and the second makes use of pseudo-pseudovalues. Here
we mention only that inverse probability weighting has already been described by Cheng et al. (1995) in
a class of semiparametric linear transformation models that generalize Cox proportional hazard models
that make use of estimating equations similar to ours. In passing we note that the discussants Chenlei
Leng and Guang Cheng made this observation too. Given the importance of missing and censored data
we would very much welcome further research along the lines suggested by Thomas Gerds.

Starting from the same linear transformation model as Cheng et al. (1995) do, Chenglei Leng and
Guang Cheng suggest going even one step further by not having to specify the distribution function of
the additive error term in the transformation model; this would result in a maximum rank correlation
estimator as in Han (1987). We have two remarks. First, with only a single covariate X , there will be no
unique maximum rank correlation estimator, because the order relation restriction on the covariates will
make I.Xiβ <Xjβ/=1 for all positive β and I.Xiβ <Xjβ/=0 for all negative β (or the other way around).
Perhaps his problem disappears when X contains multiple regressors. Finally, on using the relationship
between the error distribution and the link function, maximum rank correlation estimates may also be
advertised as an appropriate method for situations in which the link function is left unspecified.

Stijn Vansteelandt argues that covariate adjustment may have several disadvantages when the primary
focus is on the probabilistic index as the effect size of a treatment. For example, the interpretation of the
treatment effect changes with covariates selected in the model, and the variance of the treatment effect
parameter estimator may be inflated by adding covariates. As an alternative solution, he proposes to adjust
for confounding by changing the estimating equation of the marginal probabilistic index by incorporat-
ing the propensity score. This approach seems to have many advantages for comparative studies, and we
sincerely hope that this method will be further developed.

Unstructured responses
Wang Zhou argues that our two-sample setting (Section 4.3) is different from the classical setting in the
sense that we allow the sample sizes n1 and n2 to be random. We understand the misunderstanding. We
should actually have added that the Xi are subject to the restriction Σn

i=1Xi =n2.
Jorge Mateu and Carlos Diaz-Avalos, and Vanda Inácio and colleagues suggest extensions that are

related to functional data analysis. We welcome their suggestions and we encourage further research
in this important area. We also thank Thomas Lumley for pointing us to a reference that describes an
asymptotic theory that sheds a different light on the concept of sparse correlation. In the interest of further
extending and generalizing the PIM method to more complicated data structures, we believe that it will
be necessary to find a more general asymptotic theory that can deal with the type of weak dependences
that we encounter.
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Throughout the paper we have stressed several times that we consider the PIM to be a valuable addi-
tional tool in the statistician’s toolbox. When, however, the scientific focus is on the mean response, other
regression techniques are favourable. This is, for example, illustrated by David Draper, who reanalysed the
Beck depression inventory data with a treed Gaussian process model. Another method for an informative
analysis of this data set is semiparametric quantile regression (Koenker, 2005).

Finally we turn to Stephen Senn. We understand his concerns related to the use of the probabilistic
index as an effect size measure. His criticism applies, however, to most of the methods that focus on the
probabilistic index. We hope that further research can solve the issues that he raises.
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