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Million Song Dataset

1,000,000 music tracks released from the year 1922 to 2011

Year of release

Predictor variables: 12 timbre averages

Goal: identify predictors associated with the year of release
Data source: free, public, supported in part by NSF
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Kernel ridge regression (KRR)

e Consider a nonparametric model

yi = f(zi) + &, fori=1,...,n

o The standard KRR estimate f by

~

o1
fn 1= arg min — E (yz- — f(%))z + )\Hng{
fen i —

roughness penalty

reproducing kernel Hilbert space (RKHS)



Computational challenges

o The KRR theory says that

Jal) = D@k (o),

kernel function
where
w=n"" (K + )\In)'1 vy,
%/_/TLX];

nxn

K is n x n kernel matrix and y is n-dimensional response



Computational challenges

o The KRR theory says that

Jal) = D@k (o),

kernel function
where

w=n'(K+AL)" y,
N—~—"nx1

nxn

K is n x n kernel matrix and y is n-dimensional response

e Time (in seconds) taken to invert an n-dimensional matrix:

n 102 10* 10° 109
Time 0.78 148.8 28269.5 > two months




How to address “curse of sample size?”




Our contributions

o We propose two computationally efficient testing methods in
nonparametric settings:
— one is based on randomized sketches
— another employs parallel computing

o Characterize computational limits, i.e., the minimal
computational cost to preserve statistical optimality

e Existing work only focus on estimation [Zhang et al, 2015;
Yang et al, 2016]



@ Nonparametric testing based on randomized sketches
© Nonparametric testing based on parallel computing

© Numerical results



Wald type test

o Consider a hypothesis testing problem

Hy:f=fovs. Hi:f# fo

o A Wald type test statistic is

Tox=|Ifr — foll32

an estimator of f

e Reject Hy it T}, ) is large
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An algorithm based on randomized sketches

@ The standard KRR is equivalent to the following

~ 2
w=argminw! K?w - “yT Kw + \w! K w (1)
weRn t n 0
nxn nxn
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An algorithm based on randomized sketches

@ The standard KRR is equivalent to the following

~ 2
w=argminw! K?w - “yT Kw + \w! K w (1)
weRn t n 0
nxn nxn

o Let S be an s x n random matrix. Replacing w = ST a, (1)
becomes
2
=~ T 2Ty 2T (el T T
a=argmina’ (SK*S" o oy (KS")a + Ao’ (SKS* )«

acRs
SXsS SXS

Solution: & = n~1(SK2ST +ASKS™T)~1(SK)y

SXS




An algorithm based on randomized sketches

@ The standard KRR is equivalent to the following

~ 2
w=argminw! K?w - “yT Kw + \w! K w (1)
weRn t n 0
nxn nxn

o Let S be an s x n random matrix. Replacing w = ST a, (1)
becomes
2
=~ T 2Ty 2T (el T T
a=argmina’ (SK*S" o oy (KS")a + Ao’ (SKS* )«

acRs
SXsS SXS

Solution: & = n~1(SK2ST +ASKS™T)~1(SK)y

SXS

e Estimate f by the following sketched KRR (SKRR):
Fal) = S (87 @)K ()
i=1
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Choice of random matrix

Independent sub-Gaussian entries, e.g., Gaussian or Bernoulli

Gaussian
—0.38 —-0.45

1.42 -0.94

—-0.64 1.36

Bernoulli
1.19 o1 --- 1
0.73 1 0 - 0
0.57 1 0 - 1



Computing time vs. projection dimension
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Figure 1: Computing time of T}, »



Existence of minimal projection dimension

Power of Ty
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Figure 2: n = 2'2. Significance level 0.05. Run 1,000 replications
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How to characterize minimal projection dimension?




Commonly used kernels

Mercer’s Theorem:

Zum )i

l eigenfunction

eigenvalue

— Polynomial kernel:
w < k2™ for m > 1/2, e.g., m = 2 (cubic spline)

— Exponential kernel:
wx =< exp(—akP) for a,p >0

— Finite rank kernel:
we=0for k>r



Minimal projection dimension

Polynomial kernel Exponential kernel
s T (logn)

16 / 46



Practical choice of projection dimension

Eigenvalues of kernel matrix: iy > fig > - - -

Choose s = min{j : fi; < A}

-
4 how to choose A7
Kernel eigenvalues

S~ A
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Testing consistency

Suppose A — 0. Then we have under Hy,

T s L)y

where pi, » = Efy {1} and 07217/\ = Varg,{T, }.




Testing consistency

Suppose A — 0. Then we have under Hy,

Tn,)\ — Hn,\ i) N(O 1)
T 9 4t))9

where pi, » = Efy {1} and 07217/\ = Varg,{T, }.

o Testing rule is

¢n,A = I(‘Tn,)\ - ,U/n,)\‘ > 21704/20-71,)\)7

On\ = 1 < reject Hy
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Power

Let

hS A

2
N { nAm+1 polynomial kernel
(

logn)?, exponential kernel

Theorem 2

Suppose s = s* and A — 0. Then for any € > 0, there exist
Ce,Me > 0, s.t., for any n > ne,

inf Pi(ppr=1)>1—¢, (high power
fEB’Hfff(JHLQECEd,”)/\ f( > ) ( g )

where B={f € H : | f|ln < C} for a positive constant C and the
separation rate d, » = //T\ + TnA-
| LsD
Bias?

o Small separation rate <= powerful test
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Minimal separation rate: Bias? vs. SD tradeoff

dn, ) Bias? : \

.
H
=
i =
-
i 3
-2
%)
1 M
'8
H
s
s
-
e}
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H

*

n,\

SD : 0p,2

% X

d,  attains d) , at A = A*. Rate of A\*: Rademacher complexity



Minimal projection dimension

Suppose s < s* and A — 0. Then there exists a positive sequence
Br,x with limg, o Bp x = 00, s.t.

lim sup inf Onx=1) <a. (low power
n—oo fEB,f— fOHLZ>ﬁn>\dn)\ f( " ) ( P )




Minimal projection dimension

Suppose s < s* and A — 0. Then there exists a positive sequence
Br,a With limy, o0 Bp )y = 00, s.t.

lim sup inf Onx=1) <a. (low power
nesco. FEBIf—folly22bnrdi A= (o poveer)

o s* is a sharp lower bound for projection dimension

Polynomial Kernel | Exponential Kernel
2 T
s* nAm+T (logn)»
—_Zm T
dr n~ Am+tl (logn)arn~1/2
4m T
A* n~ Am+l (logn)2pn =1




Can we perform hypothesis testing when kernel
smoothness is unknown?




An adaptive test

Consider a polynomial kernel of order m with m unknown
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An adaptive test

Consider a polynomial kernel of order m with m unknown

O For any integer m, find

Tn,)\ (m) — Hn,\ (m)
Un,/\(m)

Tm =
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An adaptive test

Consider a polynomial kernel of order m with m unknown

O For any integer m, find

Tn,)\ (m) — Hn,\ (m)
Un,/\(m)

Tm =

Q Find

*
T, = 1max Tm
" 1<m<my

L my, < (logn)9, dy € (0,1/2)
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An adaptive test

Consider a polynomial kernel of order m with m unknown

O For any integer m, find

Tn,)\ (m) — Hn,\ (m)

T, =
m Un7,\(m)
Q Find
*
T S, ™
L my, < (logn)?, dy € (0,1/2)
Q Let

Tnmn = Bn (T, — Bp)

L solution to 2w B2 exp(B2) = m2



Consistency of adaptive testing

Suppose m,, < (logn)% for dy € (0,1/2). Then for any a € (0, 1),
under Hy,

P(Tom, < Co) > 1—a, asn— oo,

where ¢, = —log(—log(1 — «)).

e Proof is based on Stein’s leave-one-out method (Stein, 1986)
@ Testing rule is
¢;,A = I(Tnymn > Ca)’

¢p ) = 1 <= reject Hy



Power of adaptive testing

To achieve high power, choose

s(m) 2 T (loglogn)*4m1+1, form=1,...,my

Minimal separation rate:
2m m
5(n, m) =n 4m+l (log log n) dm+1

L price for adaptivity

0(n,m) is optimal (Spokoiny, 1996)

N
>



© Nonparametric testing based on parallel computing
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What if we can use parallel computing?

D
N
\ )/

N
~



Divide-and-Conquer (DC)

Consider the same nonparametric regression model:

y=f(z)+e
Subset 1 (n) Machige 1 h
.. Machine 2 N
Big Data (V) -2 Subset 2 (n) T — f2
Subset s (n) Machige s [s
Superﬂmachine Conﬂ/quer
Oracle Est. ]/”\N Agg. Est. fn

Fv=1300
j=1



Wald type test

o Consider the same hypothesis testing problem

Ho:f=fovs. Hi: f# fo

o Consider a Wald type test statistic

T = |lfn — foll32

o Prefer a large number of divisions to reduce computational cost



Computing time vs. number of divisions
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Figure 3: Computing time is decreasing with s



Existence of maximal number of divisions

Power of Ty

S dm ]
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Figure 4: N=10,000. Significance level 0.05. Run 1,000 replicates
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Phase transition diagram

Consider smoothing spline regression with a smoothing parameter
A and smoothness m > 1.

log(A)
“log(N)

Sub-optimal zone
[<—Optimal line

4m
4m+1

Sub-optimal zone

o 4m-1 log(s)
am+1 log(N)

Figure 5: Locations of (A, s) achieving testing optimality



Main theorem: testing consistency

Suppose A — 0, n — oo when N — oo, and limpy_, nAL/2m exists
(which could be infinity). Then, we have under Hy,

Ty — N,

4, N(0,1), as N — oo,
ON,\

where KN = EHO{TN,A} and 012\[7)\ = VarHO{TN)\}.

Testing rule is

dnx = I(| TNy — N2l > Z1—a/20N0),

oNn\ = 1 < reject Hy



Main theorem: power

Consider m-order smoothing splines

Let

AN = \/>\ + 07+ o

Theorem 7

4dm—1
Suppose s < Nin+1 X\ — 0, n — oo when N — oo, and
lim 0o RAL/2™M exists (which could be infinity). Then for any
€ > 0, there exist C., N; > 0 s.t. for any N > N,

}ng Pt (pnyr=1) > 1—¢, (high power)
€
IIf=foll2>Cedn,

where B ={f € S™(I) : || f||x < C} for a positive constant C.

__4m
@\ =N dmtl



Main theorem: maximal number of divisions

Theorem 8

4m—1
Suppose s > Nim+i X — 0, n — oo when N — oo, and
limy— o0 RAY/2™ exists (possibly infinity). Then there exists a
positive sequence Sy with limy_ ;o By, ) = 00 s.t.

lim sup inf Pt (pna =1) < a. (low power)
—00 feB
If=Ffoll2>Bn xdi

@ s = Nam+1 ig a sharp upper bound for number of divisions to

maintain testing optimality
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A “theoretical” suggestion

Optimal RS —) Projection Dlmsnsmn Equal
s* = Nam+1

Optimal DC — Number of DI‘\LITIVSLIS;‘IS — Slz?vof each subgset
s = NimF1 o = Namit
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© Numerical results



Simulation study

Consider the hypothesis testing problem

Hy:f=0vs. H : f#0

o yi=f(xi)+e,i=1,...,n, n=2%210 211912
iid

o & “ N(0,1) and 2; % Unif[0,1]

° f(x) = 6(3,3370717(1‘) + 263711(33)) with ¢ = 0,0.01,0.02,0.03

Beta density



Four testing methods

o Standard KRR

e Randomized sketches (RS):

— projection dimension 2n2%/?

e Adaptive randomized sketches (Adaptive RS):
~ projection dimension 2n*/?(loglogn)~/?
— number of multiple tests /logn

e Divide-and-Conquer (DC):

— number of divisions 0.5n7/9
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Computing time

Method n=27 n=210 p=2I1 p=2I2
Standard KRR  1.44 6.67 42.61 332.08
RS 0.31 0.40 0.79 2.98
Adaptive RS 0.53 1.55 4.33 15.93
DC 0.28 0.35 0.54 2.13

Computing time (in seconds) of one trial on a Windows computer
with 2GB of memory and a single-threaded 2.70Ghz CPU



Size and power
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Figure 6: Significance level 0.05. Averages over 1,000 replications



Real data analysis

e Million Song Dataset:
~ 1,000,000 observations (music tracks)
— year of release y
— 12 timbre averages x1,...,x12

o Goal: identify significant timbre averages

e Fit y = f(xj)+error for 1 < j < 12. Test Hy : f is constant

Gaussian kernel K (z,y) = exp (— (J”;y)Q); unknown ¢ > 0

~

e Estimate ¢ =~ 3 based on distributed GCV (Xu, Shang, C.,
2016) and 463,715 training samples

Wald test on 536,285 testing samples:
2
— projection dimension 536, 27855 ~ 19
— parallel processors 536, 2855 /100 ~ 286



Selection of significant timbre variables

xr1 X9 x3 T4 x5 Z6
RS 0.0318 0.0943 0.7740 0.4069 0.7586 0.3699
DC 0.0205 0.0319 0.8212 0.3211 0.4729 0.4103

7 xs T9 10 T11 T12
RS 0.0433 0.2305 0.1642 0.5591 0.8979 0.0201
DC 0.0319 0.1005 0.0449 0.7138 0.7753 0.0037

Table 1: P-values for testing marginal association by two methods

— Matrix multiplication for RS: about 380 seconds
— Wald test: about 10-20 seconds

— One node in a cluster with 20 cores



x12

Figure 7: x1, 27,212 have significant patterns, with p-values < 0.05 for
both RS and DC methods.
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e Nouparametric testing based on RS and DC
o Equally powerful as standard method with less computing cost

o Computational limits are characterized



Thanks! and Questions?



Backup slides



A By-product: minimax optimal estimation

Recall that T;, \ = ||J?R — fol|3, is the squared estimation error

Corollary (Optimal Estimation Rate)

Suppose that A — 0, nA — co. With probability greater than
1 — 2exp{—cnA}, we have

Ifr — foll72 < (A + g)

with sy = min{j : 1; < A}

e Polynomial kernel:
A= n_% and s) = nﬁ

o Exponential kernel:
A = (logn)/Pn=" and sy = (logn)/?

@ Recover the minimax optimal estimation results in Yang,
Pilanci and Wainwright (2016, AoS) under the same set of
conditions

A8 / 46



Calculation of p, » and oy, 5

Define A = KST(SK?ST +ASKST)"!SK. Under Hy : f = 0, we

have y; = ¢; for : = 1,...,n, and hence
~ ~ 1
T = | frl72 = I fRIl = EETAQG (for large n)

So we have the following approximations for practical use:
1 1
~ —Tr(A?) = —Tr(T?
i~ TH(A%) = ~Te(T?)

and 5 5
2 o 4y 4
O—n7/\ ~ ETI'(A ) = ETI'(F )

where

I = SK2ST(SK?ST +ASKST)™! (s x )
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Projection dimension for adaptive testing

Theorem 5

Suppose

s(m) 2 T (log log n)_ﬁ

for each m € {1,...,m, < (logn)%}. Then, for any £ > 0, there
exist positive constants ¢, n. such that for any n > n.

; illgf P¢(#y, » =1) > 1 — ¢, (high power)
€Bn,m ’
lf—=foll 2 =>¢E=0(n,m)

where By, = {f € H(m) : (F)TK™'f < 1} with
f=(f(z1), -+, f(zn)), and K is the kernel matrix, and

d(n,m) = n—2m/(4m+1) (IOngOg n)m/(4m+1)‘

N price for adaptivity

@ §(n,m) is optimal (Spokoiny, 1996)
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