Nearest Neighbor Classifier with Optimal Stability

Wei Sun

Department of Statistics Purdue University

June 10, 2014 Duke University Joint work with Xingye Qiao and Guang Cheng

回 と く ヨ と く ヨ と

- Motivations
- Classification instability and its minimax properties
- Stabilized nearest neighbor classifier
- Experiments

・ 回 と ・ ヨ と ・ モ と …

æ

- Begley and Ellis (Nature, 2012) found that 47/53 medical research papers on the subject of cancer were irreproducible.
- Marcia McNutt, Editor-in-Chief of Science:

Reproducibility

SCIENCE ADVANCES ON A FOUNDATION OF TRUSTED DISCOVERIES. REPRODUCING AN EXPERIMENT is one important approach that scientists use to gain confidence in their conclusions.

Reproducibility is important for scientific conclusions.

<回> < 回> < 回> < 回>

 In the paper "Stability" (Yu, 2013), Bin Yu wrote ...reproducibility manifests itself in the stability of statistical results relative to reasonable perturbations to data...

向下 イヨト イヨト

 In the paper "Stability" (Yu, 2013), Bin Yu wrote ...reproducibility manifests itself in the stability of statistical results relative to reasonable perturbations to data...

Stability has been of a great concern in statistics:

- Breiman (1996) on instability for model selection
- Bousquet and Elisseeff (2002) derived GE bound via stability
- Ben-Hur et al. (2002) on stability for structure detection
- Wang(2010) on stability for selecting number of clusters
- Meinshausen and Bühlmann (2010) on stability selection
- Sun et al. (2013) on stability for tuning parameter selection

イロト イポト イヨト イヨト

 In the paper "Stability" (Yu, 2013), Bin Yu wrote ...reproducibility manifests itself in the stability of statistical results relative to reasonable perturbations to data...

Stability has been of a great concern in statistics:

- Breiman (1996) on instability for model selection
- Bousquet and Elisseeff (2002) derived GE bound via stability
- Ben-Hur et al. (2002) on stability for structure detection
- Wang(2010) on stability for selecting number of clusters
- Meinshausen and Bühlmann (2010) on stability selection
- Sun et al. (2013) on stability for tuning parameter selection
- There has been little systematic and rigorous theoretical study of stability in the classification context.

Classification Instability (CIS)

- $(X, Y) \sim P$ be a random couple in $\mathbb{R}^d \otimes \{1, 2\}$
- Denote a classifier $\hat{\phi}_n$ learned from $\mathcal{D} = \{(X_i, Y_i)_{i=1}^n\}$

回 と く ヨ と く ヨ と

Classification Instability (CIS)

- $(X, Y) \sim P$ be a random couple in $\mathbb{R}^d \otimes \{1, 2\}$
- Denote a classifier $\widehat{\phi}_n$ learned from $\mathcal{D} = \{(X_i, Y_i)_{i=1}^n\}$

Definition

Define the instability of one classification procedure Ψ as

$$CIS(\Psi) = \mathbb{E}_{\mathcal{D}_1, \mathcal{D}_2} \Big[\mathbb{P}_X \Big(\widehat{\phi}_{n1}(X) \neq \widehat{\phi}_{n2}(X) \Big) \Big]$$
(1)

where $\hat{\phi}_{n1}$ and $\hat{\phi}_{n2}$ are classifiers obtained by applying Ψ to \mathcal{D}_1 and \mathcal{D}_2 which are i.i.d. copies of \mathcal{D} .

A classification procedure is reliable if the classifiers trained from multiple homogeneous samples yield similar predictions.

ロトス回とスポトスポイ

Minimax Upper Bound of CIS for Plug-in Classifiers

- The plug-in classifier first estimates η(x) := P(Y = 1|X = x) and then predicts x as φ̂_n(x) = 1 iff η̂_n(x) ≥ 1/2.
- We say distribution P satisfies the margin condition if there exist constants $C_0 > 0$ and $\alpha \ge 0$ such that for any $\epsilon > 0$,

$$\mathbb{P}(0 < |\eta(X) - 1/2| \le \epsilon) \le C_0 \epsilon^{lpha}.$$

Minimax Upper Bound of CIS for Plug-in Classifiers

- The plug-in classifier first estimates $\eta(x) := \mathbb{P}(Y = 1 | X = x)$ and then predicts x as $\hat{\phi}_n(x) = 1$ iff $\hat{\eta}_n(x) \ge 1/2$.
- We say distribution P satisfies the margin condition if there exist constants $C_0 > 0$ and $\alpha \ge 0$ such that for any $\epsilon > 0$,

$$\mathbb{P}(0 < |\eta(X) - 1/2| \le \epsilon) \le C_0 \epsilon^{lpha}.$$

Theorem

(Minimax Upper Bound) Let \mathcal{P} be a set of p.d. on $\mathcal{R} \otimes \{1,2\}$ satisfying the margin condition and for some sequence $a_n \to \infty$, for any $n \ge 1$, $\delta > 0$, and almost all x w.r.t. marginal dist. of X,

$$\sup_{P \in \mathcal{P}} \mathbb{P}_{\mathcal{D}}\Big(|\widehat{\eta}_n(x) - \eta(x)| \ge \delta\Big) \le C_1 \exp(-C_2 a_n \delta^2)$$
(2)

Then we have: $\sup_{P \in \mathcal{P}} CIS(\Psi) \leq Ca_n^{-\alpha/2}$.

- Condition (2) holds for various types of estimators.
 - The local polynomial estimator (Audibert and Tsybakov, 2007) with bandwidth $h = n^{-\frac{1}{2\gamma+d}}$ satisfies it with $a_n = n^{\frac{2\gamma}{2\gamma+d}}$.
 - Our to-be-introduced estimator satisfies it with the same rate.
 - In both cases, the upper bound is $O(n^{-\frac{\alpha\gamma}{2\gamma+d}})$.
- Next we will show this rate is minimax-optimal.

通 とう ほうとう ほうど

Definition

(Audibert and Tsybakov, 2007) For $\alpha \geq 0$, $\gamma > 0$, denote $\mathcal{P}_{\alpha,\gamma}$ the class of p.d. P on $\mathcal{R} \otimes \{1,2\}$ s.t. (i) P satisfies the margin assumption with parameter α ; (ii) $\eta(x)$ belongs to the Holder class with parameter γ ; (iii) the marginal dist. P_X satisfies the strong density assumption.

伺下 イヨト イヨト

Definition

(Audibert and Tsybakov, 2007) For $\alpha \geq 0$, $\gamma > 0$, denote $\mathcal{P}_{\alpha,\gamma}$ the class of p.d. P on $\mathcal{R} \otimes \{1,2\}$ s.t. (i) P satisfies the margin assumption with parameter α ; (ii) $\eta(x)$ belongs to the Holder class with parameter γ ; (iii) the marginal dist. P_X satisfies the strong density assumption.

Theorem

(Minimax Lower Bound) Let α, γ be positive constants satisfying $\alpha \gamma \leq d$. Assume $\mathcal{P}_{\alpha,\gamma}$ satisfies (2) with $a_n = n^{2\gamma/(2\gamma+d)}$. Then there exists a constant C' > 0 such that for any $n \geq 1$, we have

$$\sup_{P\in\mathcal{P}_{\alpha,\gamma}} CIS(\Psi) \geq C' n^{-\alpha\gamma/(2\gamma+d)}.$$

イロト イポト イヨト イヨト

• The requirement $\alpha \gamma \leq d$ implies that α and γ can not be large simultaneously. A very large γ implies a very smooth η , while a large α implies that η cannot stay very long near 1/2, and hence when η hits 1/2, it should take off quickly.

伺下 イヨト イヨト

- The requirement $\alpha \gamma \leq d$ implies that α and γ can not be large simultaneously. A very large γ implies a very smooth η , while a large α implies that η cannot stay very long near 1/2, and hence when η hits 1/2, it should take off quickly.
- When $\alpha \gamma \leq d$, the minimax rate is slower than n^{-1} , and the rate is getting closer to n^{-1} as dimension d increases.
- The optimality of the CIS rate is within the class $\mathcal{P}_{\alpha,\gamma}$.

The to-be-introduced stabilized nearest neighbor classifier can achieve this minimax-optimal rate.

(日本) (日本) (日本)

Nearest Neighbor Classifiers

The knn classifier predicts the class of x to be the most frequent class of its k nearest neighbors.

Nearest Neighbor Classifiers

The knn classifier predicts the class of x to be the most frequent class of its k nearest neighbors.

The wnn classifier has weight w_{ni} on the *i*-th closest neighbor,

$$\widehat{\phi}_n^{\mathbf{w}_n}(x) = 1, \text{iff } \sum_{i=1}^n w_{ni} \mathbb{I}_{\{Y_{(i)}=1\}} \ge 1/2.$$

• When $w_{ni} = \frac{1}{k} \mathbb{I}_{\{1 \le i \le k\}}$, when reduces to knn.

Theorem

(Samworth, 2012) Under regularity assumptions, as $n \to \infty$,

$$Regret(wnn) = \left\{ B_1 \sum_{i=1}^{n} w_{ni}^2 + B_2 \left(\sum_{i=1}^{n} \frac{\alpha_i w_{ni}}{n^{2/d}} \right)^2 \right\} \{ 1 + o(1) \}, \quad (3)$$

where $\alpha_i = i^{1+\frac{2}{d}} - (i-1)^{1+\frac{2}{d}}$, B_1 and B_2 are positive constants.

- Minimizing (3) w.r.t. w_n, Samworth (2012) proposed an optimal weighted nearest neighbor classifier (ownn).
- In practice, the ownn classifier is not reliable if its prediction vary much given a small perturbation to the samples.

(ロ) (同) (E) (E) (E)

Theorem

Under the same regularity assumptions, as $n \to \infty,$ we have

$$CIS(wnn) = B_3 \Big(\sum_{i=1}^n w_{ni}^2\Big)^{1/2} \{1 + o(1)\}.$$
 (4)

- The constant $B_3 = 4B_1/\sqrt{\pi}$.
- The CIS of a knn classifier is asymptotically B_3/\sqrt{k} .

・ロト ・回ト ・ヨト

Figure : Each dot represents one choice of $k \in [1, 25]$. The red triangle obtains minimal regret and the green cross is the projection of the origin to the path.

э

Stabilized Nearest Neighbor Classifier

Minimize CIS over the acceptable region where the regret is small:

 $\begin{array}{ll} \min_{\mathbf{w}_n} & \mathrm{CIS}(\mathrm{wnn}) \\ \mathrm{s.t.} & \mathrm{Regret}(\mathrm{wnn}) \leq c_1, \ \sum_{i=1}^n w_{ni} = 1, \ \mathbf{w}_n \geq 0. \end{array}$

白 ト イヨト イヨト

Stabilized Nearest Neighbor Classifier

Minimize CIS over the acceptable region where the regret is small:

$$\begin{array}{ll} \min_{\mathbf{w}_n} & \mathrm{CIS}(\mathrm{wnn}) \\ \mathrm{s.t.} & \mathrm{Regret}(\mathrm{wnn}) \leq c_1, \ \sum_{i=1}^n w_{ni} = 1, \ \mathbf{w}_n \geq 0. \end{array}$$

By the asymptotic expansions, it is equivalent to

$$\min_{\mathbf{w}_{n}} \left(\sum_{i=1}^{n} \frac{\alpha_{i} w_{ni}}{n^{2/d}}\right)^{2} + \lambda \sum_{i=1}^{n} w_{ni}^{2}$$
(5)
s.t.
$$\sum_{i=1}^{n} w_{ni} = 1; \mathbf{w}_{n} \ge 0.$$

• The tuning parameter λ controls the balance between regret and CIS.

Theorem

(Optimal Weight) For any fixed $\lambda > 0$, the minimizer of (5) is

$$w_{ni}^{*} = \begin{cases} \frac{1}{k^{*}} [1 + \frac{d}{2} - \frac{d}{2(k^{*})^{2/d}} \alpha_{i}], & \text{for } i = 1, \dots, k^{*}; \\ 0, & \text{for } i = k^{*} + 1, \dots, n \end{cases}$$

where
$$\alpha_i = i^{1+\frac{2}{d}} - (i-1)^{1+\frac{2}{d}}$$
 and $k^* = \lfloor \{\frac{d(d+4)}{2(d+2)}\}^{\frac{d}{d+4}} \lambda^{\frac{d}{d+4}} n^{\frac{4}{d+4}} \rfloor$.

- We define the weighted nearest neighbor classifier with weight w^{*}_n as the snn classifier.
- The snn classifier depends on λ , which can be tuned by CV.

▲圖▶ ▲屋▶ ▲屋▶

We show that the proposed snn classifier achieves minimax-optimal rates in terms of both regret and CIS.

Theorem

(Optimal Rate of SNN) Under the same regularity assumptions, for any $\alpha \ge 0$ and $\gamma \in (0,2]$, CIS of the proposed snn classifier with any fixed $\lambda > 0$ satisfies

$$\sup_{P \in \mathcal{P}_{\alpha,\gamma}} \operatorname{Regret}(snn) \leq \widetilde{C} n^{-(\alpha+1)\gamma/(2\gamma+d)}$$
$$\sup_{P \in \mathcal{P}_{\alpha,\gamma}} \operatorname{CIS}(snn) \leq C n^{-\alpha\gamma/(2\gamma+d)},$$

for any $n \ge 1$ and some constants $\tilde{C}, C > 0$.

向下 イヨト イヨト

Experiment 1: Validation of Asymptotic Expansion of CIS

• Two classes: $f_1 = N(0_2, \mathbb{I}_2)$ and $f_2 = N(1_2, \mathbb{I}_2)$.

n

- Compare with the knn, the bagged nearest neighbor (bnn) and the ownn classifiers.
- We tune λ in the snn classifier by minimizing $CIS^2 + Regret$.
- In each simulations, we fix sample size n = 200.
- The average misclassification error and CIS are evaluated on 1000 independently generated test data over 100 replications.

・ 回 ト ・ ヨ ト ・ ヨ ト

Simulation 1

Two classes are $f_1 = N(0_d, \mathbb{I}_d)$ and $f_2 = N(\mu_d, \mathbb{I}_d)$. We choose μ such that the resulting B_1 is fixed for d = 1, 2, 4, 8 and 10.

Slight sacrifice of accuracy may greatly reduce instability.

Sun, Wei (Purdue) Nearest Neighbor Classifier with Optimal Stability

< ≣ >

- - E - E

æ

 $f_1 \sim \frac{1}{2}N(0_d, \mathbb{I}_d) + \frac{1}{2}N(3_d, 2\mathbb{I}_d)$ and $f_2 \sim \frac{1}{2}N(\frac{3}{2}_d, \mathbb{I}_d) + \frac{1}{2}N(\frac{9}{2}_d, 2\mathbb{I}_d)$. Δ refers to percentage of change of snn compared with ownn.

d	π_0		knn	bnn	ownn	snn	Δ
Sim 2							
2	1/2	Bayes 26.83 Error CIS	30.13 _{0.167} 31.80 _{0.973}	29.85 _{0.162} 30.48 _{0.873}	29.75 _{0.176} 30.06 _{0.833}	30.14 _{0.174} 17.82 _{0.76}	1.31% -40.72%
2	1/3	Bayes 22.76 Error CIS	23.79 _{0.111} 14.93 _{0.517}	23.85 _{0.131} 13.99 _{0.508}	23.68 _{0.113} 14.99 _{0.503}	23.91 _{0.075} 6.90 _{0.394}	0.97% -53.97%
5	1/2	Bayes 11.61 Error CIS	16.50 _{0.132} 17.02 _{0.414}	$16.00_{0.142}$ $16.19_{0.391}$	15.91 _{0.131} 16.15 _{0.449}	15.51 _{0.118} 14.43 _{0.332}	-2.51% -10.65%
5	1/3	Bayes 10.58 Error CIS	15.14 _{0.115}	15.00 _{0.101}	14.88 _{0.102}	15.01 _{0.110}	0.87% -11.84%

Slight sacrifice of accuracy may greatly reduce instability.

向下 イヨト イヨト

Real Examples from UCI Machine Learning Repository

Data	п	d		knn	bnn	ownn	snn	Δ
haberman	306	3						
			Error	26.080.281	26.600.268	26.300.275	26.560.260	0.99%
			CIS	5.390 485	6.030 526	5.250 476	3.920 450	-25.33%
liver	345	6		0.100	0.020	0.110	0.150	
			Error	38.760 356	38.610 488	37.50 360	38.270 300	2.05%
			CIS	37.951 472	39.861 222	39.381 204	33.201 721	-15.69%
appendicitis	106	7		1.472	1.322	1.304		
			Error	15.360 477	17.910 796	15.920 522	15.19 402	-4.59%
			CIS	10 430 696	18 431 250	14 360 019	9.380.700	-34 68%
nima	768	8			1.250		0.009	
pina	100	0	Error	26.080 010	25 920 100	25.830 100	26.040.005	0.81%
			CIS	13 950 421	14 360 465	14 110 460	12 64 405	-10.42%
stalog	270	13	010	13.330.431	14.300.405	14.110.462	12.040.405	10.4270
stalog	210	15	Error	17 440 000	17 640 007	17 370 045	16 97	-2 30%
			CIS	12 20	12 72	11 04	11 29	5.50%
cradit	600	14	CIS	13.390.821	12.720.678	11.940.614	11.200.477	-3.3370
crean	090	14	Error	14 55	14.62	14.60	14 54	0.41%
				7 50.144	14.030.144	6 77	14.34 0.144	-0.41/0
	067	22	CIS	7.520.256	0.850.271	0.770.267	0.41 0.253	-5.32%
spect	207	22	-	00.00	00.41	00.04	00.05	0.449/
			Error	20.000.330	20.410.402	20.340.310	20.250.298	-0.44%
			CIS	$11.06_{1.114}$	$12.90_{1.228}$	$11.09_{1.013}$	b.86 0.987	-38.14%

Slight sacrifice of accuracy may greatly reduce instability.

Sun, Wei (Purdue) Nearest Neighbor Classifier with Optimal Stability

(4回) (注) (注) (注) (注)

- We introduced a general measure of classification instability CIS and established its minimax rate for general plug-in classifiers.
- We proposed a novel stabilized nearest neighbor classifier to achieve this optimal rate.

Acknowledgement

Guang Cheng (Purdue)

Sun, Wei (Purdue) Nearest Neighbor Classifier with Optimal Stability

Э

Xingye Qiao (Binghamton)